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Abstract In this paper, we present solution procedures to tackle an am-

bulance location problem in Austria. We consider the problem as a double-

coverage ambulance location problem, and for specifying it in formal terms,

we use an extension of a model developed by Gendreau, Laporte and Semet

[11] by introducing a limit on the number of inhabitants served per ambu-

lance. To solve the problem, we reimplemented the Tabu Search algorithm
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of [11] and developed an Ant Colony Optimization algorithm. Our compu-

tational tests are based on real location sites, the population census data

and the real road network data of eight provinces of Austria. For the two

smallest instances exact solutions can be found and used as a measure for

the performance of the two metaheuristic algorithms. For these problem in-

stances, both metaheuristics find the optimal solution easily. For the larger

instances, Tabu Search and Ant Colony Optimization yield results of com-

parable quality. However, Tabu Search turns out as distinctively faster.

Keywords: Ant Colony Optimization, Tabu Search, Facility Location,

Maximum Coverage Location Problem.

1 Introduction

In the last few years, increasing cost pressure on not-for-profit health care

organizations has led to the need for more efficient and effective provision

of services. One of the most important cost factors is associated with the

management of the emergency fleet. Here both fixed and variable fleet costs

as well as personnel costs have to be covered. These costs depend on the

number and spatial distribution of ambulances used, as well as on the control

of the fleet through deployment and repositioning decisions.

In this paper, we will deal with the tactical planning problem of locating

a given fleet of ambulances in an area, such that the service level is max-

imised. Here, service level is measured as the coverage of demands by the

available fleet. The concept of coverage has been defined in various ways
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in the academic literature (see, e.g., [4], [6], [11] and [13]). An overview of

different ambulance location and relocation models can be found in [3]. See

also the general survey on location models in [15].

Our model follows and extends the model proposed by Gendreau, La-

porte and Semet in [11]. In their model, a demand is said to be covered if

it can be reached by an ambulance within a given, user-defined time limit.

Both, single coverage (by exactly one ambulance vehicle) and double cover-

age (by at least two different ambulance vehicles) are considered. Further,

two different time limits are set and the objective is to maximise double cov-

erage within the smaller time limit. The main constraints imposed are that

all demand has to be covered within the larger time limit, and that a certain

percentage of the total demand has to be satisfied even within the smaller

time limit. In this model it is assumed that all nodes have equal demands.

Our extension takes the density of the population in different demand nodes

into account and aims at solutions for which, within the larger time limit,

a certain ratio between the number of inhabitants and the number of avail-

able ambulances is not exceeded. The intuition of this extension is to obtain

more equity in service provision over all potential demand nodes.

We specified our model based on problem information and real data from

Austria published by the Austrian Red Cross and provided by WigeoGis and

TeleAtlas. For solving the model, we implemented two meta-heuristics based

on Tabu Search (TS) and Ant Colony Optimization (ACO), respectively. In

fact, the TS used is a re-implementation (and adaptation to our extended
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problem formulation) of the algorithm originally proposed in [11]. Computa-

tional results for the two metaheuristics for problem instances corresponding

to eight provinces of Austria are presented. For the two smallest instances,

exact solutions are found and used as benchmark for the performance of the

two metaheuristics.

The main contributions of the paper are the extension of the double-

coverage model to include different demand densities at the nodes as well

as the proposition of ACO as a viable alternative to TS for tackling the

extended model.

The remainder of this paper is organised as follows. In the next section,

we present our model in detail. In Section 3, the two meta-heuristics are de-

scribed, and results of our computational case study are shown in Section 4.

Finally, Section 5 concludes with a summary of the paper and an outlook

on possible future research.

2 The Model

As mentioned above, our model was developed to solve the double coverage

problem for a given set of locations and a given number of ambulances. The

objective is to maximise the demand covered by two ambulances within a

small radius r > 0, while all demands have to be covered by at least one

ambulance within a larger radius R > r.

