A Generalized Convergence Result for the Graph—Based
Ant System Metaheuristic

Walter J. Gutjahr
Department of Statistics, Operations Research and Computer Science
University of Vienna

Abstract: It is shown that on fairly weak conditions, the current solutions of a metaheuristic following
the ant colony optimization paradigm, the Graph-Based Ant System, converge with a probability
that can be made arbitrarily close to unity to one element of the set of optimal solutions. The result
generalizes a previous result by removing the very restrictive condition that both the optimal solution
and its encoding are unique (this generalization makes the proof distinctly more difficult), and by
allowing a wide class of implementation variants in the first phase of the algorithm. In this way, the
range of application of the convergence result is considerably extended.

1 Introduction

Modern information—technological systems get more and more complex, which creates an urgent
demand for efficient heuristics for solving search and optimization problems. Heuristics tailored
to the solution of particular problems are required, but there is also a growing interest into so—
called metaheuristics that promise to be applicable, after suitable specifications, to large classes
of different problem types. It is not surprising that some of these metaheuristics are inspired
by nature, since natural evolution processes can be considered, from a certain point of view, as
mechanisms constantly adapting and improving the functionality of very complex (biological)
systems.

A well-established paradigm within the class of nature-inspired metaheuristics is that of
genetic algorithms ([16], [18]). Recently, also another paradigm within this class has found
considerable attention: the ant colony optimization approach. Introduced in 1991 by Dorigo,
Maniezzo and Colorni ([7], [4]), this approach has developed in the meantime into a powerful,
general and efficient metaheuristic with applications in various fields (see, e.g., [6], [5], [17]).
In particular, the whole range of solving combinatorial optimization problems heuristically can
be covered by this metaheuristic. A feature making it especially attractive is that it is well-
suited for implementations on parallel or distributed systems [3], performing well already on
single—processor systems.

Whenever a heuristic algorithm for an optimization problem allows the investment of an
arbitrary amount of computation time, improving the current solution as more computation
time is spent, one wishes to know what is likely to happen in the long run. Will the current
solution get closer and closer to an optimal solution, or is it possible that there will always
remain a gap to the optimum? For a prominent metaheuristic inspired by physical processes,



simulated annealing (SA), it has been shown that the probability distribution of the current
solution converges to the uniform distribution on the set of optimal solutions (see, e.g., [12],
[15], [1]). Similar results would be desirable for other metaheuristics.

In [13], a first step towards a convergence result for the ant colony optimization approach
has been achieved: For a special metaheuristic algorithm of this type, Graph—Based Ant System,
covering the range of static combinatorial optimization problems, it has been shown that on
four particular conditions (which will be outlined here at the beginning of section 3), the current
solutions converge with a probability that can be made arbitrarily close to one to the optimal
solution. This convergence result is weaker than that for SA (where convergence holds with
probability one), but the more serious drawback lies in one of the conditions which requires
not only that there is a unique optimal solution, but even that this solution is encoded within
the framework in a unique way. In many applications, this cannot be guaranteed. So it seems
highly desirable to remove or at least to relax the uniqueness condition.

As it turns out, however, this is not easy at all: We shall show in the present article that the
uniqueness condition can be totally dropped, but at the price of making the convergence proof
considerably more involved. Moreover, we shall relax another of the four conditions of the result
in [13], requiring a specific parameter update strategy. We shall show that the result remains
valid if this strategy is applied at least in the final phase of the algorithm, after a phase where
the update mechanism can be chosen arbitrarily within the given framework, including, e.g.,
the rank—based variant suggested in [2]. Contrary to the removal of the uniqueness condition,
this second generalization causes no serious difficulties.

The rest of the article is organized as follows: In section 2, we present our formal framework,
the Graph—Based Ant System, and illustrate the relevance of the uniqueness condition by a
concrete example. Section 3 contains the mathematical result and its proof, which is performed
with the help of seven lemmas. Section 4, finally, contains some short concluding remarks.

2 The Algorithm

The description below of our general algorithm, the Graph—based Ant System (GBAS), follows
closely the presentation in [13]. The reader should be aware, however, of some extensions in
the definitions.

GBAS is based on the representation of a feasible solution of a combinatorial optimization
problem as a walk in a directed graph, which we call the “construction graph”:

Definition 2.1. Let an instance of a combinatorial optimization problem be given. By a
construction graph for this instance, we understand a directed graph C = (V, .A) together with
a function ® with the following properties:

(1) In C, a unique node is marked as the so—called start node.
(2) Let W be the set of (directed) walks w in C satisfying the following conditions:

(i) w starts at the start node of C.
(ii) w contains each node of C at most once.

(iii) The last node on w has no successor node in C that is not already contained in w
(that is, w cannot be extended without violating (ii)).



Then ® maps the set VW onto a set S of solutions of the given problem instance containing
all feasible solutions. In other words: To each walk w satisfying (i) — (iii), there corre-
sponds (via ®) a solution in S, and to each solution in S (in particular: to each feasible
solution), there corresponds (via @ 1) at least one walk satisfying (i) — (iii).

As it can be seen from this definition, a construction graph (C,®) specifies a particular
encoding of the solutions as “walks”. The objective function value of the walk is set equal to
the objective function value of the corresponding solution of the original problem, if this solution
is feasible, and to infinity otherwise. We assume throughout this paper that the optimization
problem under consideration is formulated as a minimization problem, that is, the objective
function represents costs. Usually, there are several ways to design a construction graph for a
given combinatorial optimization problem; a standard way is outlined in [13].

Let us now describe GBAS as an extension of Ant System [7], [4], [8]. GBAS contains the
following components:

1. A construction graph (C, ®) according to Definition 2.1.

2. Aset Aj,..., Ag of agents'. Each agent performs a random walk with certain transition
probabilities (see component 3 below) in the construction graph. In a multiprocessor
system, the walk of each agent may be computed on a separate processor (cf. [3]). In
a single-processor system, the moves of Ay,..., Ag are computed sequentially. A time
period in which each agent performs a walk (consisting of several single moves) through
the construction graph will be called a cycle. An application of the Ant System consists of
several cycles 1, ..., M; the number M of cycles may be fixed in advance or be determined
at a later time during the execution of the algorithm.

