
Pareto Ant Colony Optimization with ILP

preprocessing in multiobjective project

portfolio selection

K.F. Doerner a, W.J. Gutjahr b, R.F. Hartl a, C. Strauss a,
C. Stummer c

aDepartment of Management Science, University of Vienna, Bruenner Str. 72,
A-1210 Vienna, Austria

bDepartment of Statistics and Decision Support Systems, University of Vienna,
Universitaetsstr. 5/3, A-1010 Vienna, Austria

cDepartment of Management Science and Statistics, University of Texas at San
Antonio, 6900 North Loop 1604 West, San Antonio, Texas 78249-0631,USA

Abstract

One of the most important, common and critical management issues lies in deter-
mining the “best” project portfolio out of a given set of investment proposals. As
this decision process usually involves the pursuit of multiple objectives amid a lack
of a priori preference information, its quality can be improved by implementing
a two-phase procedure that first identifies the solution space of all efficient (i. e.,
Pareto-optimal) portfolios and then allows an interactive exploration of that space.
However, determining the solution space is not trivial because brute-force com-
plete enumeration only solves small instances and the underlying NP-hard problem
becomes increasingly demanding as the number of projects grows. While meta-
heuristics in general provide an attractive compromise between the computational
effort necessary and the quality of an approximated solution space, Pareto Ant
Colony Optimization (P-ACO) has been shown to perform particularly well for this
class of problems. In this paper, the beneficial effect of P-ACO’s core function (i. e.,
the learning feature) is substantiated by means of a numerical example based on
real world data. Furthermore, the original P-ACO approach is supplemented by an
integer linear programming (ILP) preprocessing procedure that identifies several
efficient portfolio solutions within a few seconds and correspondingly initializes the
pheromone trails before running P-ACO. This extension favors a larger exploration
of the search space at the beginning of the search and does so at a low cost.

Key words: Ant Colony Optimization, Project Portfolio Selection, Multiobjective
Combinatorial Optimization, Integer Linear Programming, Preprocessing, Hybrid
Optimization Method

Preprint submitted to Elsevier Science 25 June 2004

1 Introduction

Multiobjective combinatorial optimization (MOCO) has become a very active

area of research [6,7] with selecting a portfolio of projects out of dozens of com-

peting (capital) investment proposals being an application of particular high

practical relevance (e. g., in research and development investment planning

[10]). The recent interest in MOCO last but not least is due to the fact that

many managers no longer are willing to provide extensive a priori preference

information such as complex utility functions, but instead demand for decision

support that allows them to only gradually specify their preferences and, thus,

to participate and to control the decision process. Typically, a corresponding

system starts off with (partially) identifying the efficient (i. e., non-dominated

or Pareto-optimal) portfolio candidates and then supports the decision-maker

to interactively explore these solutions. However, the first-mentioned task is

an NP hard problem and, thus, (meta-)heuristic approaches come into play

as they provide an attractive tradeoff between solution quality and the com-

putational effort required for determining a sufficient approximation of the

solution space.

Accordingly, several multiobjective versions of Genetic Algorithms (GA), Sim-

ulated Annealing (SA) and Tabu Search (TS) have been developed so far (for

a survey cf. [7]), but it has not been before recently that a proper Ant Colony

System has been proposed as well. Although this so-called Pareto Ant Colony

Optimization (P-ACO; cf. [3,4]) approach already outperforms SA and GA

approaches for the investigated project portfolio selection problem, its perfor-

mance can be further enhanced by integrating an initial preprocessing step. To

that end, this paper will describe an integer programming (IP) procedure that

2

identifies several (supported) efficient solutions within a few seconds and uti-

lizes them to appropriately initialize the pheromone trails (that represent the

learning component of the algorithm). The effect of achieving higher diversifi-

cation at comparatively low cost will be demonstrated by means of numerical

experiments.

The remainder of the paper is organized as follows: Section 2 describes the

project portfolio selection problem at hand. Section 3 provides an overview

of the P-ACO approach, while Section 4 introduces the supplemental IP pre-

processing procedure and presents numerical results. Finally, Section 5 offers

conclusions and suggests directions for further research.