First of all, we describe the double coverage problem as formulated in

[11]; after that, our modification will be described. The problem is defined on
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a graph G = (V ∪W,E) where V = {v1, ..., vn} and W = {vn+1, ..., vn+m}

are two vertex sets representing demand points and potential location sites,

respectively, and E = {(vi, vj) : vi ∈ V and vj ∈ W} is the considered edge

set. With each edge (vi, vj), a travel time tij is associated. The demand

at vertex vi ∈ V (number of inhabitants in vi) is equal to λi. The total

number of ambulances is given and equal to p. For vi ∈ V and vn+j ∈ W ,

the coefficients

γij =





1 ti,n+j ≤ r

0 otherwise

δij =





1 ti,n+j ≤ R

0 otherwise

are defined, where γij (δij) indicates whether or not demand node i is

covered by location n + j within the radius r (R).

A further input parameter ω gives the proportion of the total demand

that must be covered by an ambulance within the small radius r. In our

experiments, we used the same value for ω as was done in [11], i.e. ω = 0.8.

Moreover, for each location vn+j , the integer pj indicates the maximum

number of ambulances that can be located at vn+j .

For the problem formulation, we use the following decision variables: 1)

variable zj is of integer type and denotes the number of ambulances located

at vn+j ∈ W and 2) the variables xi and yi are binary and denote whether

or not a demand node i is covered within the small radius r at least once

and at least twice, respectively.

Based on these variable definitions, the problem is given by
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max f(z) =
n∑

i=1

λiyi (1)

subject to the constraints

m∑

j=1

δijzj ≥ 1 (vi ∈ V ) (2)

n∑

i=1

λixi ≥ ω

n∑

i=1

λi (3)

m∑

j=1

γijzj ≥ xi + yi (vi ∈ V ) (4)

yi ≤ xi (vi ∈ V ) (5)

m∑

j=1

zj = p (6)

zj ≤ pj (vn+j ∈ W ) (7)

xi, yi ∈ {0, 1} (vi ∈ V ) (8)

zj integer (vn+j ∈ W ). (9)

The objective represents the maximization of the total demand covered

at least twice within r. Note that the variables xi and yi can be computed

from the variables zj , such that the objective can be written as a function of

z. Constraints (2) and (3) express single and double coverage requirements.

Constraints (2) ensure that all demand is covered within R distance units.

Constraints (3) ensure that a proportion ω of all demand is covered within

the small radius r. Constraints (4) link the coverage of the demand nodes

with the assignment of ambulances. The left-hand side of constraints (4)

counts the number of ambulances covering vi within the small radius r,
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while the right-hand side represents the level of coverage of vi: it is equal

to 1 if vi is covered exactly once within the small radius r, and equal to

2 if it is covered at least twice within the small radius r. Constraints (5)

ensure that a vertex vi cannot be covered at least twice when it is not

covered at least once. Constraints (6) and (7) impose limits on the maximum

number of ambulances located over all potential locations and on each single

location, respectively. Finally, constraints (8) and (9) are the usual binary

and integrality requirements for the decision variables.

Our modification of this model consists of two steps: First of all, we

turn the hard constraints (2) and (3) into soft constraints, represented by

additional weighted penalty terms in the objective function. Note that by

choosing sufficiently large values for the weights, this first modification gets

equivalent to problem (1) – (9). Thus, our modification is a generalization

of the above shown problem. However, we rather tried to choose suitable

weights from the viewpoint of practical application.

Then, as mentioned in the introduction, we use information about the

density of demand to balance the assignment of ambulances with respect

to the covered demand. In the standard models available, a solution may

be an assignment of ambulances to locations where some ambulances have

to cover a large demand within the radius R, while some others cover only

a small demand. Such an assignment can be unrealistic, since the capacity

of the ambulances assigned to a large population may be insufficient to

perform the required emergency services. Therefore, we add a penalty term
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to our objective function to avoid such assignments: For each demand node

vi, the number of inhabitants wi per ambulance assigned within radius R is

computed. If this quotient exceeds a given limit w0, a penalty proportional

to (wi−w0) is subtracted from the objective function. In this way, we obtain

the following extended problem

max F (z) = f(z)−M1f1(z)−M2f2(z)−M3f3(z) (10)

subject to (4) – (9), where f(z) is given by (1),

f1(z) = |{vi ∈ V :
m∑

j=1

δijzj = 0}|, (11)

f2(z) = ω − min{ω,

(
n∑

i=1

λixi

)
/

(
n∑

i=1

λi

)
}, (12)

and

f3(z) =
n∑

i=1

(wi − w0)+ (13)

with

wi =
λi∑m

j=1 δijzj
.