3. Transition probabilities for the random moves of the agents during each cycle. Let
u = (ug,...,us—1) denote the partial walk an agent has already traversed before its tth
transition step in a fixed cycle n, where ug, ..., u;_1 are node indices in the construction
graph (ug referring to the start node). We write [ € w if node [ is contained in the partial
walk u, and [ ¢ u otherwise. Moreover, let A be the set of arcs in the construction graph.
Then the general form of the transition probabilities is

[Thi(n)]* - [nkl(u)]ﬁ
>t (ke [Thr ()] [er (u)]P

(1)

pkl(”a U) =

if | ¢ uand (k,1) € A, and

pri(n,u) =0 (2)
otherwise. Therein, pg(n,u) denotes the probability that a fixed agent having already
traversed a partial walk u = (ug,...,u;_2,u;—1 = k) in the current cycle n, moves from

node k (its current position) to node I. (Note that this probability is only defined if
k = u;—1.) The numbers 7;(n) are called “trail levels” (see component 4 below), and the

Despite the important role the ant metaphor has played for the development of the class of heuristics to
which our approach belongs, we prefer to call our computational units “agents” rather than “ants”: The ant
metaphor suggests a relatively simple behavior, whereas our agents may as well act in a very “intelligent” way,
using, e.g., heuristics based on sophisticated methods of mathematical programming.
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numbers 7;,;(u) are called “attractiveness values” (see component 5 below)?. « > 0 and
(6 > 0 are parameters.

At the beginning of each cycle, each agent is positioned in the start node of the con-
struction graph. In the tth transition step of the current cycle, each agent A, performs a
single random move in the construction graph, controlled by the transition probabilities
pri(n,u), where u is the partial walk A, has already traversed (that is, each agent has a
particular ). If, for a fixed agent Ay, pr(n,u) = 0 holds for all nodes [ before the tth
transition step, then agent A, has completed his walk in the current cycle n. According
to Definition 2.1, this walk determines a solution of the given optimization problem.

4. An array of trail levels Ty, where T; > 0 is assigned to arc (k, () in the construction graph.
The trail levels usually change from cycle to cycle (see below), so their dependence on the
cycle index n can be represented in the form 7(n). At the beginning of cycle 1, we set
T = 1/]A] (] A] being the number of arcs) for each arc (k,l). At the end of each cycle
n(n=1,2,...,M — 1), the following update rule is applied. First, for each agent Aj
and each arc (k,1), a value AT,EZS) is determined as a function of the solutions assigned to
the walks of the agents in the current cycle n: Suppose these solutions have cost values
(objective function values) fi,..., fs. We set for each arc (k,[) and each s € {1,...,S}:

AR _ os(fi,.-., fs), if agent A, has traversed arc (k,[), (3)
e 0, otherwise.

Therein, each ¢, is a nonnegative reward function ® which is nonincreasing in the corre-
sponding variable f; and may depend on the walks of the agents in the cycles 1,...,n—1.
Let

S
C= 3> Y g (4)
(kl)eA s=1
Now, if C' =0, we set
Tkl(n + 1) = Tkl(n)

for all arcs (k,[), that is, the values 73; are the same in cycle n + 1 as in cycle n. If, on
the other hand, C' > 0, we set

Tkl(n + 1) = (1 — p)Tkl(n) + pATkl, (5)
where
LS o
s=1

As in [8], the number p will be called the evaporation factor. It is easily verified from
(5), (6) and (4) that the sum of trail levels, 3= e Thi(n), always remains equal to one.
Forcing the sum of the values 74(n) to be one is a re-normalization which favors the

2In [13], the terms “pheromone values” and “desirability values” have been used for the numbers 73;(n) and
Nki(u), respectively. We use here the terminology of [17] which is not that closely related to the ant metaphor
(cf. Footnote 1).

3Note that this formalism covers the rank—based trail level update, as introduced in [2], as well as the classical
proportional update.



numerical stability of the algorithm by preserving the overall order of magnitude of the
trail level values.

The trail level update rule above may be interpreted as follows: If no walk is rewarded,
everything remains constant. Otherwise, due to “evaporation”, only an amount of 1— p of
the sum of the trail levels, remains on the graph after cycle n. The remaining amount of p
is the “budget” for rewarding the walks traversed in cycle n according to their respective
objective function values. Each agent A, can be imagined to report by which “bonus”
AT,E‘;) he wants to reward his walk in cycle n. The actual trail level increments result by

distributing the total budget of p proportionally to the reported values AT]S).

By the described update rule, the trail levels of “successful” arcs of the construction graph
are increased, such that they are traversed more often by the agents in the future. By
setting p = 0, the influence of the cost function on the walks of the agents is switched off.
If, in addition, the influence of the attractiveness values ny(u) is switched off by setting
B = 0, then we obtain random search by a (“blind”) random walk in the construction
graph, which, in this way, turns out to be a special case of GBAS.

. An array of attractiveness values ny, where n > 0 is assigned to arc (k,l) in the
construction graph. The attractiveness values may depend on the partial walk u =
(ug, ..., us_o,u;_1 = k) the current agent has already traversed, so they can be written as
e = N (w). Typically, the value ny(u) is obtained from a Greedy Heuristic (GH) for the
combinatorial optimization problem under consideration; in this view, it may also be in-
terpreted as the value of a so—called greedy function (see [9]): Assume that a GH is given.
It specifies the stepwise construction of a “good” (but in general not optimal) solution
of the problem. In our formalism, this construction can be represented by a walk in the
construction graph. The GH defines “weights” for all feasible arcs (k,[) leaving node £k,
and determines the next node [ of the walk by the “greedy principle” that the weight of
(k,1) is maximum. We may now consider the weight of arc (k,[) as the “attractiveness”
of the transition from node k to node [, that is, we may set ny(u) = weight (k,1). Al-
ternatively, a second way of defining the attractiveness values may also be chosen: Set
e (w) = 1, if weight(k, 1) is maximum among all successor nodes of node &, and 7y (u) = 0
otherwise. The reader should notice that the weight of (k,[) is allowed to depend on the
whole “history” u = (ug, ..., u_o, w1 = k).

The values 7 (u) can also be used for locking walks corresponding to infeasible solutions:
If w is such a walk, let u be the longest partial walk (starting at the start node) on w
that can still be prolonged to a feasible walk (i.e, that did not contradict a feasibility
condition so far), and let (k,[) be the first arc on w not belonging to u. Then w can be
“locked” (without locking any feasible walk) by setting nx(u) = 0.

In our formalism presented above, GBAS is a natural stochastic generalization of a GH:
Note that if the parameter « is set equal to zero, and the second way described above
of defining the attractiveness values is chosen, the behavior of the agents is exclusively
governed by the greedy principle, so GH is another special case of GBAS.