2 Problem Description

The problem formulation of determining the “best” project portfolio (i. e.,

subset) out of a given set of N research and development project proposals

originated from a cooperation with the ebm-papst GmbH&Co. KG, a Ger-

man enterprise that grew to the world market leader with innovative external

rotor motors and fans; a detailed description of the underlying integer linear

mathematical programming model is provided by Stummer and Heidenberger

[14]. In short, portfolios are modeled as vectors x = (x1, . . . , xN), where the

binary variables xi indicate whether a project i is part of the portfolio (xi = 1)

or not (xi = 0). Projects are characterized by (i) the benefits bi,l,t they provide

in the B benefit categories l (e. g., cash flow and/or sales) and the T planning

periods t (e. g., financial years) and by (ii) their resource consumptions ri,q,t in

the R resource categories q (e. g., funds, manpower, and production capacity).

The benefit values of a project portfolio x thus is computed as

3

bl,t(x) =
∑

i

bi,l,t · xi +
∑

j

dj,l,t(x) (1)

for l = 1, . . . , B and t = 1, . . . , T,

where the sum of the project benefits is adjusted by potential synergy or

cannibalism effects dj,l,t(x). Note that functions dj,l,t(x) remain linear though

the J project interactions j usually refer to more than just two investment

proposals (for details cf. [14]). Required resources rq,t(x) of type q (with q =

1, . . . , R) and for planning period t are determined in a similar way.

Furthermore, the model traces both benefit and resource values separately for

each planning period instead of aggregating them to a (discounted) total value

and, thus, provides valuable time profiles of expected benefits and costs (for a

discussion cf. [11]). The resulting K = B · T objectives may be formulated as

uk(x) = bl,t(x) for k = l + (t− 1) ·B . (2)

These objectives are subject to two types of restrictions. The first group of

restrictions ensures that each feasible portfolio contains no more than a given

maximum (not less than a given minimum) number of projects out of a cer-

tain subset of projects. Thus, a minimum number of projects that deal with

emerging technologies can be guaranteed, the number of projects based on

conventional concepts (even if they seem attractive in a short-time perspec-

tive) may be restricted, or balancing policies (e. g., with respect to novel and

ongoing projects) may be implemented. A representative example for these

restrictions is

∑

i

vi,j · xi ≥ mj, (3)

where mj stands for a required minimum number of predefined projects that

have to be included in a portfolio and vi,j indicates whether or not project i

4

is in the corresponding subset j of effected projects.

The second set of constraints refers to resource limitations Rq,t and minimum

benefit requirements Bl,t . They are written as

rq,t(x) ≤ Rq,t for q = 1, . . . , R and t = 1, . . . , T, and (4)

bl,t(x) ≥ Bl,t for l = 1, . . . , B and t = 1, . . . , T. (5)

Apparently, this problem is a generalization of the classical bin packing prob-

lem which is known to be NP-hard.

3 Pareto Ant Colony Optimization

3.1 Solution Procedure

The Ant Colony approach imitates the behavior shown by real ants when

searching for food. They communicate information about food sources via

pheromone, which they secrete as they move along. When an ant finds a food

source it returns to the nest. As ants on short (i. e., attractive) paths will

return to the nest faster, more pheromone will be deposited on the shorter

paths. Moving ants accordingly choose their path with a probability that de-

pends on the amount of pheromone detected and, consequently, paths that

are more frequently travelled become more attractive and, by means of that

self-strengthening behavior, will be used more often. Further, the pheromone

“evaporates” over time, so that pheromone trails of infrequently travelled

paths become weaker while attractive paths are reinforced. And finally, ar-

tificial ants not only imitate the learning behavior described above, but often

5

apply additional, problem-specific heuristic information. While such artificial

ant colony systems have been successfully applied to various single-objective

problems, several extensions have been necessary in order to be able to tackle

the multiobjective project portfolio selection problem at hand (for a detailed

discussion of these modifications cf. [4]).

Basically, each iteration of the P-ACO algorithm starts off with generating

Γ ants each with an empty portfolio x = (0, . . . , 0) and randomly generated

lifespan Ξ and objective weights (i. e., individual preferences) p = (p1, . . . , pK).