The function f1(z) counts the number of demand points not covered within

the larger radius R. The function f2(z) represents the negative deviation of

the degree of coverage within the smaller radius r from the intended level ω.

The function f3(z) reflects the penalties for the violation of our additional

constraints concerning the number of inhabitants per assigned ambulance.

Finally, the weights M1 > 0, M2 > 0 and M3 > 0 determine the relative

importance of violations of the three soft constraints.
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3 Solution approaches

In order to solve the model presented in the last section, we have imple-

mented two metaheuristics based on Tabu Search and Ant Colony Opti-

mization. A metaheuristic solution approach has been chosen not only in

view of the fact that for larger instances exact solutions of the given prob-

lem cannot be computed anymore within reasonable time, but also in order

to provide more flexibility for a fine-tuning of the model (extension of ob-

jective function and constraints) during the next planned phase of real-life

implementation.

The TS is a reimplementation of the original algorithm in [11], while our

ACO implementation is inspired by the ACO variant proposed for activity

crashing problems in [7].

3.1 Approach 1: Ant Colony Optimization

The Ant Colony Optimization (ACO) metaheuristic introduced by Colorni,

Dorigo and Maniezzo [5] and [9] imitates the behaviour shown by real ants

when searching for food. Ants exchange information about food sources

via pheromone, a chemical substance which they deposit on the ground

as they move along. Short paths from the nest to a food source obtain a

larger amount of pheromone per time unit than longer paths. As a result,

an ever increasing number of ants is attracted to follow such routes, which

in turn reinforces the corresponding pheromone trails. Artificial ants not
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only imitate the learning behavior described above, but also use additional,

problem specific heuristic information.

ACO has been successfully applied to various hard combinatorial op-

timization problems (c.f. e.g. [10]), and convergence of specific ACO al-

gorithms to optimal solutions has been shown in [12]. With the exception

of[8], where an ACO approach has been used for a certain combined location-

routing problem, ACO algorithms have, to our best knowledge, not been ap-

plied to location problems so far. Thus, we developed an ACO-based heuris-

tic for the problem at hand. To exploit available knowledge, we used ideas

from an ACO approach developed in [7] for the activity crashing problem,

which has a solution set structure similar to that of the location problem un-

der consideration. Our ACO algorithm ACOLoc described below builds on

the solution construction mechanism for the best-performing ACO variant

presented in [7].

3.1.1 Realization of the ACO Algorithm for Location Problems Figure 1

shows the pseudocode for the ACO algorithm for Location Problems (ACOLoc).

This algorithm works as follows: In an initialization phase, a number

popsize of conceptual units called ”ants” are generated. The iterative part of

the ACO algorithm can be divided into two phases, a construction phase and

a pheromone update phase. In the construction phase of the algorithm, each

ant constructs a solution z by applying a pseudo-random-proportional rule

(see Subsection 3.1.4), using attractiveness information ηis and pheromone

information τis. The notions ”attractiveness” and ”pheromone” will be ex-
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plained in Subsection 3.1.2 and 3.1.3, respectively. Finally, in the pheromone

update phase, a pheromone update takes place, which will be described in

Subsection 3.1.5.

In the solution construction part of the algorithm, each ant sequentially

visits all locations vi ∈ W (in a random order) and assigns ambulances

to these locations. Once p ambulances have been assigned, the remaining

locations are not assigned any ambulances. Besides that, also the opposite

case can occur where, after visiting all locations, not all p ambulances have

been assigned yet. In this case the remaining ambulances are distributed to

the locations by a simple local search procedure.

3.1.2 Attractiveness Information In ACO, ”attractiveness” or ”visibility”

denotes a heuristic measure of how good a certain construction step will

probably be. The attractiveness information is stored in a matrix η. The

rows of the matrix correspond to the different locations vn+j ∈ W , and

the columns correspond to the number of ambulances s for each location

vn+j . The value ηjs represents the attractiveness information for assigning

s vehicles to location vn+j .