A mathematically more sophisticated approach covered by the presented formalism con-
sists in deriving the attractiveness ny(u) from a lower bound for the cost values in the
subset of the solution space defined by u, as it is done in the demanding, but often very
efficient ANTS technique developed by Maniezzo [17].

5



It should be emphasized that GBAS is applicable to all combinatorial optimization problems
with a finite solution space per problem instance. This point is discussed in detail in [13].

Let us now continue the discussion of section 1. If convergence of the walks of the agents to
one optimal walk would hinge on the uniqueness of the optimal walk in an essential way, this
would have undesirable consequences. For problems where the exact optimal solution is not
unique, there would be no reason to believe that GBAS leads, on the long run, to a situation
where only the arcs of the optimal walks have trail levels essentially larger than zero. But
even if this should be the case in a particular application, GBAS might nevertheless output
suboptimal solutions. To illustrate this important point, we refer to Fig. 2.1. Suppose there
are two optimal walks in this construction graph, wi = (0,1,3,4,6,7,9,10,12) and wj =
(0,2,3,5,6,8,9,11,12), and that the other walks are suboptimal (say, with equally high cost
values). Assume that 7 (u) = 1 for all arcs. If the relative frequencies of the traversals of
wi and w}j should tend to the same value 1/2 (which might be conjectured in view of the
symmetry and a possible influence of the law of large numbers), all arcs would obtain (nearly)
the same trail level. Then, however, also each of the 14 suboptimal walks would have the same
probability of being traversed by an agent in the current cycle as wj or w;. In other words:
With a high probability, GBAS would output a suboptimal solution, even if only optimal walks
have been reinforced.

Our Theorem 3.1 in the following section implies that, fortunately, this is not the final
development to be expected: In the situation described above (and on the conditions of the
Theorem), only one of the walks w} and w} will survive; the trail levels of the other one will
vanish. Showing a general result of this type is especially difficult because of the possibility of
overlapping optimal walks: in the case of walks sharing arcs, hardly controllable phenomena
may occur, e.g., a rewarded walk may profit less by the trail level update than a not rewarded
walk. A rather subtle analysis (using the introduction of a suitable “impact value”) will be
necessary in order to cope with this problem.

Fig. 2.1. Example construction graph.

3 The Convergence Result

The aim of this section is to show that under weaker conditions than those in [13], the current
solutions of GBAS (the solutions corresponding to the walks of agent Aj,..., Ag in cycle n)
converge with a probability that can be made arbitrarily close to unity to one optimal solution.
The conditions are the following:

(i) The parameter « in (1) is chosen as a = 1.
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(ii) There is at least one reachable optimal walk w*, that is, an optimal walk w* with the
property that the attractiveness values satisfy ny(u) > 0 for all arcs (k,[) of w* and the
corresponding partial walks u of w*.

(iii) The reward functions ¢, chosen for the definition of the values AT,E,S) at the beginning of
cycle n+ 1 (see eq. (3)) have the following property: Let f* = f*(n) be the lowest cost
value observed in the cycles 1,...,n — 1, that is, the lowest objective function value f,
corresponding to a walk of an agent Ay in these n — 1 cycles. (It is easy to store and
update the current value of f* during the execution of the algorithm.) In the case of cycle
n =1, let f* = oo. Then for all n larger or equal to some fixed mgy € IN,

(1) gps(fh-“ny) > 0 for fs S f*;
(i) ¢s(fr,...,fs) =0for f3 > f*.

In other words: After cycle myg, only walks that are at least as good as the best found walk
up to now get a positive increment AT,S). For positive cost functions, e.g., vs(fo,- ., fs)
may be chosen as ps(fo, ..., fs) =1/fsif fs < f*and ps(fo,. .., fs) = 0 otherwise. Note
that ¢, is allowed to depend on the “history” (the cycles 1,...,n — 1), and hence in
particular on the value f*.

Condition (i) is identical to condition (a) in [13]. As stated there, this condition does not
imply an essential restriction, since the main purpose of the parameters a and (3 is not to
“shape” trail levels and attractiveness values (this could be done by other means), but to have
easy control on their impact relative to each other; so we may fix one of these two parameters
as long as the other remains free.

Condition (ii) is a weaker form of condition (c) in [13] (condition (b) in [13] is the uniqueness
condition which we can drop in the present paper). The reader should note that (ii) can easily be
satisfied by arbitrarily slight changes of the attractiveness values: for each feasible continuation
(k,1) of a partial walk u with 7 (u) = 0, replace ng(u) = 0 by i (u) = § with a small 6 > 0. Let
us remark that as long as global optimization is intended, it makes sense anyway not to exclude
any feasible continuation of a partial walk a priori. — Although not very restrictive, condition
(ii) is essential since otherwise it may happen that a specific arc belonging to the optimal walk
is inaccessible for the agents, just because of an unlucky choice of the attractiveness values.

Condition (iii), finally, relaxes condition (d) in [13]. It says that after a certain cycle mg (in
[13], mo = 1 was required), a rewarding strategy similar to “Global-best” (see Gambardella and
Dorigo [11]) is followed: Only the best walks up to now are rewarded; walks that are dominated
by another already traversed walk do not get trail level increments anymore.

Our main result is the following:

Theorem 3.1. Let conditions (i) — (iii) be satisfied, and let P, (n) denote the probability,
computed from (1), that a fixed agent A, traverses the walk w in cycle n. Then the following
two assertions are valid:

1. For each € > 0 and for fixed parameters p and (3, it can be achieved by the choice of a
sufficiently large number S of agents that for an integer N(¢), with a probability larger
or equal to 1 — €, there is an optimal walk w* such that P,«(n) > 1 — € for all n > N(e).



2. For each ¢ > 0 and for fixed parameters S and [, it can be achieved by the choice of an
evaporation factor p sufficiently close to zero that for an integer N (e), with a probability
larger or equal to 1 — ¢, there is an optimal walk w* such that P,«(n) > 1 — € for all
n > N(e).

