
Nature-inspired metaheuristics for

multiobjective activity crashing

K.F. Doerner a, W.J. Gutjahr b, R.F. Hartl a, C. Strauss a,
C. Stummer a

aDepartment of Management Science, University of Vienna, Bruenner Str. 72,
A-1210 Vienna, Austria

bDepartment of Statistics and Decision Support Systems, University of Vienna,
Universitaetsstr. 5/3, A-1010 Vienna, Austria

Abstract

Many project tasks and manufacturing processes consist of interdependent time-
related activities that can be represented as networks. Deciding which of these sub-
processes should receive extra resources to speed up the whole network (i. e., where
activity crashing should be applied) usually involves the pursuit of multiple objec-
tives amid a lack of a priori preference information. A common decision support
approach lies in first determining efficient combinations of activity crashing mea-
sures and then pursuing an interactive exploration of this space. As it is impossible
to exactly solve the underlying multiobjective combinatorial optimization problem
within a reasonable computation time for real world problems, we have developed
proper solution procedures based on three major (nature-inspired) metaheuristics.
This paper describes these implementations, discusses their strengths, and provides
results from computational experiments.

Key words: Heuristics, Multicriteria, Decision making, Project management

1 Introduction

Meeting customers’ demand for short production, lead and service times while
simultaneously using available resources as economically as possible is a critical
challenge in competitive markets. A project manager thus regularly faces a
decision problem that follows a general pattern: carrying out a project on

∗ Corresponding author. Tel.: +431-4277-38113; fax: -38094.
Email address: karl.doerner@univie.ac.at (K.F. Doerner).

Preprint submitted to Elsevier Science 19 January 2006

time necessitates crashing certain activities by exploiting extra resources (e. g.,
using additional manpower, assigning highly-skilled personnel to specific jobs,
improving machines or equipment, subcontracting certain tasks, etc. [31,36]),
which, on the other hand, increases the costs of the project.

Traditionally, this time-cost problem is addressed by CPM-based approaches
[25] that assume both unlimited resources and the existence of a continuous
duration-cost function. However, given the discrete nature of most resources,
activities can often be crashed only stepwise and/or to a limited extent or
must even be left un-crashed. Such discrete versions of the activity crashing
problem have been introduced by several authors in a deterministic [22,26], as
well as in a stochastic context [11,15,20,21].

In practice, the problem is even more complicated because several conflicting
objectives (e. g., overall project duration versus additional costs for applying
activity crashing measures) usually drive the decision-making process. While
the popular goal programming approaches require extensive a priori prefer-
ence information that decision-makers often are not able or willing to provide
[27], the alternative interactive decision support procedures allow the decision-
makers to specify their preferences gradually and, thus, to participate in and
to control the decision process [35]. Typically, such an interactive approach
consists of a solution generation phase and a solution evaluation phase. While
there are several appropriate approaches for the latter [34], identifying the set
of the efficient alternatives for the first phase is a problem that becomes very
demanding for larger problem instances. Here, metaheuristic approaches come
into play because they regularly provide a favorable compromise between the
quality of the (approximation of the) solution space and the required comput-
ing time; for a state-of-the-art survey cf. Ehrgott and Gandibleux [17].

We have developed proper implementations of three nature-inspired meta-
heuristics, namely Nondominated Sorting Genetic Algorithm II (NSGA-II),
Pareto Simulated Annealing (PSA) and Pareto Ant Colony Optimization
(PACO), for the activity crashing problem at hand. This paper will discuss
their individual strengths and compare their performance in computational
experiments based on problem instances whose network structures are taken
from an on-line library and randomly generated crashing measures.

The remainder of the paper is organized as follows: Section 2 formalizes the
problem of activity crashing under multiple objectives. Section 3 describes in
detail the implementation of PACO, PSA and NSGA-II. The experimental
design is outlined in Section 4, while results of the numerical experiments are
given in Section 5. And finally, Section 6 summarizes our findings and provides
an outlook to further research.

2

2 Problem description

2.1 Multicriteria analysis

As outlined in the introduction, we intend to provide the decision maker with
a set of feasible solutions to a multiobjective optimization problem by elimi-
nating those solutions that are not Pareto-efficient. A solution is called Pareto-
efficient if there is no other solution that dominates it, where the dominance
relation for K objective functions fk(x) (k = 1, . . . , K) is defined as follows
(without loss of generality, we refer to a formulation of the problem as a min-
imization problem): solution x(1) dominates solution x(2), if

fk(x
(1)) ≤ fk(x

(2)) for all k,

and there is at least one k such that

fk(x
(1)) < fk(x

(2)).

For abbreviation, we will sometimes use the shorter term “efficient” instead
of “Pareto-efficient”. We define the Pareto frontier as the set of objective
function value vectors (f1(x), . . . , fK(x)) corresponding to Pareto-efficient so-
lutions x.

In many cases, one cannot expect to be able to determine the set of all Pareto-
efficient solutions exactly , at least not for problem instances of a realistic
magnitude. Accordingly, one needs to establish approximations of a sufficiently
high quality for this set.

2.2 Mathematical model

In this subsection, we provide a formal definition for the problem investigated
in this paper. Let us represent the given activity structure as an activity-on-
nodes network, whose nodes are numbered by 1, . . . , n. (For activity-on-nodes
and activity-on-arcs representations of project networks, cf. Tavares [32].) Arcs
are used to indicate precedence relationships between nodes (activities). The
time required for activity i is denoted by d(i). For given values d(i), the shortest
project time δ is defined as the length of a critical path.

We assume that a finite set M(i) of measures is assigned to each node i. A
measure xi ∈ M(i) is any means that influences the duration of the activity
connected with node i. Each measure xi is characterized by three values:

• the (modified) duration d(i, xi) of activity i resulting as a consequence of the

3

application of measure xi (since we are interested in speed-ups, we assume
d(i, xi) ≤ d(i)), and

• two costs c1(i, xi) and c2(i, xi) incurred by the application of xi. There are
several situations where distinguishing between two different cost types is
convenient. An example: Cost c1(i, xi) is a financial cost term, e. g., money
spent for paying overtime work in order to speed up activity i. Cost c2(i, xi)
comprises expenses that possibly cannot be immediately converted into
monetary units, e. g., they can represent deteriorations in the product qual-
ity or the level of dissatisfaction among employees caused by overtime or
stress.

It is always assumed that M(i) contains at least the null measure x
(0)
i (meaning

“do nothing”), characterized by

d(i, x
(0)
i) = d(i) and c1(i, x

(0)
i) = c2(i, x

(0)
i) = 0,

Note that for some activities the null measure might be the only possible
measure assigned, with the consequence that the corresponding activity cannot
be crashed. Further, we assume that the measures x

(s)
i ∈ M(i) are sorted in

descending order with respect to the durations d(i, xi), i. e., if s < s′, then

d(i, x
(s)
i) ≥ d(i, x

(s′)
i). Thus, the decision variables are the chosen measures

xi ∈ M(i) assigned to each single node. In other words, a feasible solution is
a combination of measures – or, formally speaking, an element x of M(1) ×
. . .×M(n).

Based on the assumptions above, we derive three (non-decreasing) objective
functions , assigning duration and costs to each feasible solution x = (xi):

(i) Objective 1:
f1(x) = ϕ1(δ(x)), (1)

where δ(x) is the shortest project time after reduction of the durations
d(i) to the values d(i, xi).