For our application, the attractiveness values are bounded by

ηmin ≤ ηjs ≤ 1, (14)

where the minimum attractiveness value ηmin is a small constant. After

some experimentation we found a value of ηmin = 0.001 as a reasonable

value. The attractiveness values are computed as follows. First, we compute
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for each potential location vn+j the total amount of demand located within

the small radius r. Then, this total demand is divided by the maximum de-

mand w0 that can be served by an ambulance, thus leading to the minimum

number of ambulances sn+j needed to cover all the demands within r from

location vn+j . According to this value sn+j , the attractiveness values are

computed as

ηjs =





1 if s = sn+j

max {ηmin, 1− 0.1 · |s− sn+j |} otherwise.
(15)

3.1.3 Pheromone Information The pheromone information is used to store

information that has been obtained from experience with already evaluated

solutions from previous iterations. The pheromone information is stored in

a matrix τ . The rows of this matrix correspond to the locations vn+j and

the columns correspond to the different possible numbers of vehicles s =

0, ..., maxj pj . The value τjs represents the current pheromone information

to locate s ambulances at the location vn+j .

The initial pheromone values are computed in a similar way as the at-

tractiveness values, i.e.

τjs =





1 if s = sn+j

max {τmin, 1− 0.1 · |s− sn+j |} otherwise.
(16)
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The minimum pheromone value τmin is a small constant (τmin = 0.001).

3.1.4 Decision Rule Given the attractiveness and the pheromone informa-

tion, ACOLoc chooses the number of vehicles s for the current location vn+j

probabilistically according to the following pseudo-random-proportional rule:

s =





arg max{τα
js · ηβ

js : s = 0, . . . , pj} if q ≤ q0

ŝ otherwise,
(17)

where q is a random number uniformly distributed in [0, 1], and q0 is a

parameter (0 ≤ q0 < 1) representing the probability that the number of

vehicles s with the highest product of pheromone and visibility for location

vn+j is selected deterministically. Given that the drawing of q results in a

value such that q > q0, the random variable ŝ, which corresponds to the

number of vehicles assigned to location vn+j , is selected according to the

following probability distribution

Pŝ(j) =
τα
jŝ · ηβ

jŝ∑pj

h=0 τα
jh · ηβ

jh

(ŝ = 0, . . . , pj). (18)

The given probability distribution is biased by the parameters α and β,

which determine the relative influence of the pheromone and the visibility,

respectively.

3.1.5 Pheromone Update A local pheromone update is performed once an

artificial ant has visited all the possible locations vn+j . Then, pheromone
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values τjs are decreased for the selected number of ambulances s for each

location vn+j applying the local pheromone update rule

τjs = (1− ρ) · τjs + ρ · τmin , (19)

where τm is a lower bound of pheromone values (a small constant value),

and ρ is the evaporation rate (0 ≤ ρ ≤ 1). On account of local updating,

ants prefer to assign a number of ambulances that has not yet been chosen.

As a result, the diversity of the solutions is enhanced.

The global pheromone update takes place right after all ants of a popu-

lation have proposed solutions for the location of the ambulances, feasibility

and solution quality have been determined and the local search has been

performed. The update rule for the global update is

τjs = (1− ρ) · τjs + ρ ·∆τjs · 2 . (20)

This global update is applied to the elements of the best found solution and

to some neighbouring elements only. More precisely, if for a given location

vn+j the number of ambulances assigned is s, then not only the pheromone

value τjs is updated but also the two neighbouring elements τjs−1 and τjs+1.

The increment ∆τjs is given by

s =





∆τjs′ = 0.8 if s′ = s

∆τjs′ = 0.1 if s′ ∈ {s− 1, s + 1}.
(21)

The motivation for including the neighboring solution elements into the

update rule is that in our problem, a number of ambulances similar to
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the one in the best found solution should also lead to good results. We do

not know a publication in the ACO literature where the dissemination of

pheromone to the neighbour values has already been used. We introduced

this technique to increase the robustness of the pheromone update mecha-

nism.

3.1.6 Local Search After an ant has constructed a solution, a local search

procedure is applied. In our approach, we use a local search similar to the

one embedded in the TS of [11]. For each location vn+j ∈ W , the possible

neighbourhood moves consist of moving one ambulance to one of the k

nearest locations. In our experiments, we have chosen the same value for k

as in [11], namely k = 5. As soon as there is an improvement in the objective

function, the move is accepted and the local search procedure is restarted.

3.2 Approach 2: Tabu Search

In this section the re-implementation of the Tabu Search algorithm of [11]

will be described. A detailed explanation of the tabu search algorithm ap-

plied to the ambulance location problem is given in [11].