The assertion of Theorem 3.1 only makes sense if the values P, (n) are considered as random
variables themselves (instead of deterministic probabilities of random events). In order to fix
a probability space where the values P,(n) can be given this interpretation, we represent the
process induced by the GBAS algorithm in terms of a stochastic process in discrete time, the
final part of which (the cycles mg, my,...) will turn out as a Markov process (see, e.g., [10]).
The states of the stochastic process are the triples

(z(n),w(n), f*(n)) (n=1,2,...),
where
e 7(n) is the vector of the trail levels 75;(n) for all arcs (k,[) during cycle n,
e w(n) is the vector of the walks w(®)(n) (s = 1,...,S) of the agents Ay,..., Ag in cycle n,
e f*(n) is the best found cost value corresponding to the walk of any agent in one of the

cycles 1,...,n — 1. For cycle n = 1, we set f*(1) = oo.

Proposition 3.1. For n = mg, mo+1,. .., the state variables (7(n), w(n), f*(n)) form a Markov
process.

The proof is a repetition of the proof of Proposition 4.1 in [13], applied to the cycles mg, mg +
...

Remark 3.1. In the considered stochastic process, the numbers py(n,u) defined by (1) are
functions of 7(n) and therefore also functions of the states of the process in the cycles 1, ..., n—1
(respectivly, only of cycle n — 1, if n > mg). In particular, the numbers py(n,u) are random
variables. From this point of view, their interpretation as probabilities is only an indirect one:
by the state transition rule of the considered stochastic process, they determine the distribution
of the vector w(n) of the walks in cycle n.

In extension of [13], the following abbreviations shall be used:

o W* ={wj,...,wy} denotes the set of reachable optimal walks in the sense of condition
(ii) above.

e L(w) denotes the length (number of arcs) of walk w.
e [P is written for the probability measure on the stochastic process defined above.

e E¥(w) denotes the event that w)(n) = w, that is, the event that agent A, traverses
walk w in cycle n.

e B, is the event that w®)(n) ¢ W* for all s = 1,..., S (the event that no agent traverses
an optimal walk in cycle n).



e [, is an abbreviation for By A ... A B,_1 A =B, that is, for the event that at least one
optimal walk is traversed by at least one agent in cycle n, but by no agent in the cycles
1,...,n — 1. Obviously, the events F}, F5, ... are mutually exclusive.

e A is an abbreviation for F; V F5 V ..., that is, for the event that there is an n and an s
such that w®)(n) € W* (the event that at least one optimal walk is traversed by at least
one agent in some cycle).

Moreover, the notation (k,[) € w shall be used for the assertion that arc (k,[) lies on the walk
w, and a walk w shall sometimes also be denoted by the sequence of nodes lying on it.

Because of the definition of W* and the fact that there are only finitely many arcs (k,1)
and only finitely many partial walks u, we have

v = min {[n(u)]? | w* € W*, (k1) € w*, u partial walk onw*} > 0 (7)

and
I' = max {[nw(u)]? | (k,1) arc, u partial walk } < oo.

Multiplying all attractiveness values 7 (u) by a fixed constant does not change the transition
probabilities (1). So it can be assumed without loss of generality that the values 7y (u) are
normalized in such a way that I' = 1, that is,

[ ()] < 1 (8)

for all arcs (k,) and all partial walks u.
The following Lemma 3.1 is an extension of Lemma 4.1 in [13].

Lemma 3.1. For each n > 1, the conditional probability, given arbitrary events in cycle
1,...,n— 1, that event =B, occurs, is larger or equal to 1 — (1 —c""1p)°, where ¢ = (1 — p)*o,

p = (v/|A])*, and Ly = min {L(w*) |w* € W*}.

Proof. Let w* € W* be a fixed walk of length Ly. We want to determine a lower bound for
the probability that in cycle n, there is at least one agent who traverses w*, given arbitrary
events in the cycles before. Since Aty > 0 and p > 0, eq. (5) implies

Tkl(n—i‘l) Z (1—p) Tkl(n) (9)

in the case C' > 0, and again because of p > 0, this holds also in the case C' = 0. Repeated
application of (9) yields

Ta(n) > (1= p)" " (). (10)
This estimate holds independently of the events in previous cycles. Because of (8) and
S Th(N) =1,

Z (1) - [nkr(u)]ﬂ < Z Tir(n) < L.
réu,(k,r)eA réu,(k,r)eA
Therefore, the transition probabilities py(n, u) given by (1) satisfy, for a node | with [ ¢ u, the
inequality
Tri(n) [ ()]

> rdu,(kr) €A Trr(R) [Mrer ()]

pri(n,u) = 5 = Ta(n) [ (u)]’. (11)
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Let w* = (vg,...,vr,). Then by (11), (7) and (10),

Lo—1 Lo—1
IP(E 5) H Posvips (M, (Vo, ..., 05)) > H Toswirr (1) [Mosvia (Vos - - - ,vi)]ﬂ
0 Lo—1 - Lo—1 L 1
H TUiUi+1(n) =7 H ( p) T'Ui'Ui+1( )
i=0 i=0
=1 =p) T (1) =Af0 (1= p)et= L (1/]ADF = .
(k) ew*

Since the walks of the S agents are independent, this implies
IP(B,) < P (~EM(w)A ... A=E®(w") < (1—c""'p)?,
which yields the assertion. O

In the following lemmas, we consider the stochastic process defined above conditioned on
the event F,, that is, on the event that cycle m is the first cycle where an optimal walk is
traversed. The conditional probability of an event, given F},, will be denoted in the usual
way by IP{event | F},,}. For the formulation of the lemmas, it is convenient to introduce some
additional definitions:

Definition 3.1. We distinguish two possible cycle types: cycle n is called a B—cycle, if event
B,, occurs, that is, of no agent traverses an optimal walk in cycle n, and it is called a =B—cycle,
if event —B,, occurs, that is, if at least some agent traverses an optimal walk in cycle n.

An epoch is a sequence of consecutive cycles after cycle m; = max(mg, m) (cycle m being
the first " B—cycle) with the property that all these consecutive cycles are B—cycles, except the
last, which is a =~B—cycle.

A period is a sequence of a fixed number of consecutive epochs. (The number of epochs
contained in a period will be determined later.)

During a fixed epoch, the trail levels remain constant, since at the end of a B—cycle after
cycle my = max(mg, m), the value C'is set equal to zero in view of condition (iii), so no change
takes place. Only after the last cycle of an epoch, the trail levels change. Therefore, we may
consider the cycles of an epoch as independent trials (with identical success probabilities) to
produce the event —B,,. As soon as —B,, occurs, the epoch ends. The distribution of the states
during an epoch depends on previous epochs only via the trail levels at the beginning of the
epoch. Moreover, the probability of any event in the last cycle of an epoch is identical to the
conditional probability of this event in a fixed cycle n of the current epoch (that is, in a cycle
with the trail levels valid in this epoch), given the event —B5,,.

