
A Converging ACO Algorithm for Stochastic

Combinatorial Optimization

Walter J. Gutjahr

Dept. of Statistics and Decision Support Systems, University of Vienna
walter.gutjahr@univie.ac.at,

http://mailbox.univie.ac.at/walter.gutjahr/

Abstract. The paper presents a general-purpose algorithm for solving
stochastic combinatorial optimization problems with the expected value
of a random variable as objective and deterministic constraints. The al-
gorithm follows the Ant Colony Optimization (ACO) approach and uses
Monte-Carlo sampling for estimating the objective. It is shown that on
rather mild conditions, including that of linear increment of the sample
size, the algorithm converges with probability one to the globally optimal
solution of the stochastic combinatorial optimization problem. Contrary
to most convergence results for metaheuristics in the deterministic case,
the algorithm can usually be recommended for practical application in
an unchanged form, i.e., with the “theoretical” parameter schedule.

Keywords. Ant colony optimization, combinatorial optimization, con-
vergence results, metaheuristics, Monte-Carlo simulation, stochastic op-
timization.

1 Introduction

In many practical applications of combinatorial optimization, a smaller or larger
extent of uncertainty on the outcome, given a special choice of the decision
maker, must be taken account of. A well-established way to represent uncer-
tainty is by using a stochastic model. If this approach is chosen, the objective
function of the optimization problem under consideration gets dependent not
only on the decision, but on a random influence as well; in other word, it gets a
random variable. The aim is then to optimize a specific functional of this ran-
dom variable. Usually, this functional is the expected value; e.g., if the objective
function represents cost, then the quantity to be minimized can be the expected
cost. (Particular applications of risk theory, especially in financial engineering,
also consider other functionals, e.g. the variance of the objective. We do not deal
with this situation here.)

In some formally relative simple stochastic models, the expected value of
the objective function can either be represented explicitly as a mathematical
expression, or at least be easily computed numerically to any desired degree of
accuracy. Then, the solution of the stochastic optimization problem is not essen-
tially different from that of a deterministic optimization problem; the stochastic
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structure is hidden in the representation of the expected objective function, and
exact or heuristic techniques of combinatorial optimization can be used. The
situation changes if it is only possible to determine estimates of the expected ob-
jective function by means of sampling or simulation. For example, consider the
single machine total tardiness problem, an NP-hard sequencing problem (see Du
and Leung [8]): n jobs have to be scheduled on a single machine, each job has a
processing time and a due date, and the objective is to minimize the sum of the
tardiness values, where tardiness is defined as the positive part of the difference
between completion time and due date. Although the formula for the objective in
the deterministic case is simple, no closed-form expression for the expected total
tardiness in the case where the processing times are random variables (following
a given joint distribution) is known, and its numerical computation would be
very complicated and time-consuming. However, a relatively straightforward ap-
proach for approximating the expected total tardiness is to draw a sample of ran-
dom scenarios and to take the average total tardiness over these scenarios as an
estimate. Examples for other problems where the same approach seems promis-
ing are stochastic vehicle routing problems (see, e.g., Bertsimas and Simchi-Levi
[3]), emergency planning based on simulation (Bakuli and Smith [2]), facility
location problems involving queuing models (Marianov and Serra [18]), project
financing with uncertain costs and incomes (Norkin, Ermoliev and Ruszczynski
[19]), manpower planning under uncertainty (Futschik and Pflug [9]), or activity
crashing using PERT (Gutjahr, Strauss and Wagner [16]).

For the approximate solution of hard deterministic combinatorial optimiza-
tion problems, several metaheuristics have been developed. One of these meta-
heuristics with a currently rapidly growing number of applications is Ant Colony
Optimization (ACO), rooted in work by Dorigo, Maniezzo and Colorni [7] at the
beginning of the nineties and formulated more recently as a metaheuristic by
Dorigo and DiCaro [6]. Like some other metaheuristics, ACO derives its basic
idea from a biological analogy; in the case of ACO, the food-searching behavior
of biological ant colonies is considered as an optimization process, and from this
metaphor, strategies for solving a given combinatorial optimization problem by
simulating walks of “artificial ants” are derived. It has been shown that certain
ACO variants have the favorable property that the intermediate solutions found
by the system converge to the globally optimal solution of the problem (see
[12]–[14]).