3.2.1 Initial Solution and Neighbourhood Structure In our implementation,

we modified some steps of the original algorithm for the sake of simplic-

ity. Instead of solving a relaxed problem, the initial solution is generated

randomly, by placing a random number of ambulances at each potential

location. The basic operation in the tabu search algorithm is displacing one
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ambulance from a vertex vn+j ∈ W with zj ≥ 1 and moving it to vn+j′ ∈ W ,

where vn+j′ has to be among the five nearest possible locations of the vertex

vn+j .

The tabu search starts from one solution and generates in each iteration

a set N(z) of neighbour solutions. A parameter θ2 is used to specify the

number of neighbouring solutions generated. In the generation phase of the

neighbouring solutions, some vertex pairs are temporarily declared tabu, but

the tabu status of the vertex pairs is erased at the start of the generation

of the next neighbor. Among the θ2 neighbours the best solution is chosen

as the incumbent solution.

The ordered pair (j
′
, j) corresponding to the new incumbent is then set

tabu with the tabu duration being a random variable θ1 chosen in some

interval [θ1, θ1], where θ1 and θ1 are parameters. As long as a move is set

tabu, it can not be reversed, i.e., no ambulance can be moved from vn+j′

to vn+j .

The stopping criterion for the TS is a maximum number of θ3 iterations.

3.2.2 Diversification and Stopping Rule A diversification strategy is ap-

plied to enable the search to escape from local optima and to move to

different regions in the search space. In the tabu search implementation, an-

other parameter θ4 is introduced. Whenever there is no improvement during

θ4 iterations, a diversification phase is initiated. In the diversification phase

instead of considering the five nearest neighbor vertices, all vertices are con-
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sidered. The diversification phase is stopped when the objective improves

and is applied during up to θ5 iterations.

4 Example Study: Ambulance Location Planning for Austria

4.1 The Application Instances

Austria is a country of about eight million inhabitants located at the center

of Europe. The country is divided into nine provinces. In the eight rural

provinces (the 9th province is the capital Vienna), the major part of the

emergency and patient transport is organised and executed by the Austrian

Red Cross [14]. According to the efficiency report of the Austrian Red Cross

of the year 2002, this organization has 460 ambulance bases spread over

Austria. The vehicle fleet consisted of 1,952 ambulances in the year 2002. In

this year, 2,308,304 trips have been carried out. Thereby, 1,790,018 patients

were treated, 226,611 persons thereof needed an emergency transport with

qualified ambulance personnel on board and 105,274 patients thereof needed

an emergency physicians on board. The remaining transports were executed

on a dial-a-ride basis (e.g., transportation of handicapped persons, dialysis

patients).

In our computational study, we solve the problem defined in Section 2

for the eight rural provinces (Vorarlberg, Burgenland, The Tyrol, Carinthia,

Salzburg, Styria, Upper Austria, and Lower Austria) shaded in grey in

Fig. 2. Using ArcGIS version 9, we built a GIS (geoinformation system)

providing the essential information for our purpose. In particular, we geo-
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coded the potential ambulance bases. For the population figures, we used

the last census data provided in the Arc Austria data collection [17]. Our

distance information is based on real road network data provided by Teleat-

las [16].

As an example, the province map including population nodes and poten-

tial ambulance bases (nodes indexed by numbers) for Salzburg is depicted

in Figure 3.

4.2 Parameter Values

Both for ACO and TS, we used the following weights for the objective func-

tion (10):

M1 = 1000000, M2 = 20, and M3 = 10.

The chosen weighting factors M1, M2, M3 were found after some pretests.

In our ACO implementation, the following parameter values were used:

ρ = 0.1, q0 = 0.9, α = β = 1, popsize = 20, niter = 100.

We tested also with a different value of ρ = 0.05 and we found out that

the results are slightly better when using a higher evaporation rate ρ = 0.1

especially for the larger problems.
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In the TS implementation, the parameters were set to the following values:

θ1 = θ2 = 10, θ3 = p (number of ambulances), θ4 = 50, θ5 = 10.

4.3 Results

In Table 1, we list the characteristic parameters of the eight provinces with

respect to the given problem.

For the two smallest of the eight provinces (Vorarlberg and Burgenland),

we were able to solve our modified problem exactly, such that we could use

the results as yardsticks for the outcome of the two heuristics. For the six

other provinces, problem size prevents the computation of exact solutions in

reasonable time, such that the corresponding optima are not known; here,

all we can do is to compare the ACO results with the TS results. Table 2

provides the best found solution for Salzburg.