Definition 3.2. The relative trail level 15 (n) of an arc (k,1) is defined by

T (n)

X (ke Ter(n)

Yri(n) =

Note that the sum is here over all arcs (k,r) with k as the start node, including those with
T e u.
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In view of (1), (7) and (8), for each arc (k,l) on a walk w* € W* with partial walk w, (k)
up to node k,

Tr(n) -y T (n)
Per(n, uy (k) > >
Zr%u,(/ﬂ,r)eA Tkr(n) -1 Z(k,T)EA Thr (n)

= Yu(n). (12)

Definition 3.3. The impact value W(w*) of a walk w* is the product of the relative trail levels
of its arcs:

U(w)= [I vun).

(k,l)ew*

As a consequence of (12), we get the following relation between the probability of a walk
w* € W* to be traversed, and its impact value:

Py(n)= I pu(n,ue(k) = v 0 (w) (13)

(k,l)ew*
for each w* € W*.

For n > m; = max(mg, m), it will be convenient to consider, in parallel to the trail level
update mechanism (5), a slightly different alternative way of updating the trail levels, defined
by

Tr(my) = Tre(ma),

T};l(n —+ 1) = %kl(n) -+ 1% ATkl (n Z ml). (14)
The r.h.s. of (14) is equal to the trail level that would have been obtained by the original update
rule, multiplied by the factor 1/(1 — p). Furthermore, if an arc (k,[) is not rewarded (that is,
if A7y = 0), then its trail level remains now constant instead of being subject to evaporation,
so we may call this variant evaporation—less trail level update. It is clear that the sum of trail
levels computed in this way is not equal to unity anymore; instead, it is multiplied by the
factor 1/(1 — p) in each ~B-cycle. However, the computation of the probabilities pg(n,u) can
be based as well on the values 7y;(n) instead of the values 7 (n), yielding the same results,
since, by the denominator of (1), the factor 1/(1 — p) cancels out. So, both alternatives of the
trail level update are equivalent. Also the computation of the relative trail level ¥y, (n) and of
the impact value ¥(w*) can be based on the values 7;(n) instead of the values 7y;(n) with the
same result.

We call the numbers 7y (n) the gross trail levels. With their help, Definition 3.4 below which
is crucial for our proof can be given:

Let us label the epochs after cycle my by h = 1,2,.... In epoch h, walk w} € W* (1<j<R)
obtains a certain nonnegative gross level increment 7;(h) for each of its arcs according to the
evaporation—less trail level update rule described above. Note that this increment is the same
for each arc of wj, but, of course, an arc (k,[) can possibly obtain such increments from different
(rewarded) walks on which it lies. Now let

Z(h) = 3 my(h)

11



be the total gross level increment an arc of w} has obtained in the epochs 1,...,h due to the
rewards for walk wj. (If the arc belongs also to other walks on W*, it may have obtained
additional total gross level increments from these other walks. Walks not contained in W*,
however, are not rewarded anymore after cycle m;.)

Definition 3.4. By the champion of epoch h, we understand a walk w? € W* for which
Z,(h) = max {Z;(h)|1 < j < R}. (If there is more than one wj with Z;(h) = max, the
champion may be chosen arbitrarily from these walks.) By the champion of a period, we
understand the champion of the first epoch of this period.

It is now possible to show the following basic lower bound estimation:

Lemma 3.2. Conditional on event F,,, the champion w; of an epoch h after cycle m; =
max(mg, m) has always a probability P,:(n) > po > 0 to be traversed by a fixed agent A,
where the number y only depends on v, R, p, m1, and the structure of the construction graph.

Proof. We start the proof with the following observation: Let ¢ > 0,0 < (<2 <1,0<y <1,

and
T+ a

fla) = rT+y—+ca
Then there is a number p = u(c, £) > 0 such that f(a) > p for all @ > 0. This is easily verified

by distinguishing the two cases a < 2/c and a > 2/c: In the first case, we obtain f(a) > £/4,
whereas in the second case, f(a) > 1/(2¢). So the assertion holds with

1
(= min (i, 20) : (15)

Now consider a fixed arc (k,l) contained in the champion w} and its “sister arcs” (k,r)
sharing with (k,[) the start node k. Let g and zy, be the gross trail levels of (k,[) and
(k,r), respectively, in cycle my. Let a = Z,(h). In epoch h, the gross trail level of (k,[) has
increased at least to the value xy; + a and at most to the value x;; + Ra, compared to cycle
my. (Note that (k,[) may be contained in several optimal — and therefore possibly rewarded
— walks.) The gross trail level of an arc (k,r) (r # ), however, has increased at most to the
value xy, + (R — 1)a, since Z;(h) < a for all j # v, and (k,r) ¢ w,.

Denoting by d the maximal outdegree of a node in the construction graph, we conclude that
the relative trail level (which is identical to the relative gross trail level) of arc (k,[) in epoch
h is larger or equal to

(a>0).

Tk +a > Tk +a
T+ Ra+ >, v, + (d— 1)(R— 1)(1 T T+ >, Ty +dRa’

where the sum Y, zy, is over all “sister arcs” (k,r) of (k,1). Hence the impact value ¥(w?) of
the champion w; in epoch h is larger or equal to

T +a
Trl + 2oy Tr + dRa’

(k,l)ew}

Applying the observation at the beginning of the proof with z = zy,; € [¢, 1] (£ will be determined
later), y = >, xx € [0,1], and ¢ = dR > 0, yields the existence of a number p > 0, depending

12



only on d, R, and a lower bound & = £(m;) > 0 of the (gross) trail levels in cycle my, such that
the impact value W(w?) of the champion is bounded below by u*®). (Let us emphasize that
 is independent of the epoch; which walk is the champion, however, depends on the epoch.)
By (15), u < 1, and hence by (13),

*

with
L = max {L(w*) | w* € W*}. (16)

All that remains to show is: A lower bound £ = £(my) > 0, depending only on p, m;, and the
structure of the construction graph, can be found for the (gross) trail levels in cycle m;. This,
however, follows by eq. (10) from

Ti(ma) > (1= p)™ (1) = (1 — p)™ /| Al
O

Corollary. Conditional on event F,,, the probability that in the final cycle of a fixed epoch
after cycle m; = max(mg, m), the champion w?, but no other optimal walk is traversed by an
agent, is larger or equal to p5 (with po from Lemma 3.2). This holds independently of arbitrary
events in epochs before the considered epoch.