In the succeeding construction step, each ant adds projects to its portfolio x

and to that end applies a pseudo-random-proportional project selection rule

that is influenced by the heuristic information ηi and the pheromone infor-

mation τi (cf. Section 3.2 below). If both the feasibility and efficiency of the

constructed portfolio are confirmed, the solution candidate is stored in the set

of the proposed efficient project portfolios and candidates that are dominated

by the new entry are removed from that set. After all ants of a population

have delivered their portfolios, the best as well as the second-best portfolio

x for each objective k are used to properly update the pheromone values (cf.

Section 3.3 below). In pseudo-code, the P-ACO algorithm can be outlined as

follows:

procedure P-ACO () {
Initialization of P-ACO; /* create Γ ants, set pheromone vectors to τ0 */

repeat until termination criterion is true{
for Ant = 1 to Γ {

determine the lifespan Ξ of the ant randomly on the interval [1..N];

set x = (0, ..., 0); /* create empty portfolio */

determine the objective weight pk for each objective k randomly;

6

ξ = Ξ; /* indicates the number of projects to be selected */

while ξ > 0 and ∃ i with ηi(x) > 0 {
select a project i using formula (6) below and add it to x;

update local pheromone information;

decrement ξ;

}
check feasibility of portfolio x;

if portfolio x is feasible {
check efficiency of portfolio x;

if portfolio x is efficient {
store portfolio x and remove dominated ones;

} } }
for each objective k {

determine best and second-best solution uk for each objective k;

update global pheromone information using best and second-best

solution using formula (9)

} } }

3.2 Decision Rule

For each objective k the pheromone information is stored in a vector (τ k
1 , . . . , τ k

N)

where τ k
i indicates whether or not adding a project i promises favorable ef-

fects on a portfolio’s outcome. The heuristic information (often also called

“visibility”), on the other hand, refers to the fitting of a particular project

candidate with respect to a partially constructed portfolio and, accordingly,

an aggregated value of visibility 0 ≤ ηi(x) ≤ 1 is calculated for each available

project candidate i (in a matched manner for our problem at hand; for the

sake of brevity we omit the details and refer the reader to [4]). Based on the

above information the following pseudo-random-proportional decision rule is

7

used to add another project to the current portfolio:

i =





arg maxi∈Ω(x)

{[∑K
k=1

(
pk · τ k

i

)]α · [ηi(x)]β
}

if q ≤ q0

î otherwise,

(6)

where q is a random number uniformly distributed in [0, 1) and q0 is a pa-

rameter (0 ≤ q0 < 1) representing the probability that the project with the

highest aggregate value for pheromone and visibility is selected. Given that

the drawing of q results in a value such that q > q0, the random variable î is

selected according to the following probability distribution:

Pi(x) =





[
∑K

k=1(pk·τk
i)]

α·[ηi(x)]β

∑
h∈Ω(x)

(
[
∑K

k=1(pk·τk
h)]

α·[ηh(x)]β
) if i ∈ Ω

0 otherwise.

(7)

This distribution is biased by the parameters α and β, which determine the

relative influence of the trails and the visibility, respectively.

3.3 Pheromone Update

A local pheromone update is performed once an artificial ant has added a

project i to a portfolio. Then, pheromone values τ k
i are decreased for all K

pheromone vectors by applying the local pheromone update rule

τ k
i = (1− ρ) · τ k

i + ρ · τ0 , (8)

where τ0 is the initial value of trails and ρ is the evaporation rate. On account

of local updating, ants prefer those combinations of projects that have not yet

been chosen. As a result, the diversity of the solutions is enhanced.

The global pheromone takes place right after all ants of a population have

8

proposed portfolio solutions and their feasibility and efficiency have been de-

termined. The update rule for each objective k is

τ k
i = (1− ρ) · τ k

i + ρ ·∆τ k
i , (9)

where ρ stands for the evaporation rate (with 0 ≤ ρ ≤ 1). Pheromone infor-

mation is increased by a quantity ∆τ k
i = 2δ if a project i is included in a

population’s best portfolio with respect to objective k (and ∆τ k
i = 0 other-

wise). Subsequently, another (analogous) update is made for the second-best

portfolio using a pheromon quantity of ∆τ k
i = δ. Tests with various pheromone

update strategies have shown that working with just the two best ants and

assigning pheromone quantity δ = 5 leads to attractive results. However, it

is noteworthy, that parameter modifications have only small influence on P-

ACO’s overall performance [4].