(ii) Objective 2:

f2(x) = ϕ2

(
n∑

i=1

c1(i, xi)

)
(2)

(iii) Objective 3:

f3(x) = ϕ3

(
n∑

i=1

c2(i, xi)

)
(3)

With ϕ1, ϕ2 and ϕ3 chosen as identity functions, f1 expresses the project du-
ration, whereas f2 and f3 represent overall invested costs of the two types.
The functions ϕ1, ϕ2 and ϕ3 allow for monotonous transformations of these
performance parameters, if necessary. For example, in some cases it is not the
project duration itself that matters, but rather the tardiness , i. e., the differ-
ence between project termination time and a pre-defined due date. Similarly,

4

for one of the cost factors, whether or by which amount a certain budget limit
is exceeded may be more relevant than the value of the cost factor itself.

For convenience, we shall use a slightly simplified notation in the description of
the algorithms in the following Section 3: If, for some i, the measure set M(i)

consists of the νi + 1 elements x(0), x(1), . . . , x(νi), a choice xi = x
(s)
i from M(i)

can be identified by indicating the index s (0 ≤ s ≤ νi) of the measure within

the measure set. As we have noted, the measures x
(s)
i ∈ M(i) are always kept

sorted in descending order with respect to the activity durations. Therefore,
larger values of s correspond to smaller durations d(i, x

(s)
i), so that we can

interpret s as the crashing level of activity i. Choosing s = 0 means that the
null measure is applied. Let si be the index s chosen for activity i. The overall
solution x can then be represented by the vector x = (s1, . . . , sn) of indices,
where 0 ≤ si ≤ νi for each i = 1, . . . , n. Thus, the solution space becomes

{0, . . . , ν1} × {0, . . . , ν2} × . . .× {0, . . . , νn}.

In accordance with this simplified notation, we eventually write c1(i, s) instead

of c1(i, x
(s)
i) and c2(i, s) instead of c2(i, x

(s)
i).

In contrast to classical activity crashing problems on continuous decision
spaces that are easily solved by applying LP approaches or methods of nonlin-
ear optimization, the problem defined above is a hard combinatorial problem
due to its discrete and nonconvex nature. Note that even its single-objective
counterpart problem (e. g., when combining the three objective functions to
a weighted average) is NP-complete, since it can be reduced to a knapsack
problem. (The proof is similar to that given by Gutjahr [20] for a related
problem.)

Finally, let us note that our problem formulation is closely related to the
so-called discrete time-cost tradeoff problem as defined by De et al. [9]. The
differences are the following: (i) Instead of only a single cost criterion, we
consider two independent cost criteria. (ii) We allow that for the definition
of the three objective functions, both the time criterion and the two cost
criteria are subjected to monotonous transformations. (iii) In [9], the solution
paradigm consists in optimizing time on budget constraints or minimizing
costs on time constraints, respectively; if this is done in a parametrical way,
the time-cost curve is obtained. This approach is not applicable anymore for
our case of three criteria, because when transiting from two to more than two
criteria the “efficient frontier” is no longer a frontier but becomes a surface
and it is not possible to parameterize a surface. Therefore, we provide a “true”
multicriteria problem formulation (i. e., one with more than two objective
functions in contrast to a bicriteria formulation) and aim to determine the set
of Pareto-efficient solutions.

5

3 Solution procedures

3.1 Pareto Ant Colony Optimization

PACO is an extension of the Ant Colony Optimization (ACO) metaheuristic
that has evolved from the Ant System paradigm [6]. The ACO approach imi-
tates the real-world behavior shown by ants when they search for food. Ants
exchange information about food sources via pheromone, a chemical substance
that they deposit on the ground as they move along. Short paths from the
nest to a food source obtain a larger amount of pheromone per time unit than
longer paths. As a result, an ever increasing number of ants is attracted to
such routes, which in turn reinforces these pheromone trails. Artificial ants not
only imitate the learning behavior described above, they also apply additional,
problem-specific heuristic information. ACO has been successfully applied to
various hard combinatorial optimization problems [1,3,12,16,18]; moreover, the
convergence of specific ACO algorithms to optimal solutions has been shown
[19]. By applying the ideas of ACO to the multiobjective case, PACO has
proven to be a highly efficient heuristic technique in the field of multiobjective
portfolio selection [13,14,30].

We developed two variants of PACO for the activity crashing problem at hand.
PACO-LSpan, a variant that works in a manner analogous to the procedure
described in Doerner et al. [13], uses a “lifespan” concept: the artificial unit
called ant iteratively selects activities to increase crashing levels until a ran-
domly determined lifespan has expired. The alternative variant PACO-Assign
uses a different solution construction mechanism: Each ant visits each activity
i exactly once and assigns a crashing level si to it; this level is not changed
afterwards. We provide a description of the PACO-Assign algorithm in the
following section, while the alternative PACO-LSpan is discussed in Subsec-
tion 3.1.5. In our experiments, PACO-Assign turned out to be distinctly more
efficient than PACO-LSpan with respect to the chosen evaluation criteria. The
only exception existed for one specific criterion (metric QR; see Section 5.1 for
a discussion on the evaluation metrics) where PACO-Assign already produced
superior results compared to the other tested heuristics. Therefore, we will
omit presenting the numerical results for PACO-LSpan for the sake of brevity.

Γ number of ants in each generation,

τ k
is pheromone information for activity i, crashing level s and objective k,

ηk
is attractiveness information for activity i, crashing level s and objective k,

pk randomly generated, ant-specific weight/preference for objective k,

α, β parameters for the random-proportional decision rule,

6

R number of ants that are allowed to increment pheromone values,

ρ persistence factor for pheromone update.

procedure PACO-Assign () {
initialize solution set M by the empty set;

create Γ ants;

initialize pheromone matrices τ k (k = 1, 2, 3) with constant entries;

repeat until termination criterion is satisfied {
for ant = 1 to Γ {

determine the weight pk for each objective k at random;

for i = 1 to n

select a crashing level si using formula (5);

check efficiency of solution x = (s1, . . . , sn) w. r. t. M ;

if solution x is efficient {
store solution x in M ;

remove solutions dominated by x from M ;

} }
for each objective k

from the solutions just found by the Γ ants,

determine the R− 1 best solutions xrk for objective k

(r = 1, . . . , R− 1);

do pheromone update using formula (6);

} }

In an initialization phase, a number of Γ ants are generated. In the so-called
construction phase of the algorithm, each ant constructs a solution x by ap-
plying a random-proportional decision rule (see Subsection 3.1.3) while using
randomly generated, individual objective weights pk as well as “attractiveness
information” and “pheromone information” (see Subsections 3.1.1 and 3.1.2).
Both types of information are stored in matrices τ k = (τ k

is) and ηk = (ηk
is),

respectively. If the identified solution x is efficient with respect to the current
elements of the set M , it is added to M , and elements of M dominated by
x are removed. Finally, a pheromone update takes place; the specifics of the
update are described in Subsection 3.1.4.

3.1.1 Attractiveness information

In Ant Colony Optimization, “attractiveness” (also called “visibility”) denotes
the result of a heuristic pre-evaluation of how good a certain construction step
will presumably be.

7

For objective k, the attractiveness information is stored in a matrix ηk. The
rows of this matrix correspond to the activities i that can be crashed, and
the columns correspond to the different crashing levels s = 0, . . . , νi for each
activity i. (As a consequence, different rows may be filled up to different
lengths.) The value ηk

is represents the attractiveness information for crashing
activity i to the level s with respect to objective k.