We use real world data for the development of our algorithms. In order

to realize this solution in the real world additional constraints and dynamic

aspects must be taken into account (e.g. age of the population in certain

regions, places with higher probabilities of accidents, tourist regions, in-

dustrial regions,...) The consideration of this additional aspects is part of

further research and goes beyond the scope of this paper.

For each province, ten runs of ACO and ten runs of TS have been carried

out to deal with the randomised character of the two algorithms. In Table 3,
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the achieved values of the objective function F (z) are presented. Both for

ACO and for TS, the corresponding best and worst values as well as the

average over the ten runs have been indicated. As can be seen, for both

Vorarlberg and Burgenland, both heuristics produced the optimal solution

in each run.

A comparison between ACO and TS shows that ACO produces better so-

lutions than TS in three cases, and TS produces better solutions than ACO

in three other cases. In the remaining two cases, the solutions produced by

the two heuristics are equally good since they are, as stated above, already

optimal. It can be observed that TS outperforms ACO in the largest of our

test instances (Upper Austria, Lower Austria). The number eight of test

instances seems to be too small, however, to draw general conclusions from

this observation.

In Table 4, we present the achieved double coverage values, expressed in

percent of the population, i.e., the values f(z)/ (
∑n

i=1 λi). Note that f(z)

resp. f(z)/ (
∑n

i=1 λi) is not the true objective function, because it does not

include the penalties f1(z) to f3(z).

Computation times are indicated in Table 5. As it can be observed, the

computation times of ACO are about 3 to 4 times higher than those of TS for

the smaller instances. For the three largest instances, this factor increases to

between 10 and 15. For the problem instances where ACO provides better

results we increased the runtime of the TS algorithm (without modifying
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the parameter settings for the TS). Even if we apply the TS for the same

runtime than ACO, the TS cannot outperform the ACO algorithm.

The reason for the better performance of the TS for the larger problems

is that TS is an improvement procedure and it improves one solution itera-

tively. The ACO algorithm always constructs a population of new solutions

- this process consumes a lot of runtime and therefore not so many new

solutions can be constructed during the search. Recently, a first work was

published where also the ants do not always construct new solutions and just

improve solutions [1]. Maybe this is a first step towards an ACO algorithm

which does not consume so much runtime in generating or constructing new

solutions.

5 Conclusions

We have solved an ambulance location problem with a modified double-

coverage objective function under single-coverage constraints for eight provinces

of Austria. The optimization model generalises the model developed by Gen-

dreau, Laporte and Semet [11] by requiring a more balanced distribution of

ambulances with respect to the number of inhabitants served by one am-

bulance. As solution algorithms, we used two metaheuristic approaches: A

variant of Ant Colony Optimization specifically developed in this paper for

the considered location problem, and the Tabu Search algorithm from [11].

The results showed no consistent superiority in solution quality of one of
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the approaches over the other. However, Tabu Search always consumed less

computation time.

Further research will be directed to more elaborate models for measuring

the service level achieved by certain proportions between number of inhab-

itants and number of ambulances. To increase realism, it may be necessary

to include stochastic influences and queuing into the model, as it has been

done, e.g., in [2] or in [13]. A further interesting extension would be to treat

the terms in our objective function (10) as single, separate objectives and

to determine Pareto-optimal solutions of the corresponding multiobjective

optimization problem.
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Procedure ACOLoc

create popsize ants;

initialise pheromone matrix;

do for niter iterations {

for ant = 1 to popsize {

determine the visiting sequence of locations vi ∈ W randomly

by using a uniform distribution;

for i = 1 to m

select a number of vehicles ci using formula (18);

apply local pheromone update using formula (19);

apply local search to the ant’s solution;

}

from the solutions just found by the popsize ants

determine the best solutions z∗;

do pheromone update on z∗ using formula (20);

}
Fig 1. Pseudocode of the ACO algorithm

Figure 2. Map of the nine provinces in Austria.
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Figure 3. Map of the province Salzburg.
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No. demand No. pot. No. No. inha- No. inhabitants r R

