Two Metaheuristics for Multiobjective
Stochastic Combinatorial Optimization

Walter J. Gutjahr

Dept. of Statistics and Decision Support Systems, University of Vienna

Abstract. Two general-purpose metaheuristic algorithms for solving
multiobjective stochastic combinatorial optimization problems are in-
troduced: SP-ACO (based on the Ant Colony Optimization paradigm)
which combines the previously developed algorithms S-ACO and P-ACO,
and SPSA, which extends Pareto Simulated Annealing to the stochastic
case. Both approaches are tested on random instances of a TSP with
time windows and stochastic service times.

Keywords. Ant colony optimization, combinatorial optimization, multi-
objective decision analysis, simulated annealing, stochastic optimization.

1 Introduction

Recently, two branches of combinatorial optimization have undergone a partic-
ularly dynamic evolution due to a strong application pull on the one hand, a
technology push triggered by increased computer power on the other hand. The
one of these branches is multiobjective combinatorial optimization (MOCO) pur-
suing the aim to support decision makers in the choice among a finite, but large
number of alternatives without imposing the necessity of an a priori assignment
of weights to different objectives (see, e.g., Ehrgott and Gandibleux [6]). Espe-
cially the solution of MOCO problems by metaheuristics has recently attracted
the attention of many researchers [8]. The other of the mentioned branches is
stochastic combinatorial optimization (SCO), which promises to support decision
making under a type of uncertainty that can be represented by some suitable
stochastic model. In many cases, simulation is used as an auxiliary tool for solv-
ing SCO problems. Efficient methods of diverse kind have been developed in the
past for SCO and simulation-supported optimization (for a recent survey, see Fu
[7]). Also in this area, metaheuristic techniques are gaining importance.
Interestingly enough, despite the large body of literature in both the MOCO
and the SCO area, there are only few papers combining both features, although
it would be desirable to be able to cope with problems that incorporate both mul-
tiple objectives and uncertainty. The scarcity of literature in this intersection has
also been noted in [7] and in [1]. Very few articles deal with problems of this com-
bined type by metaheuristic techniques. Baesler and Sepulveda [1] report on a
multiobjective simulation-optimization problem in layout and scheduling, which
they solve by a modification of a genetic algorithm (GA); their approach relies

on goal programming. Also Hughes [11] uses a GA approach, but he refers to the
paradigm of finding nondominated (Pareto-optimal) solutions. He adapts rank-
ing procedures applied in standard multiobjective GAs to the situation where
function evaluations are subject to random noise.

The aim of this paper is to present two general-purpose metaheuristic solu-
tion algorithms SP-ACO and SPSA, determining approximations to the Pareto-
optimal set for instances from a large class of MOSCO (multiobjective stochas-
tic combinatorial optimization) problems. In Section 2, the considered type of
MOSCO problems is defined. Section 3 presents the new algorithms SP-ACO
and SPSA. The first, SP-ACO, is based on the ant colony optimization (ACO)
paradigm (see [5]), whereas the second, SPSA, an extension of the PSA algo-
rithm by Czyzak and Jaszkiewicz [2], draws on the well-known simulated anneal-
ing metaheuristic. In Section 4, we outline the application of both approaches
to randomly generated instances of a bi-objective stochastic travelling salesper-
son problem with time windows and stochastic service times, and report on the
obtained experimental results. Section 5 contains conclusions.

2 MOSCO Problem Formulation and Objective Function
Estimation

Both approaches are designed for the heuristic solution of MOSCO problems of
the following very general form:

Minimize (Fy(x),..., Fr(z)) subjectto x €S (1)

with Fy.(z) = E(fr(z,w)) (r=1,...,R). Therein, z is the decision variable,
fr is the r-th cost function, R is the number of objectives (cost functions), w
denotes the influence of randomness, E denotes the mathematical expectation,
and S is a finite set of feasible decisions.

A solution 2’ € S dominates a solution x € S, if F.(z') < F,.(x) for all
r = 1,...,R, and if there is at least an index r such that F.(z') < F.(z). A
solution x € S is called dominated resp. nondominated by a set S C S of
solutions, if there is an ' € S’ such that z’ dominates x, resp. if there is no such
' € S’. A solution z is called Pareto-optimal if it is nondominated by S. The
Pareto-optimal set is the set of Pareto-optimal solutions. As an ezact solution of
(1), we consider the Pareto-optimal set defined by the MOCO problem (1). Since
the proposed algorithms are heuristics, it cannot be expected that they will in
general produce the Pareto-optimal set. They output approximations to this set.
Concerning quality evaluation of these approximations, we refer the reader to
Section 4.