4 The ILP Preprocessing Procedure

Several dozen iterations are necessary in order to approach the efficient fron-

tier when starting from scratch (i. e., with all pheromone values τ k
i initialized

by a constant value of τ0 = 1). Since the management of pheromone is quite

expensive, the basic idea behind introducing an additional preprocessing step

lies in shortening that “start-up-phase” [12,13]. To achieve this aim, an inte-

ger programming model is used to identify several efficient project portfolios

without accessing pheromone information. These solutions are then utilized

to appropriately initialize the pheromone vectors (i. e., to set initial values for

all the τ k
i) before the P-ACO algorithm is actually started.

Procedurally, the preprocessing step consists of two phases: In phase 1, a

9

single-objective problem is derived from the original multiobjective model,

thereby making it possible to solve several (single-objective) linear problem

instances of the integer programming model. The model generation is based on

repeatedly drawing random objective weights wk from a uniform distribution

within the domain [0, 1). Alternatively, these weights could be determined sys-

tematically; whether this approach is advantageous will be subject to further

research. Regardless of which approach is used, each set of weights makes it

possible to formulate a separate (binary) linear program that seeks to maxi-

mize

u(x) =
∑

k

wk · uk(x), (10)

while still taking into consideration the three types of constraints (3)-(5) de-

scribed above. However, one should note that different weights may neverthe-

less result in identical solutions. Accordingly, the number of efficient portfo-

lios identified in the preprocessing step depends primarily on both the chosen

number of iterations and the number of supported efficient solutions that are

generally available (a figure which varies considerably among individual prob-

lems). Furthermore, the preprocessing procedure will only identify so-called

supported efficient portfolios, which regularly comprise only a small subset of

the set of all efficient solutions (for a discussion cf. [6]).

The aim of phase 2 in the preprocessing step is to make use of the identified

(supported) efficient portfolios and to appropriately initialize the pheromone

vectors τ k. To that end, we investigated two procedures. The first simply in-

volves searching for the best and the second-best portfolio with respect to each

objective k. Beginning from a default setting of τ k
i = 1 the initial pheromone

value is increased by δ · ρ = 0.5 (note that ρ was set to ρ = 0.1 in our experi-

ments) for projects i that are included in the second-best portfolio xk
second−best

10

and/or by another 2δ · ρ = 1 for projects being included in the best portfolio

xk
best:

τ k
i = 1 + δ · ρ · xk

second−best,i + 2δ · ρ · xk
best,i ∀i, k. (11)

The second procedure lets all the portfolios found in the preprocessing step

influence the setting of the initial pheromone values. For that purpose one

may normalize the objective values uk(x) to a range of [0, 1]:

ûk(x) =
uk(x)− umin

k

umax
k − umin

k

∀k. (12)

Then the projects i contained in a portfolio x add a value of 10 · ρ = 1 to

the pheromone values τ k
i of objective k where the project portfolio provides

the highest normalized objective value ûk(x) (compared with the values of

portfolio x in the other objectives):

τ k
i = 1 +

∑
x

10 · ρ · bk(x) · xi ∀i, k. (13)

Here, function bk(x) indicates whether portfolio x has its highest (normalized)

objective value in objective k (bk(x) = 1) or not (bk(x) = 0). Numerical

experiments showed that the latter procedure performs best, and therefore

was applied to the numerical example presented in Section 5.3.

5 Numerical Analysis

5.1 Comparison of Solution Quality

The following section describes the computational tests that were performed

in order to substantiate two issues: first, the contribution provided by P-

ACO’s learning component, which is a conceptual characteristic; and second,

11

P-ACO’s improvement by means of an ILP preprocessing step.

We performed the numerical study on a personal computer equipped with

a Pentium III-933 microprocessor, 128 MB RAM and the operating system

Windows ME; all procedures were implemented in C++.

The parameter settings of P-ACO chosen for the computational experiments

(α = 1, β = 1, ρ = 0.1, Γ = 10) have proven to be advantageous in other

applications and were pre-tested for the problem under consideration. These

pre-tests led to the parameter setting q0 = 0.4 and τ0 = 1 being chosen, as a

higher level of diversification compared to Dorigo and Gambardella [5], where

q0 = 0.9 and τ < 1, is desirable for the application to MOCO problems.