Province points locations Ambul. bitants /No. ambulances

Vorarlberg 105 7 11 594,000 54,000 20 57

Salzburg 152 30 40 504,000 12,600 15 39

Lower Austria 723 137 200 2,678,000 13,390 16 35

Carinthia 319 22 35 990,000 28,300 20 48

Upper Austria 443 86 120 1,902,000 15,000 15 36

Burgenland 189 10 15 634,000 30,000 20 39

Styria 451 93 150 1,486,000 10,000 22 37

The Tyrol 269 43 60 826,000 19,200 15 32

Table 1 Problem size and characteristics of the different provinces.
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Salzburg

ID Location No. of

Name Ambulances

0 St. Wolfgang 0

1 Oberndorf 1

2 Flachgau-Nord 1

3 Flachgau-Mitte 1

4 Strasswalchen 0

5 Seekirchen 1

6 Strobl 1

7 Flachgau-Ost 3

8 Tennengau 1

9 Lammertal 1

10 Golling 2

11 Werfen 1

12 Bischofshofen 2

13 Pongau 2

14 Radstadt 1

15 Schwarzach 1

16 Gastein 4

17 St. Michael 2

18 Lungau 1

19 Mariapfarr 1

20 Mauterndorf 1

21 Saalfelden 2

22 Pinzgau 2

23 Saalbach 0

24 St. Martin b. Lof 1

25 Rauris 1

26 Mittersil 2

27 Wald im Pinzgau 1

28 Altenmarkt 1

29 Salzburg 2

Table 2 Best solution found for the province of Salzburg.
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. ACO avg. F (s) best worst

1 Vorarlberg 435,491 435,491 435,491

2 Salzburg 155,996 155,996 155,996

3 Lower Austria 1,304,593 1,337,280 1,269,950

4 Carinthia 228,742 228,742 228,742

5 Upper Austria 1,040,429 1,051,270 1,029,610

6 Burgenland 111,163 111,163 111,163

7 Styria 790,721 797,996 784,060

8 The Tyrol 405,996 405,996 400,080

. TS avg. F (s) best worst optimum

1 Vorarlberg 435,491 435,491 435,491 435,491

2 Salzburg 155,117 155,996 151,996 n.a.

3 Lower Austria 1,345,833 1,353,540 1,340,320 n.a.

4 Carinthia 228,250 228,740 227,718 n.a.

5 Upper Austria 1,039,200 1,051,350 1,021,920 n.a.

6 Burgenland 111,163 111,163 109,496 111,163

7 Styria 793,819 797,996 788,694 n.a.

8 The Tyrol 398,862 402,697 396,615 n.a.

Table 3 Objective function values F (z).
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. ACO avg. f(s) avg. % best worst

1 Vorarlberg 444,000 74.75 74.75 74.75

2 Salzburg 156,000 30.95 30.95 30.95

3 Lower Austria 1,331,000 49.70 50.56 48.84

4 Carinthia 238,000 24.04 24.04 24.04

5 Upper Austria 1,048,800 55.14 55.52 54.57

6 Burgenland 178,000 28.08 28.08 28.08

7 Styria 794,600 53.47 53.70 53.16

8 The Tyrol 406,000 49.15 49.15 49.15

. TS avg. f(s) avg. % best worst optimum in %

1 Vorarlberg 444,000 74.75 74.75 74.75 444,000 74.75%

2 Salzburg 155,200 30.79 30.95 30.16 n.a. n.a.

3 Lower Austria 1,361,715 50.85 50.93 50.63 n.a. n.a.

4 Carinthia 238,000 24.04 24.04 24.04 n.a. n.a.

5 Upper Austria 1,049,400 55.17 55.73 54.26 n.a. n.a.

6 Burgenland 178,000 28.08 28.08 28.08 178,000 28.08%

7 Styria 797,400 53.66 53.70 53.30 n.a. n.a.

8 The Tyrol 406,000 49.15 49.15 49.15 n.a. n.a.

Table 4 Double coverage.
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Comp. Time ACO TS

1 Vorarlberg 5-8 sec 1-2 sec

2 Salzburg 80 sec 15 sec

3 Lower Austria 3.5 h 20 min

4 Carinthia 140 sek 20 sec

5 Upper Austria 1 h 6 min

6 Burgenland 18 sec 10 sec

7 Styria 1.33 h 6 min

8 The Tyrol 6.5 min 2.5 min

Table 5 Computation time.