In our context, it is not necessary that E (f,.(z,w)) can be computed numer-
ically. Instead, sampling is used for estimating this quantity: For this purpose,
draw N random scenarios wi,...,wy independently from each other. A sample
estimate of F,.(xz) = E(f,(x,w)) is given by

N
ER) = 5 Yo frlww) HE (). 2
v=1

3 Algorithms

3.1 The SP-ACO Algorithm

There exits several articles extending the ACO metaheuristic to multiobjective or
to stochastic problems; see Dorigo and Stiitzle [5] for a survey. For our combined
approach, we rely on the following formerly developed basic techniques: In [9],
[10], an algorithm S-ACO for the heuristic solution of single-objective stochastic
combinatorial problems has been proposed. The algorithm SP-ACO (Stochastic
Pareto Ant Colony Optimization) presented here is an extension of S-ACO to
the multiobjective case, combining it with the P-ACO algorithm developed for
MOCO problems in [3], [4]. SSACO and SP-ACO work based on the encoding
of a given problem instance as a construction graph C, a directed graph with a
distinguished start node. The stepwise construction of a solution is represented
by a self-avoiding random walk in C, beginning in the start node. There may
be additional rules defining particular nodes as infeasible after a certain partial
walk has been traversed. When there is no feasible unvisited successor node
anymore, the walk stops and is decoded as a complete solution for the problem.
The conceptual unit performing such a walk is called an ant.

The encoding must assign exactly one feasible solution to each feasible walk.
Vice versa, to each feasible solution at least one feasible walk (possibly more)
must correspond. Given that the indicated condition is satisfied, we may consider
a walk as a solution, denote it again by the symbol x and consider S as the set
of feasible walks.

The probability pg; that an ant goes from a node k to a feasible successor node
[is chosen as proportional to 7y - ngi(u), where 75 is the so-called pheromone
value, a memory value storing how good step (k,l) has been in previous runs,
and ng; (u) is the so-called visibility, a pre-evaluation of how good step (k, 1) will
presumably be, based on some problem-specific heuristic. 7y (u) is allowed to
depend on the partial walk u performed so far. In the experimental investigations
in this paper, we did not use nontrivial visibility values, setting 7 (u) = 1 in
each case. For this reason, the role of the visibility (which can improve solution
quality) will not be discussed here. For details, we refer the reader to [5].

Whether a continuation (k,) of a partial walk u ending with node k is feasible
or not is defined in accordance with the condition above that node [is not yet
contained in u, and that none of the (eventual) additional rules specifies [as
infeasible after u has been traversed.

In a loop, a predefined number I' of random walks of ants according to
the procedure above are performed sequentially. These I" walks form together a
round of the process. The single-objective heuristic SSACO determines in each
round a round-winner. This is done by comparing all walks that have been per-
formed in this round on one random scenario w, drawn specifically for this round.
In the multiobjective context of SP-ACO, the determination of a round winner
necessitates that a unique objective function for ranking the solutions produced
by the walks of the ants is defined for this round. We do this by taking a weighted
average of the cost functions f1,..., fr. The weights w1, ..., wg are drawn ran-

domly at the beginning of a process phase called period. A period contains several
rounds in which solutions are gradually improved w.r.t. the current weights. In
the next period, new weights are drawn; this process is iterated.

Procedure SP-ACO
T,Elr) :=1 for all (k,l) and for all r =1,..., R;
initialize the solution set X as the empty set;
for period # =1 to IT {
draw weights wq, ..., wgr randomly;
7= wr™;
for round m =1 to M {
forant y=1,...,I'{
set position k equal to start node of C;
set u equal to the empty list;
while (a feasible continuation (k,!) of u exists) {

select successor node [with probability
0, if (k,1) is infeasible,
it () / (S 7o o)) else,
the sum being over all feasible (k,r);
set k := 1, and append [to u; }
Ty =}
based on one random scenario w and objective function

f(xaw) = Zf:l wrfr(xaw)a

Pkl =

select the best walk x out of z1,...,z;
if (m =1) set & := z; // candidate for best solution in period
else {
based on random scenarios wy,...,wy,,, compute sample estimate