Proof. Since an epoch consists of independent trials until event —B,, occurs, the probability
we ask for is
IP{ no agent traverses a walk w* € W*\ {w;} | =B, A F,,,}

> IP{ no agent traverses a walk w* € W*\ {w)} A =B, | F,}
> IP{ all agents traverse w; | F,} = [Py (n)]” > 1.

If we condition on certain events in previous epochs, these events can enter into the probability
computation only via the trail levels at the beginning of the given epoch. The estimation above,
however, holds independently of the specific values of these trail levels. O

Remark 3.2. From the definition of the champion of an epoch, it follows that if w} is the
champion of epoch h, and w} is the only optimal walk traversed by an agent in epoch A, then
w} is also the champion of epoch h + 1.

Remark 3.2 implies that whenever the champion w? of a period (cf. Definition 3.4) is the
only traversed walk in all epochs of this period, then w is also the champion of each epoch of
the considered period. Then, by Lemma 3.2, in each cycle n of this period, the variable P,:(n)
is larger or equal to .

*
v
*

Lemma 3.3. For a fixed n > myq, let w* € W* p; = P,+(n), and

]32 = Z Pw(n)

weW*\{w*}

Then if p; > 1/2, the probability that in the final cycle of the epoch containing cycle n, walk
w* is the only walk traversed by an agent, is larger or equal to 1 — 2S5p,.

13



Proof. The considered probability is

IP{ no agent traverses a walk w € W* \ {w*} | =B, A F},,}

IP{ no agent traverses a walk w € W*\ {w*} A =B, | F,,,}
IP(—B,) '

The denominator of the last expression is equal to 1 —IP(B,) = 1—(1—p; —p2)°. By elementary
probabilistic calculations, one finds that the nominator of the expression is equal to

(1—-p2)° [1— <1— 1 o )S] = (1=p2)° = (1—p1—p2)°.

— P2

So the probability that in the final cycle, w* is not the only traversed walk, is

(1—p2)° — (1 —p1 — p2)° - 1—(1—po)°
1- 5.)S - 5.)S
1—(1—p1—p2) 1—(1—p1—p2)
< 201 — (1= p2)°] < 25py
since 1 —p; —pp <1/2forp; >1/2,and (1 —2)" > 1 —nx for0 <z < 1. O

Now consider a fixed period. Let w} be the champion of this period (that is, the champion
of its first epoch). For abbreviation, we use the following notation:

e H™ is the event that in the kth epoch of the given period, walk w;, is the only traversed
optimal walk,

e C™ is the event that w? is the champion of the kth epoch of the given period.

Lemma 3.4. For a fixed period after cycle m; and for each K € IN,
PHYA . AHE O > 5K
with the number o of Lemma 3.2.
Proof. The considered probability is equal to
IP(HM | C[I]) . [p(H[Q] | HY A CD]) C [p(H[K] | HYU A oA HEA A C[ll).
Remark 3.2 states that C*) A HIF = O+ By repeated application, we obtain
HYA oo p qHEFU A O o Cf[k]’

SO
HUA ... A HEFUACHACH o g Ao A gEU A O

Therefore, by the Corollary to Lemma 3.2,
PH® | HUA A HEYACH) =1P(HE | (HU A A HFIACH)ACH) > 448,

which completes the proof. a
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Lemma 3.5. Let 7 (n,w*, ¢) denote the assertion

1
L(w*)

Te(n) — <e Y(ki1)ew AN 1n) <Lw e VY(kl)¢w".

Then to each € > 0 and m € IN,
IP{3In > my,w* € W*: T(n,w*,¢€)| F,} >1—¢,
where m; = max(mq, m).

Proof. Let ¢ > 0 and m € IN be fixed. We construct o(e) periods after cycle my, each
period consisting of K(e) epochs. The numbers o(¢) and K(€) will be determined later. At
the beginning of each period, its champion is determined. According to Lemma 3.4, for each
considered period, the champion of this period is, with a probability larger or equal to ug K(e),
the only traversed optimal walk in the entire period. This estimation holds independently of
what has happened in the previous periods. Again by considering conditional probabilities (as
in the proof of Lemma 3.4), one obtains the result that among the o(€) successive periods, there

is with a probability larger or equal to
SK(e)1°(©)
L= 1= g™ (17)

at least one period with the property that its champion is in all K (€) epochs of this period the
only traversed optimal walk. Because of 1 — ,uOSK(e) < 1, it is possible to choose the number

o(€) (to the given €, r, S, and K (€)) large enough that

[1 _ SK(e)r(e)

Ho < €

such that the expression (17) gets larger or equal to 1 — e. In other words: With a probability
> 1 — € (conditional on F},), there is a period containing only epochs where one and the same
walk, say w*, is rewarded.

We show now that at the end of this period,

Ti(n) — < e forall (k1) € w*

L(w*)

holds, provided that K (e) is sufficiently large. It is easy to verify from (4) — (6) (cf. [13], proof
of Lemma 4.2) that in the case where only walk w* is rewarded in cycle n,

1 1 *

Tkl(n—i— 1) —

that is, the distance between 7, and 1/L(w*) is reduced to a portion of 1 — p of the former
distance. Choosing K (¢) large enough that (1 — p)X( < e effects therefore a reduction of the
distance between 7;(n) and 1/L(w*) to a value smaller or equal to .

The assertion 7(n) < L(w*)e for all (k,l) ¢ w* follows immediately since the sum of all
trail levels 74;(n) is unity. O
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Lemma 3.6. Let L be given by (16), and suppose that for some w* € W* and some n € IN,
we have

1
T(n) > 3L for all (k,1) € w*.
Furthermore, let
D=2Ld/~ (19)

with d = maximal outdegree of a node in the construction graph, and suppose
Tmaz = Max {1g(n) | k € w*,r ¢ w*} < 1/D. (20)

Then the probability that a fixed agent traverses some walk different from w* is smaller or
equal to L D 7,4,

Proof. By assumption and by definition of py(n, u), the probability that a fixed agent located
at node k of w* does not proceed to the successor node [ of k on w*, but to another node r, is

smaller or equal to
Tmaz * 1

(1/(2L)) -~

Hence, the probability that a walk different from w* is traversed, is smaller or equal to

d -

= DT

1— JI O=Dmnaw)=1— (1= DTpar)’ <1— (1= LDTp4y)
(k) ew*

because of (1 —z)" > 1 —nx for 0 <z < 1. O

Lemma 3.7. Let 7 (n,w" €) be defined as in Lemma 3.5. Then, for all ¢ > 0 and m € IN,
there is an N € IN such that