In Doerner et al. (2004) [4] a numerical study showed the superiority of the

development of the solution quality of P-ACO over that of a simulated an-

nealing re-implementation, PSA by Czyzak and Jaszkiewicz [1], and a genetic

algorithm, NSGA by Deb [2]. For the sake of completeness we furthermore

implemented a tabu search approach, MOTS by Hansen [9]. The test instance

is based on real world data provided by the R&D department of ebm-papst

GmbH& Co.KG (cf. Section 2). The results in section 5.1 and 5.2 are based

on this real-world example. The characteristics of the problem are explained

in detail in section 5.2. For the results in section 5.3 we generated eight ad-

ditional random problem instances with the same number of projects as in

the real-world example, with five and ten objectives and with few and many

restrictions.

Figure 1 shows that P-ACO suggests faster a greater number of actually ef-

ficient solutions than any of the other three alternative approaches for the

problem at hand. The upper left graph in figure 1 shows the results in terms

12

����������	�

�
��	�
��

��������� ��� �
� ��������
�	 � ��
�� �

�

� ��!
"���!
� ��!
#���!
$ ��!
% ��!
& ��!

' ! ()! ��! ")! ��! #)!
* +-,�. / 02143 05/ ,76 8

9 :
;< =>
?@ A
?>
B@ ?
CD ?E

F��
� GH��� I��J���������
	�

�
��� � � �
� ��������
�	 � ��
�� �

�

!)K
()!)K
")!)K
#)!)K
%�!)K
' !�!)K

' ! ()! ��! ")! ��! #)!
* +7,�. / 02143 05/ ,-6 8

>=
C7L
9 :
; L
?@ A
?>
B@ ?
CD ?E

M�� ��F�GH� �

N�O

P�N�O

Q N�O

R�N�O

S�N�O

TUN�N�O

TUN P�N V�N Q N W�N R�N
* +-,�. / 021�3 05/ ,-6 8

XYZ
X

[]\ ^�_�`
[�a]^
bc`2d�a
efa�g4^

Fig. 1. Comparison of P-ACO’s solution quality with three alternative approaches

of absolut values, whereas the upper right graph gives the relative number of

actually efficient portfolios; the bottom graph visualizes the ”hit rate” which

is the ratio of the actually efficient portfolios compared to the proposed ones.

The hit rate of MOTS even declines after 30 and 40 minutes of run time as

it proposes more portfolios as efficient ones which turn out to be dominated

ones. Further tests have shown, that PSA does not generate better results

than P-ACO even when run times are doubled for both approaches.

While all other competing approaches have a complexity of O(N), the com-

plexity of the introduced P-ACO approach using preprocessing is O(N2),

where N denotes the number of projects. It can be reduced by other pos-

13

sible problem encodings, which was not investigated in this paper. The results

of P-ACO with preprocessing are superior although it’s theoretical complexity

is higher than the other approaches’ complexity.

5.2 Value of Learning

We present a numerical study that quantifies the value of learning by com-

paring the results of an approach based solely on heuristic information (i. e.,

P-ACO with a disabled learning function by setting α = 0 in Equation (7))

with those achieved by applying P-ACO, which benefits from its learning

component. In the context of P-ACO ”learning” denotes the management of

information (collecting, storing, and discarding) about previous solutions in

the pheromone trails that aims to improve future solutions. Making use of

the above mentioned real world data, the numerical study outlines a rather

complex decision-making situation in which any “intuitive” favoring of cer-

tain project combinations in advance is not permitted. Our example considers

thirty projects (N = 30), three planning periods and two benefit categories

(i. e., K = 3 · 2 = 6). Thus, the alternative space includes 230 (i. e., more than

109) portfolios. The projects vary substantially in both, their potential benefits

and the resources they require. Moreover, some projects vary significantly in

their benefit values and/or resource consumption, while other projects provide

average values. In addition to limited resources and minimum benefit require-

ments, ten supplementary constraints ensure that – to provide examples for

a maximum and a minimum restriction – any feasible portfolio includes at

most one out of three projects pursuing the same goal, or at least two projects

that help to diversify business. Finally, four interactions are used to model

14

synergism or cannibalism between projects. After eight hours of run time,

complete enumeration shows that this real world problem has 980 efficient

project portfolios.