E(F(z) - F(2)) = 5= Lo oy welfrlw,wy) = fr(@w));
if (E(F(z)— F(2)) <0)set & :=ux; }
evaporation: 7(") := (1 — p) 7(") for all r;

global-best reinforcement: T,glr) = T,glr) + cqw, for all (k,I) € & and all r;

round-best reinforcement: T]g;) = T,g;) + cow, for all (k,I) € z and all r;

T = Z§:1 w,();

based on a sample of size N(¢), evaluate estimates EFy(2),.. ., EF(&);

if (Z nondominated by X according to computed estimates of size N (C))
add Z to X and remove dominated elements from X; } }

Fig. 1. Pseudocode SP-ACO.

In an ACO implementation for a deterministic problem, it is customary to
store the best solution seen so far in a special variable. A crucial difference to the
deterministic case is that in the stochastic context, it is not possible anymore
to decide with certainty whether a current solution x is better than the solution
currently considered as the best found, &, or not. To make a tentative decision
by sampling, we perform a tournament. After a current round-winner z has

been determined, x is compared with the solution considered as the overall best
solution so far in this period, Z. For evaluating the solutions, a weighted average
F of the objective functions Fi,..., Fr with the current weights wy,...,wg is
used, and estimates for the values of the functions F;. are determined from a
sample consisting of NV, randomly drawn scenarios w;, which are used by both
solutions. Also these scenarios are round-specific, i.e., in the next round, new
scenarios will be drawn. The larger N,,, the more reliable is the decision. The
winner of the comparison is stored as the new “global-best” &. In [9] it is shown
that the sample size N, should be increased as a linear function of the round
number m to enable a convergence result for the single-objective case.

Next, the solution & considered so far as the best of the current period as well
as the current round-winner are reinforced on each of their arcs by pheromone
increments, after a certain fraction p (“evaporation factor”) of pheromone has
been removed from each arc. The parameters ¢; > 0 and ¢; > 0 in the algorithm
determine the amount of pheromone increment on global-best and round-best
walks, respectively.

We take account of the different objective functions Fi,..., Fr by assigning
a separate pheromone matrix 7(") = (T,g)) to each objective r. Global-best and
round-best reinforcement is done in each of these pheromone matrices with the
current respective weight w,. For the transition from a node k to a feasible
successor node [, the guiding pheromone values 7;; must be computed as a
weighted mean of the objective-specific pheromone values T,Elr)
take again the current values w,..

After reinforcement, it is checked whether the current global winner solution
Z can be added to the current set X of candidates for the approximation to
the Pareto-optimal set. For this purpose, an estimation of the objective function
values Fy(%),..., Fr(#) based on a random sample of constant size N(¢), where
N is comparably large, is performed. If Z turns out as nondominated by X
according to these estimates, Z is added to X, and solutions in X dominated
by & are removed from X. The objective function estimates obtained from the
sample of size N(¢) are assigned to Z in the list of the elements of X for future
dominance comparisons with new candidates for the solution set X.

. As weights we

3.2 The SPSA Algorithm

In this subsection, we present an extension of the PSA (Pareto Simulated An-
nealing) algorithm by Czyzak and Jaszkiewicz [2], designed for solving MOCO
problems, to an algorithm SPSA (Stochastic Pareto Simulated Annealing) for
the solution of MOSCO problems. Since PSA is already a well-established tech-
nique, we keep the description short, focusing on the points by which SPSA
extends PSA. The pseudocode of SPSA is given in Fig. 2.

PSA wuses a search set (here denoted by ©) exploring the solution space
governed by a mechanism that (i) drives the search points towards the Pareto-
optimal set, and (ii) favors diversification by forcing points that lie close to each
other in the solution space to “specialize” on different objectives. The last effect

is achieved by a suitable modification of the weights assigned to the objective
functions: the weights are increased for those objectives for which a current
search point z is better than a near-by search point z’, and decreased for the
others.