P{3w* e W*Vn' > N: T(n,w* )| F,} > e
Proof. We start by showing that for all € > 0 and m € IN,
P{In >m, w e W*Vn' >n: T(n,w €| F,} > e (21)

First, to the given € > 0, a number ¢ > 0 is determined as follows: For fixed p,

2
1 —exp (—5>] = 0.
0 P

lim

o—
Thus a 0 > 0 (depending on € and p) can be found such that 1 —exp(—20/p) < ¢/2. W.Lo.g.,
let 6 < 1/2. Now for L given by (16) and D given by (19), we set

€ = min € i 75
€= 2" 2L 2512D (-

Replacing € by € in Lemma 3.5, we obtain that with a probability (conditional on F},) larger
orequal to 1 — € > 1—¢€/2, a cycle n > my and a walk w* € W* exist, such that 7 (n,w*,¢€)
holds, that is, such that

< € forall (k1) € w”
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and

i(n) < L(w*) € for all (k1) ¢ w*. (22)
Let us suppose that 7 (n,w*, €) holds indeed. Then, in particular,
(n) > ! c>2_ex Loy I (k1) € w
n — - — — for a w
e (7 B Y5 ’ ’

and

) 1
< Lée < —— < = forall :
T(n) < Lé < 55Ip < p lora (k1) ¢ w",

hence the conditions of Lemma 3.6 are satisfied. It follows that
p1=PFPy(n) > 1—LDT7.

So, because of (22),

pr>1—LD - Lw)ée>1-L*DE > 1—2(; > ;
Let us now consider the epoch containing cycle n (we call it epoch 0), and the epochs after
this epoch, which we label by A = 1,2,... in this proof. (The reader should be aware of the
different labeling in this proof, in Definition 3.4, and in Lemma 3.4.) Similarly as in Lemma
3.4, let H denote the event that in a considered epoch, walk w* is the only traversed walk. For
each epoch A, we ask for the conditional probability of the event H, given that event H has
occurred in all previous epochs 1,..., A — 1. To estimate this probability, we apply each time
Lemma 3.6. Since on the condition that H has occurred in all previous epochs, the trail levels
of arcs (k,l) ¢ w* have decreased geometrically with factor 1 — p, we have

(23)

P (1— p)A 710l

maxr max?

where 7,4, is given by (20), and the indices in brackets refer to the epoch numbers. Because,
on the other hand, on the condition that H has occurred in all previous epochs, levels on
arcs (k,l) € w* have approached the value 1/L(w*) (see (18)), the condition 7;(n) > 1/(2L)
for (k,l) € w* of Lemma 3.6 remains always satisfied. Moreover, the probability P,«(n) of
a traversal of w* cannot decrease at the end of an epoch where event H occurs, as is easily
seen by considering the gross trail levels introduced before Definition 3.4, so (23) implies also
p[l’\] > p[lo} > 1/2 for all A (again, the indices in brackets refer to the epoch numbers). Applying
Lemma 3.6, we obtain: The probability that a fixed agent traverses some walk different from
w* in epoch A, given event H has occurred in the epochs 1,..., A — 1, is smaller or equal to
LDsN = LD —p*rl (24)

max max*

In particular, the probability p, of traversing an optimal walk different from w* in a cycle of
epoch A is then smaller or equal to the expression in (24).

Now let us apply Lemma 3.3. As verified above, the condition p; > 1/2 is satisfied. There-
fore, using (22), we conclude that the conditional probability g™ that in the final cycle of epoch
A, walk w* is not the only traversed walk, given event H has occurred in the previous epochs
1,..., A —1, is smaller or equal to

28 - LD(1—-p*79 < 2SLD(1—p) - Lé

max

17



<2SL*D(1—p)>-6/2SL*D) = (1—p)e.

As a consequence, the probability that there is an epoch A\ where the event =H occurs, is

1= TIa-¢") < 1-J[0- -9,

Because of (1 — p)*d <§ < 1/2 and log(1 — z) > —2z for < 1/2,
log [] (1 —(1 —p)/\é) > 2> (1-pls > —=
A=1 A=1 P

and therefore

s 20 €

1-J[(1—=¢™) < 1—exp (—) < -

A=1 P 2
Thus, conditional on 7 (n,w*, €), with a probability of at least 1 — €¢/2, event H occurs in all
epochs 1,2,.... As a consequence of Lemma 3.5, the probability (conditional on F,,) for the
existence of an n with 7 (n, w*, €) is larger or equal to 1 —€ > 1—¢/2. Therefore, the probability
for 7 (n, w*, €) and event H in all epochs following cycle n is larger or equal to (1—¢/2)? > 1—e¢,
which proves assertion (21), since the occurrence of H in an epoch leaves 7 (n,w*, €) satisfied
after the current trail level update.

In the formulation (21), the number 7 still depends on the random influence, which we may
denote by w. However, in order to prove the Lemma, we would need n outside of IP, such that
it depends on € and m, but not on w. This can be achieved as follows: Let us always assume
that F), holds. According to the proof of Lemma 3.5, n is bounded above by the total number
Z of cycles between the first cycle and the end of the considered sequence of o(€) periods, each
consisting of K (e) epochs. Z is almost surely finite, since the probability of the occurrence
of a =B—cycle is larger than some strictly positive constant by Lemma 3.2. Thus, Z can be
considered as a finite discrete random variable (whose distribution, of course, depends on m).
Consequently, for any given € > 0 and m € IN, there must be an integer N = N(¢) such that
Z < N with probability (conditional on F},) of at least 1 — €/2. Let us now replace in (21) the
number € by €/2, and use the relation n = n(w) < Z. We obtain

€

1—5 < IP{3ne{my,....Z}, w eWVn >n: T we|F,}

< IP{3ne{m,....Z}, weW'Vn' >n: T(n,uw*,e) N Z<N|F,} + IP{Z>N|F,}
€

< IP{Ine{my,....,Z}, w e W*V¥n' >n: T(n',w*e) N Z<N|F,} + 5

Subtracting €/2 on both sides yields
IP{3Ine{my,.... 2} w e W*Vn'>n: T(n',w*e) NZ <N|F,} > 1—¢,

and hence
IP{Jw* e W*Vn' > N: T(n',w*e€)| F,}

>WP{3Ine{my,....Z}, w eW*Vn' >n: T(n,w,e) N Z<N|F,} > 1—c¢,

which gives the assertion of the Lemma. a
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Corollary. With P,«(n) denoting the probability that a fixed agent traverses walk w* in cycle
n, the following assertion holds:* For each € > 0 and m € IN there is an N € IN such that