For the cost-related objectives 2 and 3, the attractiveness values are repre-
sented by the reciprocals of the costs of type 1 or 2, respectively, incurred by
crashing activity i to the level s:

ηk
is = [ck−1(i, s) + 1]−1 (k = 2, 3). (4)

We do not use relevant attractiveness information for objective 1, i. e., we set

η1
is = 1.

3.1.2 Pheromone information

“Pheromone” is the term used in Ant Colony Optimization for information
that has been obtained from experience with solutions that have already been
evaluated: The pheromone values assigned to construction steps that have
turned out as favorable are increased, while those assigned to unsuccessful
construction steps are decreased. In PACO, specific pheromone values are
defined for each of the objectives.

For objective k, the pheromone information is stored in a matrix τ k. The
rows of this matrix correspond to the activities i that may be crashed, and
the columns correspond to the different crashing levels s = 0, . . . , νi of each
activity i. (As in the case of the attractiveness matrix, different rows may be
filled up to different lengths.) The value τ k

is represents the current pheromone
information for crashing activity i to the level s with respect to objective k.

3.1.3 Decision rule

Given the attractiveness information and the pheromone information, PACO-
Assign chooses a crashing level s for the current activity i according to the
following random-proportional rule: Value s is selected with probability

Ps(i) =

∑3
k=1

[
pk · τ k

is

]α ·
[
ηk

is

]β

∑νi
h=0

∑3
k=1

[
pk · τ k

ih

]α ·
[
ηk

ih

]β (s = 0, . . . , νi). (5)

This probability distribution is parameterized by the exponents α and β, which

8

determine the relative influence of pheromone and attractiveness, respectively.

3.1.4 Pheromone update

The Γ solutions produced by the ants are evaluated according to each criterion
k to obtain the R− 1 best solutions for each criterion. After that, pheromone
values are updated using the following rule: First, each pheromone value is
reduced through multiplication with a factor ρ (0 < ρ < 1), the so-called
persistence factor ; then, for each k, pheromone entries in matrix τ k that belong
to one of the best R − 1 solutions according to criterion k are reinforced by
increments depending on the rank of the solution (highest increment for the
best solution, etc.). Technically, the update rule is as follows: Consider a fixed
criterion k and the corresponding pheromone matrix τ k; let xrk denote the
solution ranked as the r-th best with respect to objective k; then, for each i
and each s,

τ k
is = ρτ k

is +
R−1∑

r=1

∆τ rk
is (6)

with

∆τ rk
is =





R− r, if xrk
i = s,

0, otherwise.

This update is performed for each k.

Tests have shown that setting R = 3 leads to good results. However, the
performance is not very sensitive with respect to this parameter.

3.1.5 PACO-LSpan

In this variant, for each ant, a lifespan L is drawn from a uniform distri-
bution with a minimum value of 0 and a maximum value of Lmax, where
Lmax =

∑n
i=1 νi. Each ant starts with initial solution (0, . . . , 0), i. e., a solution

containing only null measures. Instead of going through the activities in the
pre-defined order (as in PACO-Assign) and deciding for each activity at which
level it should be crashed (including level 0 as an option), the variant PACO-
LSpan allows each ant to decide at each construction step to which activity
i it will move for the next crashing action. The crashing action consists in
an increment of the current value for variable si by one unit. The process is
repeated until the number of construction steps has reached the predefined
lifespan L of the ant.

9

3.2 Pareto Simulated Annealing

In order to compare the implemented PACO results with those of a multi-
objective simulated annealing variant, we apply a technique introduced by
Czyzak and Jaszkiewicz [8], called “Pareto Simulated Annealing” (PSA). An
extension of the multiobjective simulated annealing algorithms proposed by
Serafini [29], and by Ulungu et al. [33], PSA uses a population-based sim-
ulated annealing approach that keeps a sample S of solutions, the so-called
generating sample, in each iteration. The aim is (a) to move S towards the set
of Pareto-efficient solutions, while (b) favoring dispersion among the elements
of S. The last goal is achieved as follows: For a given x ∈ S, the weights of
the objectives are changed in such a way that x is given a tendency of moving
away from its closest neighbor x′ in S. This is done by increasing the weights
of objectives on which x is better than x′ and decreasing the weights of the
other objectives.

S generating sample set of current feasible solutions,

σ number of elements in S,

M solution set

wjk weight of criterion k for the j-th element of sample set S,

a weight modification factor,

T temperature parameter for simulated annealing,

L number of iterations on each temperature level,

b temperature reduction factor (annealing factor),

Nm maximum number of level modifications.

Part of each simulated annealing algorithm involves a procedure for the tran-
sition to a random neighbor solution. We compute a neighbor as follows: For
a given solution x = (s1, . . . , sn), we draw a number κ of crashing level mod-
ifications uniformly from {1, . . . , Nm}. Now, in a loop with κ iterations, a
random position i is selected, and the crashing level si is either increased by
one (if possible), or decreased by one (if possible). The decision on “increase”
or “decrease” is made with probability 0.5 for each alternative. Note that by
pursuing this approach we do not restrict ourselves to single local changes
(case κ = 1), but allow changes in several components.

A pseudo-code formulation of our implementation of PSA is given below. As
in the previous subsections, K and n are the number of objective functions
and the number of activities, respectively, fk is the k-th objective function,
and x = (s1, . . . , sn) is a feasible solution.

10

procedure PSA () {
initialize S with the empty set;

repeat until S contains σ solutions {
generate a random vector x = (s1, . . . , sn) of length n by

selecting si randomly from {0, . . . , νi} (i = 1, . . . , n);

add x to sample set S;

}
initialize M with the empty set;

for j = 1 to σ

if (j-th solution x in S is efficient w. r. t. M)

add x to solution set M and remove dominated solutions;

initialize temperature parameter T ;

repeat until termination criterion is satisfied {
for l = 1 to L

for j = 1 to σ {
x = j-th solution in S;

choose a random neighbor solution y to x;

if (y is efficient w. r. t. M), add y to solution set M

and remove dominated solutions from M ;

x′ = element in S non-dominated by x that has minimum

number of different components to x;

if (first run or no x′ found) {
for k = 1 to 3

draw random weight wjk;

normalize weights wjk to
∑

k wjk = 1;

}
else {

for k = 1 to 3 {
if (x better than x′ according to criterion k)

wjk = awjk;

else

wjk = wjk/a;

}
normalize weights wjk to

∑
k wjk = 1;

}
accept y (i. e., replace x as the j-th solution in S by y) with

probability min (1, exp (
∑

k wjk (fk(x)− fk(y)) /T)) ;

}
set T = bT ;

} }

11

3.3 Nondominated Sorting Genetic Algorithm II

There are several variants of multiobjective genetic algorithm techniques; for
a comprehensive survey, we refer the reader to Coello [4]. For our problem
context, we implemented the Nondominated Sorting Genetic Algorithm II
(NSGA-II) by Deb [10].

The basic idea of NSGA-II is to create a sequence of generations of solutions,
to sort the current generation into nondomination levels, to perform a finer
evaluation of solutions from the same nondomination level by using a crowding
distance measure, and to combine subsequent parent-offspring sets to candi-
date sets for the selection of the next generation. We use the following notation
to describe the algorithm:

SP sample set of solutions – parent population,

SQ sample set of solutions – offspring population,

σ number of elements in SP and in SQ (fixed integer),

M solution set (i. e., set of all proposed efficient solutions),

µ mutation probability (fixed parameter between 0 and 1).