Procedure SPSA

initialize the search set @ by s random feasible solutions;
initialize the solution set X as the empty set;
initialize N by Njnit;
fori=1tos
if (ith solution x; in © is nondominated by X, based on sample size N (1))
add z; to X and remove dominated elements from X;
initialize temperature parameter T';
repeat until (termination criterion is met) {
forl=1to L {
fori=1to s {
forr=1to R
compute sample estimate EF,.(z;) based on sample size N CR
construct a random feasible neighbor solution y to x;;
select 2 € © nondominated by z; with minimum distance to z;;
if (first run or 2’ not found) {
forr=1to R
draw random weight w;,;
normalize weights w;, to Y w;, =1; }
else {
forr=1to R {
compute sample estimate £F,.(z') based on sample size N ®);
if (EF-(z;) < EF-(2)) wip := aw;y; else wy = wyy/a;
normalize weights w;, to Y, w;, =1; } }
forr=1to R
compute sample estimate &(F,.(z;) — F,(y)) based on sample size N(2);
with probability min(1, exp(}_, wir&(Fr(xi) — Fr(v))/T) {
Ti =Y
if (T < T and y nondominated by X, based on sample of size N (1))
add y to X and remove dominated elements from X; } } }
T := 0T,
increase N by Nj..; }

Fig. 2. Pseudocode SPSA.

Basically, our extension SPSA works as PSA, with the exception that at any
time when an objective function evaluation is necessary, an estimation based on
sampling is done. For the sample estimate, we use the notation of (2). Three sam-
ple size parameters N, N2 and N®) are used. N and N®) are constants,
N®@) ig a variable. N(!) corresponds to the sample size N(© in the SP-ACO
algorithm in that it is applied for deciding whether a candidate solution is (pre-
sumably) nondominated by the current elements of the solution set X. As N (0)

in the case of SP-ACO, N must be high, because the estimates are not re-
vised anymore at a later time. In the experiments, it turned out that better
results were achieved by considering insertion into X only after the tempera-
ture parameter T has fallen below some threshold 7,. Sample size N(?) is used
for deciding whether or not a neighbor solution is to be accepted. Since by the
simulated annealing philosophy, in a late phase (low temparature), neighbor so-
lutions that are not better than the current solution should be rejected with a
high probability, it is important that the estimation accuracy for the difference of
the objective function values is gradually increased during the process, similarly
as we gradually increase N,, in the SP-ACO algorithm. The third sample size,
N®) | is used for getting estimates of the objective function values of a current
solution z € © compared to those of the closest neighbor 2’ of z in ©.

4 Experimental Results on a TSPTW-SST

For first computational experiments with the described algorithms, we used a
bi-objective TSP with Time Windows and Stochastic Service Times (TSPTW-
SST). A set of customers {1,...,n} and a distance matrix D = (d;;) are given.
Distances are interpreted as driving times. Let us imagine that the travelling
person is a service engineer. To each customer i, a time window [a;,b;] can
be assigned, indicating that customer ¢ requests a visit by the service engineer
starting at time ¢; with a; < t; < b;. If the service engineer arrives at customer
i at a time t; before time a;, (s)he must wait until time a;. If (s)he arrives after
time b;, a tardiness of amount t; — b; is registered. Not every customer needs
to have a time window for the visit. The service at customer ¢ takes some time
Y;, where Y; is a random variable with known distribution. After finishing the
service at customer i, the service engineer drives to the next customer on the
list given by the chosen permutation x of customers. The aim is to minimize the
exepected values of two objectives: (i) the sum of total driving time and total
waiting time, (ii) the sum of the tardiness values (t; — b;)™.

Besides SP-ACO and SPSA, we also implemented a complete enumeration
procedure combined with brute force simulation (CE/BFS, sample size 10°) to
evaluate proposed solutions, and a random search (RS) procedure with constant
sample size per solution.

We generated 12 different problem instances at random. The problem size
was chosen as n = 9 in all these instances, which was the largest number of
customers for which we were able to compute the Pareto-optimal set by the
CE/BFS approach within reasonable time. (On a PC Pentium 2.4 GHz, this took
about 5 hours per test instance; the sample size was chosen as high as 10° to
reach a sufficient accuracy of the objective function evaluations.) Test instances
with n = 9 may seem as very small, but we would like to emphasize that in
the combined setting of two different objectives combined with simulation-based
objective function determination, the problem is highly nontrivial already for
this instance size.

40000

35000 e

30000

25000

20000

tardiness

b

15000

10000

'Y
5000 N

0 T T T T T T “r T T
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

driving/waiting time

Fig. 3. Pareto front for the first instance of prw = 0.2, [0min, Omaz] = [0, 40],
time units multiplied by 1000.