�����

�����

� ���

�����

	 ���

 ���

� �����

� � �
� ��� ��� ��� � �

UXQ�WLPH��PLQ�

UH
O�

�Q
R

��
R

I�
H

II
��

S
R

UW
IR

OL
R

V

���������������
�������������
� ��!�" �����
� ��!�" ���

#�$&%

#�'&%

($&%

('&%

) $&%

) '&%

* $�$&%

* $ +&$,
$ -.$ '�$ /&$

UXQ�WLPH��PLQ�

K
LW

�U
D

WH
��

(
�3

(
�

�����0�1�2��3 4&"65�47�
� ��!�"&��3 4&"65�47�

Fig. 2. The Value of Learning

To provide a yardstick for comparing the results, we have chosen the rela-

tive number PE of proposed efficient portfolios and the relative number E of

proposed portfolios appearing in the efficient set (i. e., those proven actually

efficient through complete enumeration). We observe the values found by each

approach (i. e., the pure heuristic and P-ACO) after 10, 20, 30, 40, 50 and

60 minutes of run time. The upper graph of figure 2 shows the relative num-

15

ber of proposed efficient (PE) portfolios as dashed lines, whereas the relative

number of actually efficient (E) portfolios is represented by a bold line. After

10 minutes of run time, P-ACO provides 23% more efficient portfolios than

the heuristic approach; in other words, the learning component improves the

heuristic by more than 50%. After 60 minutes of run time, the gap between

the two approaches is still 14%, which is an improvement of the heuristic by

a third. Furthermore, the numerical study shows that P-ACO includes rela-

tively few dominated portfolios among the potentially efficient portfolios that

it identifies; in contrast, the percentage of portfolios that the pure heuristic

approach proposes as efficient ones that are in fact dominated ones is compar-

atively high.

This distinction is apparent in the upper graph in figure 2 as the distance

between the dashed and the solid line, which decreases for both approaches

over time. The lower part of figure 2 focuses on that ratio and explicitly visu-

alizes the development of the ratio of efficient to proposed efficient portfolios

over time for both approaches. The learning component of P-ACO provides

a hit rate of 90% after 10 minutes of run time, whereas the heuristic only

manages to attain 75% per cent. Even after one hour of run time, there is a

5% difference. The fact that less than 0.1% of the total search space had to

be analyzed (i. e., on average 0.85 million portfolios) to establish 92% of the

efficient project portfolios (after 60 minutes) can be interpreted as a promising

indicator for P-ACO’s ability to generate satisfying solutions within a reason-

able computation timeframe; this would seem to hold true even for problems

that are too large to be enumerated completely. Our numerical tests estab-

lish that P-ACO is unquestionably superior to the pure heuristic and provide

evidence that ACO’s learning feature makes an essential contribution to the

16

solution quality.

5.3 Improvements by Preprocessing

The following section provides results for the computational tests, which were

performed in order to provide an insight into how the solution quality of

P-ACO can be enhanced by applying the described ILP preprocessing pro-

cedure. Figure 3 shows in the upper graph the results computed for the real

world problem and several comparable random problem instances with thirty

portfolios, five to ten objectives and a small number of restrictions generated

with the problem generator described in Doerner et al. [4]. We present values

averaged over five computational runs per problem instance. The run time al-

ternatives were set to 2, 4, 6, 8, and 10 minutes, thus providing an insight into

the development of the solution quality of each of the three alternative pre-

processing variations. To provide a fair comparison between all approaches,

the time required to perform the preprocessing procedure reduces the run

time available to perform the subsequent P-ACO procedure itself. The bot-

tom graph in figure 3 visualizes the results of one selected problem instance for

which the complete enumeration revealed that this instance has 621 efficient

project portfolios.

The first alternative A aims at an improvement of the adaptive memory used

by P-ACO. It adjusts the initial pheromone vectors by taking those supported

efficient portfolios into account, which were determined in the ILP prepro-

cessing step. The second alternative B focuses on the data structure support-

ing identification, storage and retrieval of non-dominated portfolios proposed,

which is a so-called quadtree. Quad trees generalize classic binary trees to

17

K-dimensions [8]. The nodes of the tree store the project portfolios. Given K

objectives, a node is followed by up to 2K − 2 subtrees, where all portfolios

in such a subtree have the same dominance relation (i. e., for each objective

they are all better or all worse, respectively, than the root). This hierarchical

structure implies that only a small percentage of all possible pairwise compar-

isons needs to be performed to verify efficiency [15]. Inserting the supported

efficient solutions, which are the result of the a priori ILP optimization, will

save some computational expensive insert, delete and reorganization proce-

dures of finally dominated portfolios in the quadtree. The third alternative C

combines both variants (A and B) to exploit the outcome of preprocessing.