NSGA-II uses an auxiliary procedure fast-nondominated-sort(SP) that parti-
tions a given set SP of solutions into sets F1, F2 etc., where Fl denotes the
l-th nondomination level of SP . (The first nondomination level consists of the
nondominated elements in SP , the second nondomination level consists of the
nondominated elements after removing the elements of F1 from SP , etc.). For
the details of fast-nondominated-sort(), we refer the reader to Deb [10].

Furthermore, we apply an auxiliary procedure called crowding-distance-assign-
ment(SP), which assigns to each element x ∈ SP a measure indicating how
close other solutions of SP lie to x in objective space. In our implementation,
we used the Euclidean distance to the nearest neighbor point in objective
space to quantify this measure.

An order relation ≺ is defined based on the nondomination level numbers
rank(x) and the crowding distance measures distance(x): For two solutions,
x ≺ y if rank(x) < rank(y), or if rank(x) = rank(y) and distance(x) >
distance(y).

As in ordinary genetic algorithms, for each parent population SP , an offspring
population SQ is computed by the operators selection, mutation and crossover.
The crowded-comparison operator ≺ is used for fitness evaluation in the se-
lection step. For the mutation step, we use the same procedure as applied in

12

PSA for the transition to a neighbor: If a solution x is to be mutated, it is
replaced by a random neighbor solution as described in Section 3.2. Crossover
is done in a straightforward manner, namely as two-point crossover of strings
x and y.

procedure NSGA-II () {
initialize both SP and SQ with the empty set;

repeat until SP contains σ solutions {
generate a random vector x = (s1, . . . , sn) of length n by

selecting si randomly from {0, . . . , νi} (i = 1, . . . , n);

add x to SP ;

}
initialize M with the empty set;

for j = 1 to σ

if (j-th solution x in SP is efficient w. r. t. M)

add x to solution set M and remove dominated solutions;

make a new population SQ from SP ;

repeat until termination criterion is satisfied {
combine parent and offspring generation: SR = SP ∪ SQ;

apply fast-nondominated-sort to SR to obtain nondominated

levels F1,F2, . . .;

initialize S ′P with the empty set;

l := 1;

while (|S ′P |+ |Fl| ≤ σ) {
do crowding-distance-assignment(Fl);

S ′P := S ′P ∪ Fl;

l := l + 1; }
sort Fi according to order ≺;

add the first σ − |S ′P | elements of Fl to S ′P ;

make a new population S ′Q from S ′P ;

set SP := S ′P and SQ := S ′Q;

for j = 1 to σ

if (j-th solution x in SQ is efficient w. r. t. M)

add x to solution set M and remove dominated solutions;

} }

13

4 Experimental design

4.1 Network structure of problem instances

As a means of ensuring a fair comparison in terms of solution quality and per-
formance, we generated random problem instances based on various complex
network-structures taken from literature. Figure 1 illustrates such a complex
network with 43 activities and 60 arcs taken from [25]. We refer to this network
as to “Moder1” in the result description. Figure 2 depicts a network-structure
with 73 nodes and 113 arcs taken from [25] as well. This network will be
referred to as “Moder2” in the result description. Both networks have been
enriched by crashing measures that may be characterized by values of (mon-
etary) cost and time.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Fig. 1. Structure of a network with 43 activities.

In addition, computational experiments have been run for two groups of
even larger instances taken from the on-line library provided by Kolisch and
Sprecher [24]. Each of these two groups comprise five networks containing 90
activities (“Kolisch1” to “Kolisch5” in the result description) and 120 activi-
ties (“Kolisch11” to “Kolisch15” in the result description), respectively.

4.2 Cost and time structure of problem instances

We randomly generated cost and time values for the crashing activities for the
above-mentioned network structures:

A. Time structure. The duration d(i) of an activity i follows a uniform distri-
bution on the interval [1, 10]. We define that crashing reduces the activity
duration d(i) by one time unit in each single crashing step, but always
keep the remaining duration positive: d(i, x(s)) = max(d(i) − s, 1). The
functions ϕ1, . . . , ϕ3 have been chosen as identity functions.

14

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Fig. 2. Structure of a network with 73 activities.

B. Number of crashing alternatives for each activity. Applying a truncated
geometric distribution with parameter p = 0.8 determines the number
νi of measures (different from the null measure) for each activity i. The
distribution is truncated in such a way that the maximum value of νi is
equal to 10.

C. Cost structure. Each crashing measure xi triggers two cost values c1(i, xi)
and c2(i, xi) representing the two different cost types. In our problem
instance generation procedure, both cost terms depend on the achieved
reduction s of the activity duration and are computed as

ck(i, x
(s)
i) =

s∑

j=1

ξijk (k = 1, 2), (7)

for 1 ≤ s ≤ νi and ck(i, x
(0)
i) = 0, where each random variable ξijk

is drawn independently from an uniform distribution on the interval
[0.5, 1.5]. Thus, ξijk represents marginal costs of type k required for fur-
ther reducing the duration of activity i (i = 1, . . . , n) given that it has
already been crashed by j − 1 measures (j = 1, . . . , νi).

15

4.3 Parameters for the three approaches

In this subsection we describe the parameter values chosen for the test runs of
Pareto Ant Colony Optimization, Pareto Simulated Annealing and the Non-
dominated Sorting Genetic Algorithm II at our test instances (for an overview
see Table 2).

The parameter settings of the PACO chosen for the computational experi-
ments (α = 1, β = 1, ρ = 0.9, Γ = 20) were taken from other applications
in which they have proven to be advantageous [3], and were pre-tested for
the problem under consideration. The entries in the pheromone matrix were
initialized with the value 1.

For PSA, some parameter settings described by Czyzak and Jaszkiewicz [8]
were directly applied to our problem instances (e. g., weight modification and
annealing factor), whereas others had to be adapted to the size of our problem
instances: We chose a size σ of 200 for the sample set. The weight modification
factor a was set to 1.05, and L was set to 2, such that 400 trials on neighbor
solutions were made on each temperature level. Finally, the temperature is
reduced by a factor b = 0.95. The maximum number of level modifications
Nm was set to the value 16.

Also the standard parameter values for NSGA-II, as described in the literature,
had to be adjusted to the size of our problem instances. A population size σ
of 200 feasible portfolios was used for the entire set of instances. Furthermore,
we applied a mutation rate µ of 0.1, as tests have shown that this rate is
adequate.

Table 2
Parameter settings for numerical experiments.

PACO PSA NSGA-II

Γ = 20 σ = 200 σ = 200

α = β = 1 a = 1.05 µ = 0.1

R = 3 L = 2

ρ = 0.9 b = 0.95

Nm = 16

16

5 Computational results

We performed all runs on a personal computer with a Pentium IV-2.4 GHz
microprocessor, 256 MB RAM, and the operating system Windows 2000; all
procedures were implemented in C++ and compiled using the Borland com-
piler v. 6. All of the algorithms were given the same runtime of 60 CPU seconds.
Five runs with different random numbers were performed for each algorithm
and each test instance.

5.1 Evaluation metrics

Numerous metrics have been proposed for evaluating multiobjective meta-
heuristics [5,23,38]. While many pairs of such metrics produce correlated re-
sults, there are also metrics that are capable of measuring the achievement
of conflicting goals. Therefore, the evaluation of multiobjective metaheuristics
can itself be regarded as a multiobjective decision analysis problem.