P {Juw* € W*Vn' > N: Ppe(n))>1—¢|Fp} > 1—e

Proof. We replace € by € in Lemma 3.7, and set (with L given by (16))

. . ( 1 e ) -
E=min ( —, —— €.
2L 2dL3
By Lemma 3.7, to given € > 0 and m € IN, there exists an N € IN such that with a probability
(conditional on Fy,) larger or equal to 1 — €,

Jw* e W*Vn' > N: T(n,w*,é).
Assume 7 (n/,w*, €). Then
m(n') < L(w*)e < Lé < ve/(2dL?) (k1) ¢ w’,

. (n') > 1/L(w*) —¢ > 1/(2L) V(k,1) € w*
as before. Hence we conclude in an analogous way as in the proof of Lemma 3.6: The probability
that a fixed agent proceeds from a node k € w* to a node r ¢ w* is smaller or equal to
g e/2dL?) e
(1/(2L)) -~ L
As a consequence, the probability that walk w* is traversed by the considered agent is larger

or equal to
(1—¢/L)'™) > 1 —¢/L)F>1—e

After these preparations, we are now in the position to prove the main theorem:
Proof of Theorem 3.1. By Lemma 3.1,

n

Sa-p* g a-e e = (Ta-e)

i=1

Let us set
o0

w(p,c,S) = [H(l — Ci‘lp)] S-

i=1
Since A = —(By A By A ...), we get

n s
IP(A) =1— lim IP(BiAN...ANB,) > 1 — lim [H(l—ci_lp)l = 1—w(p,c,DS).
i—1

4As to the interpretation of P,-(n) as a random variable, cf. Remark 3.1.
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Is is easy to see that by choosing S sufficiently large or by choosing p sufficiently small, it can
be achieved that w(p, ¢, S) gets arbitrarily small. Hence, by an appropriate choice of S or p,
we can achieve that IP(A) > 1 — €/4. Since

Y IP(F,) = IP(FiVFV...) = P(A) <1,
n=1
there is an integer k = k(€) such that

S IP(E,) <

n=r-+1

)

IS e

SO

P(F,V...VE) = S IP(F) = IP(A) — 3 IP(F,) > (1-2)-2:1—;
n=1 n=xr+1

Let us replace € by € = ¢/2 in the Corollary to Lemma 3.7. Then, for each m € IN, there must
be an integer N = N(e,m) such that

P{Iw* € W*Vn' > N(e,m): Pp(n')>1—¢|Fp} > 1— %
Let N(e) = max{N(e,m) |1 <m < k}. Then also
IP{3w* € W*Vn' > N(¢): Pp(n)>1—¢|Fp} > 1-%

for all m < k. Consequently,

IP{IFw* € W*V¥n > N(€) : Py(n) >1—¢€}

— Z IP{3w* € W*Vn > N(e): Py(n)>1—¢|F,} - IP(F,)

m=1

+IP{3w* € W Vn > N(e): Ppe(n)>1—e|~(F V...V E)} - IP(~(F, V...V F,))

> 3 P{3u € W' ¥n > N(): Par(n) 2 1—¢| Fn) - IP(Ey)

m=1
€ ~ €\?
> (1—> - Y IP(F,) > <1—) >1—e.
2 B} 2
This proves the Theorem. O

Corollary. Let P, denote the probability that a fixed agent traverses an optimal walk in cycle
n. Then for each € > 0, it can be achieved by choosing S sufficiently large or by choosing p
sufficiently small, that for an integer N (e),

P,>1—¢ foralln> N(e).
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Proof. Replacing € by € and N(e€) by ]\7(6) in Theorem 3.1, we obtain
Ve > 03S(6), N(é) : IP{3w* € W*Vn > N(&): Pye(n) >1—¢} > 1 —¢ (25)
and an analogous assertion where S(€) is replaced by p(€). From (25), the weaker assertion
Ve > 03S(6),N(€)¥n > N(&) : IP{3uw* e W*: Ppe(n) >1—¢} > 1—¢ (26)

follows. (Analogously for p(€).) Let us consider agent Ag. Then

:fj]P(E}f fj P(E (w)) A Pu(n) > 1—8)
z_; n) > 1—§) - IP(ES (w)) | Pus ()>1—g)2(1—5);P(Pw;(n)21—€)

> (1-8) IP{3w] € W*: Ps(n) > 1.

By (26), the last expression is, for n > N(€), larger or equal to (1 — €)® > 1 — 2¢. Setting
¢ =¢/2 and N(€) = N(2€¢) = N(e) completes the proof. 0

Remark 3.4. The Corollary above is distinctly weaker than Theorem 3.1, since it does not
make an assertion on the “persistence” of one optimal walk which finally survives. — The
special case R =1 of the Corollary is the main result (Theorem 4.1) of [13].

4 Conclusions

We have shown that the convergence result demonstrated in [13] for the Graph-Based Ant
System algorithm also holds on essentially relaxed conditions. Our estimations are coarse and
based on worst cases, so they are not suitable at all for deriving assertions on the (average)
convergence speed, nor on appropriate parameter values for “number of agents” resp. “evap-
oration factor”. This aspect has been discussed in [13] in more detail. It can be hoped that
future investigations will produce results concerning the interesting questions mentioned above.
Another open problem is the convergence behavior of Ant—System—type heuristics under com-
pletely different trail level update strategies as the one considered here. We conjecture that
in the final phase, a strategy resembling “Global-best” must be applied to prevent premature
convergence to a suboptimal solution (in a similar way as in Simulated Annealing, the reduction
of the temperature parameter is essential for convergence to the optimal solution), but it seems
too early to give a definite answer to this question.

Of course, it would be desirable to have convergence with probability exactly one and not
only with a probability larger or equal 1 —e. In [14], almost sure convergence results are shown
for suitably modified trail update schemes in the framework of a simplified GBAS variant. It is
possible that by using such modified update rules, also the results in the present paper for the
“complete” GBAS algorithm might be sharpened to obtain convergence with probability one.
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