Alternative C shows better results than the other two (A and B) in terms of

number of efficient portfolios found. After 2 minutes of run time the advanced

P-ACO version with both variants provides on the average 8% more efficient

portfolios than P-ACO without any preprocessing and for the selected case

17% more efficient portfolios. After 4 minutes of run time the difference is still

6% on the average and 5% in the selected instance which corresponds to 32

portfolios out of the total 621 efficient ones. Note that in the selected case

less than 20 supported efficient solutions identified through the preprocessing

optimization, have lead to an immediate increase of Pareto-optimal solutions

by the amount of 100 portfolios after 2 minutes of run time. Exploiting the

supported efficient solutions found in the preprocessing step thus lead to an

over-proportional pay-back effect: in the case of the two simple approaches A

and B the initial 20 supported efficient solutions are augmented by a factor of

4 after 2 minutes of run time, whereas the combined approach C even reaches

a factor of 5. Note that exploiting one unique information (i. e., supported

efficient portfolios) at two different points in the procedure (i. e., initialization

18

�����

�����

�����

�����

� ���

� ���

�����

�����

	����

� � 	
 ���

UXQ�WLPH��PLQ�

UH
O�

�Q
R

��
R

I�
H

II
��

S
R

UW
IR

OL
R

V

QR�SUHSURF�

$��LQLWLDOL]DWLRQ�

%��TXDG�WUHH�

&��ERWK�

� ���

�����

	����

 ���

����

�����

�������

� � 	
 ���

UXQ�WLPH��PLQ�

UH
O�

�Q
R

��
R

I�
H

II
��

S
R

UW
IR

OL
R

V

QR�SUHSURF�

$��LQLWLDOL]DWLRQ�

%��TXDG�WUHH�

&��ERWK�

DYHUDJHG�YDOXHV

VHOHFWHG�FDVH

Fig. 3. Improvements by Preprocessing

of the pheromone vectors and nodes in the quad tree, respectively) has an

augmenting effect.

In our selected numerical example the benefits of the preprocessing step are

levelled out after 10 minutes of run time because almost the entire number of

efficient portfolios has been identified. It is worth noting that we were com-

pelled to apply the procedures to a problem size that could still be enumerated

19

completely in order to provide a quantitative measure of the solutions’ quality.

However, given that real world problems might contain a far larger number

of project proposals, the initial subperiod of two minutes could correspond

to far longer computing times when applied to such large problems. Whereas

in the selected case the advantage of preprocessing is levelled out quite soon,

in the averaged results that trend is clearly slowed down (i. e., the initial 8%

advantage declines down to only 6% after 10 minutes of run time).

Other pre-tests have shown that P-ACO with an ILP preprocessing step per-

forms particularly promising on problems where few restrictions are imposed

and a large number of efficient project portfolios exists. There are two ex-

planations for this finding: Firstly, it seems that in the mentioned case the

ACO-inherent visibility can take considerable advantage of the efficient solu-

tions identified during the preceding preprocessing phase while the basic vis-

ibility feature regularly suffices for problems with many restrictions because

these restrictions anyway reduce the number of efficient portfolios. The second

reason lies in the ILP nature of the pre-process: as the preprocessing proce-

dure focuses on supported efficient portfolios and only few of them exist in

problems with numerous maximum and minimum constraints the effect of the

pre-process may diminish or even disappear. As the analysis of preprocessing

for other meta-heuristics (e. g., Simulated Annealing, Genetic Algorithms, and

Tabu Search) goes beyond the scope of this paper, future research will focus on

determining the effects of similar preprocessing procedures for meta-heuristics.