Evaluation metrics of multiobjective metaheuristics that follow the Pareto
approach can be categorized according to some of the principal aims they
pursue. There seem to be at least three such aims that are complementary to
each other: (1) a good approximation of the set of Pareto-efficient solutions
(i. e., of the Pareto frontier), (2) a fairly equal distribution of the proposed
solutions (either in solution space or in objective space), and (3) coverage
of a broad range of the region of the Pareto frontier. For the results of our
experimental tests, we have chosen one specific metric from each of these
three groups, and added a fourth metric that allows a pairwise comparison of
metaheuristics also in cases where the Pareto frontier is unknown.

All applied metrics have been computed based on normalized instead of ab-
solute objective function values. Normalization is performed by multiplying
each objective function value fk(x) by a range equalization factor

πk = 1 / range (k),

where range(k) measures the range of the objective function values for fk(x)
as the difference of an upper and a lower bound of these values [23]. In our
case, we have set

range (1) =
∑

i

d(i),

where the sum is over the activities i of a critical path for the considered test
instance. This is the difference of f1(x) between the worst case and an “utopia

17

point”, where δ has been crashed to zero. Similarly, we have set

range (k) =
n∑

i=1

ck−1(i, x
(νi)
i) (k = 2, 3),

which represents the difference between the maximum possible cost and cost
zero for each of the two cost types.

We denote the normalized objective function value by using f̄k(x). The set of
normalized solution points, {(f̄1(x), . . . , f̄K(x)) | x ∈ M} ⊆ IRK , where M is
the set of solutions proposed by a given metaheuristic, is denoted by symbols
A or B.

Metric 1: For measuring the degree by which the set A of proposed points
(more precisely: normalized solution value vectors) approximates the Pareto
frontier, we have chosen the metric Q4(A) in the notation of Jaszkiewicz [23];
this metric was originally introduced by Czyzak and Jaszkiewicz [7]. For de-
termining Q4(A), one must rely on a reference set RS that is identical to or at
least a good approximation of the Pareto frontier PF . We computed RS for
a given test instance as the set obtained from the union of points proposed by
any of the metaheuristics in any of the random runs by removing dominated
points. Q4(A) is given by

Q4(A) =
1

|RS|
∑

r∈RS

min
z∈A

D(z, r),

where D(., .) is a distance measure in objective space, for which we took the
Euclidean distance.

Metric 2: For measuring how uniformly the points in A are distributed in
objective space, we have chosen the Spacing metric Q5(A) by Schott [28]:

Q5(A) =

√√√√ 1

|A| − 1

∑

z∈A

(D̄ −D(z))2,

where

D(z) = min
z′∈A

K∑

k=1

|zk − z′k|,

and D̄ is the mean of all values D(z).

Metric 3: For measuring how well the whole possible range of the Pareto
frontier is covered by the points in A, we have applied the following simple

18

measure:

QR(A) =
1

K

K∑

k=1

(Rmax
k (A)−Rmin

k (A)),

where

Rmax
k (A) = max{f̄k(x) |x ∈ A}, Rmin

k (A) = min{f̄k(x) |x ∈ A}.

Metric 4: For a mutual comparison of the sets A and B produced by two
metaheuristics, we applied a metric introduced by Zitzler and Thiele [37];
following Jaszkiewicz [23], we abbreviate it by Q6(A,B).

Q6(A,B) =
|{z2 ∈ B | ∃z1 ∈ A : z1 º z2}|

|B| ,

where z1 º z2 if z1 dominates z2 or z1 = z2. Q6(A,B) = 1 indicates that every
point in B is dominated by or equal to some point in A, whereas Q6(A,B) = 0
indicates that no point in B is dominated or equal to some point in A.

From a project manager’s point of view the decision on which of the above
metrics to focus on primarily depends on his/her current requirements. If the
manager needs to ensure that proposed efficient solutions in general are iden-
tical or close to one of the solutions out of a reliable reference set, metric
Q4 has to be favored. If the uniform distribution in objective space is of im-
portance (e. g., for ensuring availability of proper, but not necessarily true
efficient, decision alternatives for each potential combination of (implicit) ob-
jective weights), a project manager may opt to primarily rely on metric Q5.
Otherwise, if all what matters is the determination of the correct broad ranges
of the given objective functions, metric QR may be the best choice. Metric
Q6, finally, is probably more of interest for academics evaluating the perfor-
mances of different metaheuristic procedures. However, note that prioritizing
these metrics itself may constitute a multiobjective decision problem as stated
above.

5.2 Analysis

Table 3 shows the results obtained for the metric Q4, which measures how
well the Pareto frontier is approximated. Each entry is an average of Q4(A)
over the five test runs for each heuristic and each test instance; smaller values
of Q4 correspond to better results. One can observe that PSA produced the
best results and NSGA-II produced the poorest ones for the smaller “Moder”
test instances. This effect changed for the larger “Kolisch” test instances:

19

Table 3
Evaluation on Metric Q4.

Q4 Kolisch1 Kolisch2 Kolisch3 Kolisch4 Kolisch5

PACO 0.039 0.040 0.043 0.040 0.047

PSA 0.174 0.202 0.139 0.181 0.163

NSGA 0.051 0.056 0.051 0.048 0.069

Q4 Kolisch11 Kolisch12 Kolisch13 Kolisch14 Kolisch15

PACO 0.040 0.039 0.022 0.049 0.035

PSA 0.211 0.190 0.229 0.178 0.170

NSGA 0.127 0.097 0.101 0.087 0.050

Q4 Moder1 Moder2

PACO 0.699 0.175

PSA 0.467 0.112

NSGA 0.737 0.192

Here PACO usually produced the best results, the results of NSGA-II were
only marginally worse (and, in three cases, even slightly better), and PSA
performed the worst. The fact that the PSA outcomes drop from first to last
place when passing from the smaller to the larger test instances indicates that
PSA would possibly have required a larger runtime on the larger instances.

Table 4 shows the results obtained for the Spacing-metric Q5. Again, the
entries represent the averages for the five test runs; smaller values of Q5 corre-
spond to better results. NSGA-II produces the best results in all cases except
one (in which PSA performs best), while PACO turns out to be distinctly
inferior to the two other approaches. This can easily be explained by the fact
that both PSA and NSGA-II use specific mechanisms to distribute the solu-
tions equally over the Pareto frontier approximation, whereas PACO does not
apply such a mechanism.

Table 5 shows the results obtained for the metric QR measuring the width of
the range covered by the proposed solutions; once again, the entries represent
averages for the five test runs. In this case, larger values of QR correspond
to better results. For the smaller “Moder” instances, PSA produced the best
results, followed by PACO. However, for the larger “Kolisch” instances, PACO
proved to be best, followed by PSA. This ranking is consistent over the 10 test

20

Table 4
Evaluation on Metric Q5.

Q5 Kolisch1 Kolisch2 Kolisch3 Kolisch4 Kolisch5

PACO 0.0033 0.0024 0.0022 0.0016 0.0019

PSA 0.0011 0.0027 0.0017 0.0009 0.0017

NSGA 0.0008 0.0008 0.0015 0.0004 0.0003

Q5 Kolisch11 Kolisch12 Kolisch13 Kolisch14 Kolisch15

PACO 0.0016 0.0012 0.0010 0.0024 0.0015

PSA 0.0037 0.0007 0.0048 0.0017 0.0015

NSGA 0.0024 0.0006 0.0010 0.0013 0.0003

Q5 Moder1 Moder2

PACO 0.0033 0.0023

PSA 0.0027 0.0010

NSGA 0.0016 0.0016

Table 5
Evaluation on Metric QR.