In the case of each problem instance, n = 9 customer points were selected
uniformly at random from a square. Distances were computed as Fuclidean dis-
tances between these points. It was assumed that traversing an edge of the square
takes 10 time units. For each customer, a random decision was made on wether
or not to assign a time window, using a fixed probability prw for the existence of
a time window. If a time window was assigned, its length was selected uniformly
at random between 6 and 60 time units, and its start time was selected uni-
formly at random between time 0 and the maximum time such that the whole
time window was still contained in an interval of 120 time units. The service
time distributions were chosen as uniform distributions on the interval between
two values 0,,,;n, and o,,q2-

Experiments were carried out for the following combinations of parameter
values: For pry, we considered the cases pry = 0.2 and prw = 0.3, and for
the intervals [Omin, Omaz], We chose the cases [0, 20], [0, 40] and [10, 30]. For each
of the 6 parameter combinations, 2 random test instances were generated, such
that 12 test instances in total were produced. Fig. 3 shows a typical Pareto front
(Pareto-optimal set in objective space).

To have a fair comparison, each of the heuristic algorithms SP-ACO, SPSA
and RS was given 20 seconds on a PC Pentium 2.4 GHz for a single run.
The parameters of each heuristic were tuned to best possible results within
these 20 seconds at the first test instance for the combination pry = 0.2,
[Cmins Omaz] = [0,40]. After that, 100 runs for each of the three heuristics were
performed on each test instance and evaluated with the help of the results ob-
tained by CE/BFS.

The tuning yielded the following parameter values: (a) SP-ACO: M = 10,
I' = 200, p = 0.00005, N(© = 2000, ¢; = 0.0005, c; = 0.000005. (b) SPSA:
s =10, N(M = 500, N®): initial value 1, increment 1, N® =1, a = 1.1, b= 0.9.
A neighbor solution y was determined by m, random 2-opt moves, where m,,
was chosen uniformly between 1 and 4. (¢) RS: sample size N,, = 200 per

randomly generated solution. Concerning the SP-ACO parameters, we remark
that the value p may seem rather low compared to usual ACO implementations
for single-objective deterministic problems. However, it should be noted that
pheromone is not re-initialized at the beginning of each period, such that also
low values of p effect distinct differences in the pheromone values towards the
end of the procedure. Moreover, it can be observed that in the parameter choice
above, the global pheromone increment c; is 100 times as high as the local
pheromone increment ¢y, which turned out as advantageous.

In the literature, many measures have been described for evaluating the re-
sults of multiobjective optimization heuristics (see, e.g., Jaszkiewicz [12]). Since
our present results are only intended as a first experimental test, we used only
one, rather basic evaluation metric, namely the ratio of Pareto-optimal solutions,
as determined by CE/BFS, that are covered by one of the solutions in the output
set of a considered heuristic algorithm. This is the first evaluation metric Q1 for
MOCO heuristics suggested in [12]; it goes back to Ulugu et al. [13].

In Table 1, we list the average ()1 value over 100 test runs for each problem
instance and each heuristic. In addition, for each problem instance and each pair
of heuristics, we performed a (two-sided) Wilcoxon test to decide whether or not
the difference between the indicated average (Q; values for the two heuristics is
statistically significant or not. Column 2 of Table 1 shows the total number of
Pareto-optimal solutions, columns 3 — 5 the average (01 values over 100 runs, and
columns 6 — 8 the results of the significance tests for the pairwise comparisons
(n: no significance; s, s* and s**: significance at level & = 0.05, 0.01 and 0.001,
respectively). If a significant difference was found, the heuristic with the better
results in the pairwise comparison was named. As it can be seen, both SP-
ACO and SPSA outperformed RS in all cases with high significance. SP-ACO
outperformed SPSA in 6 cases with high significance and was outperformed by
SPSA in 3 cases, also with high significance. In the 3 remaining cases, there was
no statistically significant difference between the results of SP-ACO and SPSA.

5 Conclusions

Two metaheuristics, SP-ACO and SPSA, for solving MOSCO problems have
been developed and compared on a TSPTW with stochastic service times. The
results do not indicate a consistent superiority of SP-ACO over SPSA or vice
versa in the evaluation metric ()1, but a random search approach is clearly out-
performed by both. Future work should deal with more comprehensive outcome
evaluations on extended test instance sets, and)1 should be supplemented by
other metrics. Furthermore, extensions of other MOCO metaheuristics to the
stochastic case should be included into the comparison.