20

6 Conclusions

Influenced by the critical role that multiobjective combinatorial optimization

plays in the decision-making process at the strategic management level, re-

cent research activities have focused on heuristic approaches for such NP-hard

problems. Our paper substantiates the positive benefits of the learning feature

found in Pareto Ant Colony Optimization, which has proven to be an efficient

method in this challenging problem class. The influence of the learning fea-

ture on the solution quality of P-ACO is shown by providing a numerical

study based on real world data. It is demonstrated that the developed P-ACO

algorithm yields better results than simply applying the underlying heuristic

without learning. Furthermore, it is shown that ILP preprocessing improves

performance. The results of numerical experiments involving a two step ILP

preprocessing procedure that supports P-ACO underscore the positive effect

that the preprocessing procedure has on P-ACO’s solution quality. Further re-

search will focus on testing alternative preprocessing functions, investigating

alternative, less complex problem encodings and explore what, if any, effects

comparable preprocessing procedures have on other meta-heuristics (e. g., Sim-

ulated Annealing, Genetic Algorithms, and Tabu Search).

Acknowledgements

The authors would like to thank Leonidas Sakalauskas and three anonymous

referees for valuable comments and suggestions which strengthened this paper,

Erich Obwexer for the implementation of the ILP model, and Thomas Bertolini

from the ebm-papst GmbH& Co.KG, for providing real world data and for

21

his support of this work. Further, Christian Stummer acknowledges financial

support from the Austrian Science Fund (FWF) under Grant No. J2351-N04.

References

[1] P. Czyzak, A. Jaszkiewicz, Pareto Simulated Annealing: A metaheuristic
technique for multiple-objective combinatorial optimization, Journal of
Multi-Criteria Decision Analysis 7 (1998) 34-47.

[2] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
Wiley, Chichester, 2001.

[3] K. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, C. Stummer, Ant
Colony Optimization in multiobjective portfolio selection, in: Proceedings
of the 4th Metaheuristics International Conference, Porto, 2001, pp. 243-
248.

[4] K. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, C. Stummer, Pareto
Ant Colony Optimization: A metaheuristic approach to multiobjective
portfolios selection, Annals of Operations Research, forthcoming.

[5] M. Dorigo, L. Gambardella, Ant Colony System: A cooperative learning
approach to the travelling salesman problem, IEEE Transactions on
Evolutionary Computation 1 (1997) 53-66.

[6] M. Ehrgott, X. Gandibleux, A survey and annotated bibliography of
multiobjective combinatorial optimization, OR Spektrum 22 (2000) 425-
460.

[7] M. Ehrgott, X. Gandibleux, Approximative solution methods for
multiobjective combinatorial optimization, Top – The Journal of the
Spanish Statistical and Operations Research Society, forthcoming.

[8] W. Habenicht, Quad trees: A datastructure for discrete vector
optimization problems, in: P. Hansen (Ed.), Essays and Surveys on
Multiple Criteria Decision Making, Springer, Berlin, 1983, pp. 136-145.

[9] M. Hansen, Tabu search for multiobjective combinatorial optimization:
TAMOCO, Control and Cybernetics 29 (2000) 799-818.

[10] K. Heidenberger, C. Stummer, Research and development project
selection and resource allocation: A review of quantitative modelling
approaches, International Journal of Management Reviews 1 (1999) 197-
224.

22

[11] J. Ringuest, S. Graves, The linear R&D project selection problem: An
alternative to net present value, IEEE Transactions on Engineering
Management 37 (1990) 143-146.

[12] C. Solnon, Ants can solve constraint satisfaction problems, IEEE
Transactions on Systems, Man and Cybernetics 6 (2002) 347-357.

[13] C. Solnon, Boosting ACO with a preprocessing step, in: E.J.W. Boers,
J. Gottlieb, P.L. Lanzi, R.E. Smith, S. Cagnoni, E. Hart, G.R. Raidl, H.
Tijink (Eds.), Applications of Evolutionary Computing: EvoWorkshops
2002, Springer, Berlin, pp. 163-172.

[14] C. Stummer, K. Heidenberger, Interactive R&D portfolio analysis with
project interdependencies and time profiles of multiple objectives, IEEE
Transactions on Engineering Management 50 (2003) 175-183.

[15] M. Sun, R.E. Steuer, Quad tree data structures for use in large-scale
discrete multiple criteria problems, in: Y. Shi, M. Zeleny (Eds.), New
Frontiers of Decision Making for the Information Technology Era, World
Scientific, Singapore, 2000, pp. 48-71.

23