QR Kolisch1 Kolisch2 Kolisch3 Kolisch4 Kolisch5

PACO 0.431 0.455 0.455 0.429 0.405

PSA 0.293 0.345 0.349 0.313 0.349

NSGA 0.288 0.265 0.272 0.259 0.248

QR Kolisch11 Kolisch12 Kolisch13 Kolisch14 Kolisch15

PACO 0.417 0.567 0.412 0.593 0.432

PSA 0.312 0.412 0.345 0.445 0.332

NSGA 0.182 0.290 0.118 0.301 0.231

QR Moder1 Moder2

PACO 0.209 0.254

PSA 0.414 0.365

NSGA 0.131 0.242

instances.

21

Table 6
Number of proposed efficient solutions.

#PE Kolisch1 Kolisch2 Kolisch3 Kolisch4 Kolisch5

PACO 19.0 25.0 20.4 25.8 17.6

PSA 16.8 15.6 17.4 16.2 17.2

NSGA 13.4 17.4 12.8 17.6 11.6

#PE Kolisch11 Kolisch12 Kolisch13 Kolisch14 Kolisch15

PACO 22.0 28.0 22.0 24.2 25.8

PSA 13.4 18.2 10.8 16.8 15.0

NSGA 9.8 18.8 6.6 15.0 15.4

#PE Moder1 Moder2

PACO 11.4 11.2

PSA 25.0 14.8

NSGA 8.4 13.4

For an explanation of why PSA outperforms PACO in the smaller instances,
whereas this effect is reversed for the larger instances, we might consider Table
6 presenting the average number of solutions proposed as efficient by each
heuristic. It makes clear that PSA proposes a larger number of solutions than
PACO in the smaller instances, but fewer solutions than PACO in the larger
instances.

Table 7 shows pairwise comparisons of the three heuristics measured by Q6.
In this evaluation, the union of the five solution sets produced by the five
runs, minus dominated elements, has been “sent into the competition” for
each test instance and each heuristic. We can see that in these comparisons,
NSGA-II performs best (outperforming PACO in all but one case), followed
by PACO. Although PACO usually achieves a better approximation to the
Pareto-frontier than NSGA-II, the solutions delivered by NSGA-II are able to
cover (i. e., to dominate or to equalize) a larger percentage of those delivered
by PACO than vice versa. This seeming contradiction is also explained by
the observation that PACO usually produces the largest number of solutions,
which facilitates an approximation of the points on the Pareto frontier, but
only gives a comparably small advantage in dominating solutions produced by
other approaches.

22

Table 7
Evaluation on Metric Q6.

Kolisch1 PACO PSA NSGA Kolisch2 PACO PSA NSGA

PACO . 0.845 0.436 PACO . 0.675 0.261

PSA 0.107 . 0.001 PSA 0.407 . 0.083

NSGA 0.903 0.893 . NSGA 0.958 0.870 .

Kolisch3 PACO PSA NSGA Kolisch4 PACO PSA NSGA

PACO . 0.988 0.266 PACO . 0.926 0.161

PSA 0.208 . 0.000 PSA 0.289 . 0.069

NSGA 0.980 1.000 . NSGA 0.965 1.000 .

Kolisch5 PACO PSA NSGA Kolisch11 PACO PSA NSGA

PACO . 0.988 0.175 PACO . 1.000 0.196

PSA 0.024 . 0.000 PSA 0.392 . 0.000

NSGA 1.000 1.000 . NSGA 0.980 1.000 .

Kolisch12 PACO PSA NSGA Kolisch13 PACO PSA NSGA

PACO . 0.976 0.345 PACO . 0.961 0.677

PSA 0.346 . 0.023 PSA 0.441 . 0.000

NSGA 0.954 1.000 . NSGA 0.270 0.828 .

Kolisch14 PACO PSA NSGA Kolisch15 PACO PSA NSGA

PACO . 0.923 0.014 PACO . 0.574 0.074

PSA 0.00 . 0.000 PSA 0.508 . 0.103

NSGA 0.99 1.000 . NSGA 1.000 0.869 .

Moder1 PACO PSA NSGA Moder2 PACO PSA NSGA

PACO . 0.623 0.000 PACO . 0.595 0.194

PSA 0.906 . 0.013 PSA 0.574 . 0.000

NSGA 1.000 0.951 . NSGA 0.852 1.000 .

To investigate the influence of computation time on the relative performance of
the three approaches in relation to each other, we repeated the Q6 evaluations
at the instance “Kolisch1” for larger runtimes of 2, 5 and 10 minutes per run.
The results are shown in Table 8. Note that the following parameter values
have been adapted to the runtime: If the runtime was multiplied by a given
factor, in the case of PACO, the value 1 − ρ was divided by this factor, and
in the case of PSA, the number L of iterations at a specific temperature level

23

Table 8
Development of Q6 with increasing computation time.

Kolisch1 / 2min PACO PSA NSGA

PACO . 0.82 0.39

PSA 0.01 . 0.00

NSGA 0.52 1.00 .

Kolisch1 / 5min PACO PSA NSGA

PACO . 0.62 0.32

PSA 0.15 . 0.08

NSGA 0.59 0.82 .

Kolisch1 / 10min PACO PSA NSGA

PACO . 0.60 0.02

PSA 0.47 . 0.00

NSGA 0.98 1.00 .

was multiplied by this factor. NSGA-II uses no parameter that require a direct
adaptation to the runtime; increasing the number of generations is sufficient.

One can see that the advantage of PACO over PSA decreases with increasing
computation time, confirming the conjecture above that PSA requires more
runtime to unfold its capability. On the other hand, the advantage of NSGA-II
over PACO and PSA becomes overwhelming for longer computation times, at
least in the measure of metric Q6. It should be emphasized that also computa-
tion time must be considered as a quality criterion for a heuristic, especially if
the heuristic is intended for incorporation into an interactive decision support
system in which repeated optimization runs with changed, refined or extended
parameter assignments should be made feasible.

6 Conclusions

Project managers in real-world applications are regularly confronted with con-
flicting requirements: Early due dates necessitate speeding up certain activi-
ties by crashing measures (using additional manpower, assigning highly-skilled
personnel to specific jobs, improving machines or equipment, subcontracting of
certain tasks, etc.), which, on the other hand, increase the costs of the project.
Selecting the “right” processes and applying the “right” crashing measures

24

under time and cost considerations is a key issue. One alternative for solv-
ing problems with multiple objectives involves an interactive approach that
consists of an initial solution generation phase and a succeeding solution eval-
uation phase. In this article, three nature-inspired metaheuristics (namely,
Nondominated Sorting Genetic Algorithm II, Pareto Simulated Annealing,
and Pareto Ant Colony Optimization) were investigated as potential tools for
identifying the set of efficient alternatives in the first phase.

We designed and implemented variants of the three approaches for the solution
of the considered activity crashing problem. To compare the solution qual-
ity, we applied the three metaheuristics to 12 heterogeneous random problem
instances; their network structure was taken from literature, while crashing
alternatives and associated costs were generated randomly. For the evalua-
tion, four different metrics were used, three of which are commonly applied
evaluation metrics taken from the multiobjective optimization literature.

In short, we establish the following: Under the condition of a given (rather
scarce) computation time, Pareto Ant Colony Optimization proved to be
slightly superior to the other approaches in a metric measuring approximation
of the Pareto frontier and in a metric measuring width of the covered range
in objective space. Conversely, the Nondominated Sorting Genetic Algorithm
II and Pareto Simulated Annealing were better in a metric measuring equal
distribution of the proposed solutions. Moreover, the Nondominated Sorting
Genetic Algorithm II outperformed the two other approaches in a “pairwise
comparison” metric measuring mutual dominance of proposed solutions; this
superiority became even more distinct with increasing runtimes.