References

1. Baesler, F.F., Sepulveda, J.A., “Multi-objective simulation optimization for a can-
cer treatment center”, Proc. WSC 2001, pp. 1405-1411 (2001).

10

average ratio of found sol.

significantly better

*
*

test instance |no. sol.| aco sa rs aco : sa aco : rs sa : I8
0.2,[0,20] /1| 22 0.337 0.327 0.184 n aco (s™) sa (s™)
0.2, [0,20] / 2| 17 0.663 0.571 0.444 | aco (s™) aco (™) sa (s™)
0.2, [0,40] / 1| 41 0.421 0.285 0.218 aco (s™) aco (™) sa (s™)
0 2 [0,40] / 2| 34 0.450 0.450 0.343 n aco (™) sa (s™)
2, [10,30]/ 1| 25 0.428 0.305 0.222 aco (s™) aco (s™) sa (s*")
2, [10,30]/ 2| 16 0.727 0.720 0.511 n aco (™) sa (s™)
3,[0,20] /1| 21 0.701 0.561 0.366 | aco (s*) aco (™) sa (s™)
0 3 [0,20] /2| 19 0.748 0.652 0.448 aco (s*) aco (s™) sa (s*")
0.3,[0,40] / 1| 23 0.620 0.662 0.515 sa (s™) aco (™) sa (s™)
0 3 [0,40] / 2| 27 0.432 0480 0.329 sa (s™") aco (™) sa (s™")
3, [10,30]/ 1| 20 0.532 0.582 0.459 sa (s™") aco (s*) sa (s*)
3, [sa (™)

10,30}/ 2| 11 0.550 0.451 0.338 aco (s™) aco (™)

V)

Table 1. Results for the 12 test instances (including 100 runs per instance and method).

ot

10.

11.

12.

13.

. Czyzak, P., Jaszkiewicz, A., “Pareto simulated annealing — a metaheuristic tech-

nique for multiple-objective combinatorial optimization”, J. of Multi-Criteria De-
cision Analysis 7, pp. 34-47 (1998).

. Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C., “Ant Colony

Optimization in Multiobjective Portfolio Selection”, Proc. 4th Metaheuristics In-
ternational Conference, pp. 243-248 (2001).

. Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C., “Pareto Ant

Colony Optimization: A metaheuristic approach to multiobjective portfolio selec-
tion”, Annals of Operations Research 131, pp. 79-99 (2004).

. Dorigo, M., Stiitzle, T., Ant Colony Optimization, MIT Press (2004).
. Ehrgott, M., Gandibleux, X., “A Survey and Annotated Bibliography of Multiob-

jective Combinatorial Optimization”, OR Spektrum 22, pp. 425-460 (2000).

. Fu, M.C., “Optimization for simulation: theory vs. practice”, INFORMS J. on

Computing 14, pp. 192-215 (2002).

. Gandibleu, X., Sevaux, M., Sérensen, K., T’kindt, V. (Eds.), Metaheuristics for

Multiobjective Optimization, Springer, Berlin-Heidelberg (2004).

. Gutjahr, W.J., “A converging ACO algorithm for stochastic combinatorial opti-

mization”, Proc. SAGA 2003 (Stochastic Algorithms: Foundations and Applica-
tions), Springer LNCS 2827, pp. 10-25 (2003).

Gutjahr, W.J., “S-ACO: An ant-based approach to combinatorial optimization
under uncertainty”, Proc. ANTS 2004 (4th International Workshop on Ant Colony
Optimization and Swarm Intelligence), Springer LNCS 3172, pp. 238-249 (2004).

Hughes, E.J., “Evolutionary Multi-objective Ranking with Uncertainty and Noise”,
in: E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello, and D. Corne (eds.), First
International Conference on Evolutionary Multi-Criterion Optimization, pp. 329-
343, Springer LNCS No. 1993 (2001).

Jaszkiewicz, A., “Evaluation of multiple objective metaheuristics”, in: Gandibleu,
X., Sevaux, M., Sérensen, K., T’kindt, V. (Eds.), Metaheuristics for Multiobjective
Optimization, Springer, Berlin-Heidelberg, pp. 65-89 (2004).

Ulugu, E.L., Teghem, J., Fortemps, Ph., Tuyttens, D., “MOSA method: a tool for
solving multiobjective combinatorial optimization problems”, J. of Multi-Criteria
Decision Analysis 8, pp. 221-236 (1999).