Future research will focus on real world requirements by, for instance, consid-
ering stochastic influences on activity durations, applying the approaches to
large networks and accounting for constrained resources. A further enhance-
ment would provide an additional option for speeding up a project by making
it possible to change the activity sequence through a change in a network’s
topology. On the level of multiobjective heuristic optimization, the experimen-
tal comparison should be extended to other metaheuristic techniques (e. g.,
memetic algorithms or particle swarm optimization) and/or a module for au-
tomatic parameter tuning (e. g., based on F-Race [2]) may be added.

Acknowledgements

The authors would like to express their appreciation to Monika Treipl for her
valuable technical support and to Michael Halling who was involved in an
early stage of the project. Furthermore, the authors thank three reviewers for
valuable comments on a previous version of this paper.

25

Appendix: Parameter Tests

Our results are based on specific parameter settings for the three tested al-
gorithms. It cannot be expected that these settings are optimal for each test
instance: Even if the parameter combinations would be “optimized” in some
sense for each of the tested algorithms on a specific instance (note that due
to the existence of more than one evaluation metric, parameter tuning is not
a single-objective optimization task, but a multicriteria decision problem!), it
would still remain questionable whether the chosen parameter combination
is still suitable for the other test instances or for new instances as they will
occur in practical applications. Nevertheless, for our results to be conclusive,
it is important to verify at least two properties: First, we have to convince
ourselves that the performance of the three heuristic algorithms is at least
relatively robust with respect to parameter changes. Secondly, we must have
evidence that in our tests, the chosen parameter values did not systematically
favor one of the algorithms over the other two.

To check this, we tested different alternative parameter sets for the three
algorithmic approaches, and we compared the results with the standard pa-
rameter sets reported in Section 5.2. To each algorithm, we also tested three
modified variants of it: We modified the evaporation rate for the PACO al-
gorithm (variant (1), (2), (3)), we modified the cooling process in the PSA
algorithms (variant (4), (5), (6)), and we modified the mutation rate in the
NSGA-II (variant (7), (8), (9)). Table 9 contains the modified settings. Each
modified algorithm was tested against the standard variants of the two other
algorithms. Then, we compared the variants on the basis of our used metrics.

The results are shown in Tables 10–13. The numbers in the tables indicate for
how many test instances (from our set of 12 instances) the algorithm named in
the corresponding line, eventually modified as indicated in the corresponding
column, is the winner of the three algorithms in solution quality; the numbers
in dots report for how many test instances the algorithm is the second best. It
can be observed that the results obtained by our standard parameter settings
remain rather robust after performing the changes. Sometimes the solution
quality is improved by a parameter modification, sometimes it gets worse, but
it never happens that the overall ranking of the algorithms is changed. To
some extent, the observed (small) changes seem to be due to random effects
rather than due to significant differences in performance: e.g., the solution
quality became slightly better when we decreased the mutation rate in the
NSGA-II as well as when we increased the mutation rate.

Moreover, Tables 10–13 show that all the three algorithms can profit in a
comparable order of magnitude from a fine-tuning of the parameters, such
that our tests with the standard parameter settings did not systematically

26

prejudice one of the algorithms. This indicates that the main experimental
results of this paper are stable with respect to parameter modifications.

Table 9
Parameter settings for numerical experiments.

PACO PSA NSGA-II

(0) see Table 2 (0) see Table 2 (0) see Table 2

(1) ρ = 0.8 (4) L = 4, b = 0.9 (7) µ = 0.05

(2) ρ = 0.95 (5) L = 6, b = 0.85 (8) µ = 0.2

(3) ρ = 0.99 (6) a = 1.01 (9) µ = 0.3

Table 10
Evaluation on Metric Q4

Q4 (0) (1) (2) (3)

PACO 10 (2) 12 (0) 10 (2) 5 (7)

PSA 2 (0) 0 (1) 0 (2) 0 (1)

NSGA-II 0 (10) 0 (11) 3 (8) 7 (4)

Q4 (0) (4) (5) (6)

PACO 10 (2) 10 (2) 10 (2) 10 (2)

PSA 2 (0) 1 (0) 1 (0) 1 (0)

NSGA-II 0 (10) 1 (10) 1 (10) 1 (10)

Q4 (0) (7) (8) (9)

PACO 10 (2) 10 (0) 9 (1) 10 (0)

PSA 2 (0) 1 (1) 1 (1) 0 (2)

NSGA-II 0 (10) 1 (11) 2 (10) 2 (10)

27

Table 11
Evaluation on Metric Q5

Q5 (0) (1) (2) (3)

PACO 1 (3) 1 (4) 2 (2) 3 (3)

PSA 1 (9) 2 (8) 2 (6) 2 (6)

NSGA-II 11 (1) 10 (2) 8 (4) 9 (3)

Q5 (0) (4) (5) (6)

PACO 1 (3) 0 (5) 1 (6) 1 (4)

PSA 1 (9) 3 (5) 3 (5) 2 (5)

NSGA-II 11 (1) 9 (2) 9 (2) 9 (3)

Q5 (0) (7) (8) (9)

PACO 1 (3) 1 (3) 0 (5) 1 (3)

PSA 1(9) 0 (10) 1 (8) 3 (6)

NSGA-II 11 (1) 12 (0) 12 (0) 9 (2)

Table 12
Evaluation on Metric QR

QR (0) (1) (2) (3)

PACO 10 (2) 11 (1) 11 (1) 12 (0)

PSA 2 (10) 1 (11) 1 (11) 0 (12)

NSGA-II 0 (0) 0 (0) 0(0) 0 (0)

QR (0) (4) (5) (6)

PACO 10 (2) 10 (2) 10 (2) 10 (2)

PSA 2 (10) 2 (10) 2 (10) 2 (10)

NSGA-II 0 (0) 0 (0) 0 (0) 0 (0)

QR (0) (7) (8) (9)

PACO 10 (2) 10 (0) 10 (0) 10 (0)

PSA 2 (10) 1 (11) 1 (11) 2 (10)

NSGA-II 0 (0) 1 (1) 1 (1) 0 (2)

References

[1] Bauer A, Bullnheimer B, Hartl R, Strauss C. Minimizing total tardiness on a
single machine using Ant Colony Optimization. Central European Journal of

28

Table 13
Proposed efficient solutions

PE (0) (1) (2) (3)

PACO 10 (1) 12 (0) 11 (1) 11 (1)

PSA 2 (6) 0 (7) 1 (7) 1 (7)

NSGA-II 0 (5) 0 (5) 0 (4) 0 (4)

PE (0) (4) (5) (6)

PACO 10 (1) 9 (2) 9 (2) 9 (2)

PSA 2 (6) 3 (8) 3 (8) 3 (8)

NSGA-II 0 (5) 0 (0) 0 (2) 0 (2)

PE (0) (7) (8) (9)

PACO 10 (1) 10 (1) 10 (0) 10 (0)

PSA 2 (6) 0 (7) 0 (9) 1 (10)

NSGA-II 0 (5) 2 (5) 2 (2) 1 (2)

Table 14
Evaluation on Metric Q6

Q6 (0) (1) (2) (3)

PACO 0 (11) 0 (12) 0 (12) 0 (12)

PSA 0 (1) 0 (0) 0 (0) 0 (0)

NSGA-II 12 (0) 12 (0) 12 (0) 12 (0)

Q6 (0) (4) (5) (6)

PACO 0 (11) 0 (11) 0 (11) 0 (11)

PSA 0 (1) 0 (1) 0 (1) 0 (1)

NSGA-II 12 (0) 12 (0) 12 (0) 12 (0)

Q6 (0) (7) (8) (9)

PACO 0 (11) 0 (11) 0 (11) 0 (11)

PSA 0 (1) 0 (1) 0 (1) 0 (1)

NSGA-II 12 (0) 12 (0) 12 (0) 12 (0)

Operations Research 2000;8(2):125-141.

[2] Birrattari M, Stützle T, Paquete L, Varrentrapp K. A racing algorithm for
configuring metaheuristics. In: Langdon WB et al., editors. Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2002). San
Francisco: Morgan Kaufmann, 2002. p. 11-18.

29

[3] Bullnheimer B, Hartl RF, Strauss C. An improved Ant System algorithm for the
vehicle routing problem. Annals of Operations Research 1999;89(1-4):319-328.

[4] Coello Coello CA, Van Veldhuizen DA, Lamont GB. Evolutionary algorithms
for solving multi-objective problems. New York: Kluwer, 2002.

[5] Collette Y, Siarry P. Three new metrics to measure the convergence of
metaheuristics towards the Pareto frontier and the aesthetic of a set solutions in
biobjective optimization. Computers and Operations Research 2005;32(4):773-
792.

[6] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies.
In: Varela FJ, Bourgine P, editors. Toward a practice of autonomous systems:
Proceedings of The First European Conference on Artificial Life. Elsevier, 1992.
p. 134-142.

[7] Czyzak P, Jaszkiewicz A. A multiobjective metaheuristic approach to the
localization of a chain of petrol stations by the capital budgeting model. Control
and Cybernetics 1996;25(1):177-187.

[8] Czyzak P, Jaszkiewicz A. Pareto Simulated Annealing: a metaheuristic
technique for multiple-objective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis 1998;7(1):34-47.

[9] De P, Dunne EJ, Gosh JB, Wells CE. Complexity of the discrete time-cost
tradeoff problem for project networks. Operations Research 1997;45(2):302-306.

[10] Deb K. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation 2002;6(2):182-197.

[11] Demeulemeester EL, Herroelen WS. Project scheduling: a research handbook.
Boston, Kluwer, 2002.

[12] Doerner KF, Gronalt M, Hartl RF, Reimann M, Strauss C, Stummer M.
SavingsAnts for the Vehicle Routing Problem. In: Cagnoni S et al., editors.
Applications of evolutionary computing: EvoWorkshops 2002. Berlin: Springer,
2002. p. 11-20.

[13] Doerner KF, Gutjahr WJ, Hartl RF, Strauss C, Stummer C. Pareto Ant Colony
Optimization: a metaheuristic approach to multiobjective portfolio selection.
Annals of Operations Research 2004;131(1-4):79-99.

[14] Doerner KF, Gutjahr WJ, Hartl RF, Strauss C, Stummer C. Pareto Ant
Colony Optimization with ILP preprocessing in multiobjective project portfolio
selection. European Journal of Operational Research (to appear).

[15] Doerner KF, Gutjahr WJ, Kotsis G, Polaschek M, Strauss C. Enriched workflow
modelling and stochastic Branch-and-Bound. European Journal of Operational
Research 2006 (to appear).

[16] Doerner KF, Hartl RF, Reimann M. Cooperative Ant Colonies for optimizing
resource allocation in transportation. In: Boers EJW et al., editors. Applications
of evolutionary computing: EvoWorkshops 2001. Berlin: Springer, 2001. p. 70-
79.

30

[17] Ehrgott M, Gandibleux X. Approximative solution methods for multiobjective
combinatorial optimization. Top 2004;12(1):1-63.

[18] Gambardella L, Taillard E, Agazzi G. MACS-VRPTW: a multiple ant colony
system for vehicle routing problems with time windows. In: Corne D, Dorigo
M, Glover F, editors. New ideas in optimization. London: McGraw-Hill, 1999.
p. 64-76.

[19] Gutjahr WJ. ACO algorithms with guaranteed convergence to the optimal
solution. Information Processing Letters 2002;82(3):145-153.

[20] Gutjahr WJ, Strauss C, Toth M. Crashing of stochastic processes by sampling
and optimisation. Business Process Management Journal 2000;6(2):65-83.

[21] Gutjahr WJ, Strauss C, Wagner E. A stochastic Branch-and-Bound approach
to activity crashing in project management. INFORMS Journal on Computing
2000;12(2):125-135.

[22] Hindelang TJ, Muth JF. A dynamic programming algorithm for decision CPM
networks. Operations Research 1979;27(2):225-241.

[23] Jaszkiewicz A. Evaluation of multiple objective metaheuristics. In: Gandibleux
X et al., editors. Metaheuristics for multiobjective optimization. Springer:
Berlin, 2004. p. 66-89.

[24] Kolisch R, Sprecher A. PSPLIB: a project scheduling problem library. European
Journal of Operational Research 1997;96(1):205-216.

[25] Moder JJ, Phillips CR, Davis EW. Project management with CPM, PERT and
Precedence Diagramming. New York: Van Nostrand, 1983.

[26] Panagiotakopoulos D. A CPM time-cost computational algorithm for arbitrary
activity cost functions. INFOR 1977;15(2):183-195.

[27] Sarker R, Newton C. Solving a multiple objective linear program
using simulated annealing. Asia-Pacific Journal of Operational Research
2001;18(1):109-120.

[28] Schott JR. Fault tolerant design using single and multicriteria genetic algorithm
optimization. Master’s thesis, Dept. of Aeronautics and Astronautics, MIT.
Cambridge, 1995.

[29] Serafini P. Simulated annealing for multi objective optimization problems. In:
Tzeng G et al., editors. Multiple criteria decision making: expand and enrich
the domains of thinking and application. New York: Springer, 1994. p. 283-292.

[30] Stummer C, Sun M. New multiobjective metaheuristic solution procedures for
capital investment planning. Journal of Heuristics 2005;11(3):183-199.

[31] Sunde L, Lichtenberg S. Net-present-value cost/time tradeoff. International
Journal of Project Management 1995;13(1):45-49.

[32] Tavares LV. A review of the contribution of operational research to project
management. European Journal of Operational Research 2002;136(1):1-18.

31

[33] Ulungu EL, Teghem J, Fortemps P. Heuristics for multiobjective combinatorial
optimization by simulated annealing. In: Gu J et al., editors. Proceedings of
the Sixth National Conference on Multiple Criteria Decision Making. Windsor,
1995. p. 228-238.

[34] Vincke P. Multicriteria decision-aid. Chichester: Wiley, 1992.

[35] Witus G. Decision support for planning and resource allocation in hierarchical
organizations. IEEE Transactions on Systems, Man, and Cybernetics
1986;16(6):927-942.

[36] Yau C, Ritchie E. Project compression: a method for speeding up resource
constrained projects which preserve the activity schedule. European Journal of
Operational Research 1990;49(1):140-152.

[37] Zitzler E, Thiele L. Multiple objective evolutionary algorithms: a comparative
case study and the strength of the Pareto approach. IEEE Transactions on
Evolutionary Computation 1999;3(4):257-271.

[38] Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG. Performance
assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation 2003;7(2):117-132.

32