The aim of the present investigation is to develop an ACO algorithm that
is able to treat the more general case of a stochastic combinatorial optimization
problem, using the generally applicable sampling approach described above. As
in the deterministic case, guarantees on the convergence to the optimal solution
are highly desirable. It turns out that such a convergence result is indeed pos-
sible for the algorithm presented here. It will be argued that, contrary to most
convergence results for metaheuristics for deterministic problems, our algorithm
can be recommended for practical use in an unchanged form, i.e., with the same
parameter schedule as assumed for obtaining the convergence result.
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Whereas for other metaheuristic approches, extensions to stochastic problems
have already been studied intensely (see, e.g., Arnold [1] for Evolutionary Strate-
gies or Gutjahr and Pflug [15] for Simulated Annealing), the research on ACO
algorithms for stochastic problems is currently only at the very beginning. An
interesting first paper has been published by Bianchi, Gambardella and Dorigo
[4], it concerns the solution of the probabilistic travelling salesman problem.
Nevertheless, the approach chosen in [4] is tailored to the specific problem un-
der consideration, and it depends on the availability of a closed-form expression
of the expected objective function value. The algorithm presented here has a
considerably broader range of application.

We think that ACO is especially promising for problems of the considered
type for three reasons: First, it works with a “memory” (the pheromone trails,
see below) which effects a certain robustness against noise; this is a common
feature with Evolutionary Strategies and Genetic Algorithms, but different from
Simulated Annealing or Tabu Search. Secondly, also problems with a highly
constrained solution space (e.g., permutation problems) can be encoded in a
natural way. Third, problem-specific heuristics can be incorporated to improve
the performance. The two last issues seem to give the ACO approach a specific
advantage in the field of highly constrained combinatorial optimization.

2 Stochastic Combinatorial Optimization Problems

We deal with stochastic combinatorial optimization problems of the following
general form:

Minimize F (x) = E (f(x, ω))

s.t. x ∈ S. (1)

Therein, x is the decision variable, f is the (deterministic) objective function,
ω denotes the influence of randomness (formally: ω ∈ Ω, where (Ω,Σ, P ) is
the probability space specifying the chosen stochastic model), E denotes the
mathematical expectation, and S is a finite set of feasible decisions.

We need not to assume that E (f(x, ω)) is numerically computable, since it
can be estimated by sampling: Draw N random scenarios ω1, . . . , ωN indepen-
dently from each other. A sample estimate is given by

F̃ (x) =
1

N

N
∑

ν=1

f(x, ων) ≈ E (f(x, ω)). (2)

Obviously, F̃ (x) is an unbiased estimator for F (x). For example, in the single ma-
chine total tardiness problem mentioned in Section 1, N arrays, each consisting
of n random processing times for job 1 to n according to the given distribu-
tion(s), can be generated from independent random numbers. For each of these
arrays, the total tardiness of the considered schedule (permutation) x can be
computed. The average over the N total tardiness values is the sample estimate
F̃ (x) of F (x).
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Let us emphasize that, contrary to its deterministic counterpart, problem (1)
can be nontrivial already for a very small number |S| of feasible solutions: Even
for |S| = 2, we obtain, except if F (x) can be computed directly, a nontrivial
statistical hypothesis testing problem (see [19]).

3 Ant Colony Optimization

For the sake of a clearer understanding of the algorithm given in the next section,
we recapitulate the main ideas of ACO by presenting one particular ACO al-
gorithm, GBAS (see [12]), designed for deterministic problems. GBAS has been
chosen since it is also the kernel of the algorithm S-ACO in Section 4.

Essential general features of ACO are the following:

– Solutions are constructed randomly and step-by-step.
– Construction steps that have turned out as part of good solutions are favored.
– Construction steps that can be expected to be part of good solutions are

favored.

In GBAS (Graph-Based Ant System), the given problem instance is encoded by
a construction graph C, a directed graph with a distinguished start node. For
sequencing problems as the TSP or the single-machine total tardiness problem
mentioned above, the construction graph is essentially a complete graph with the
items to be scheduled as nodes. For problems with other combinatorial structures
(e.g., subset problems), suitable other graphs are used.

The stepwise construction of a solution is represented by a random walk in
the construction graph. In this walk, each node is visited at most once, already
visited nodes are “tabu” (infeasible). There may also be additional rules defining
particular nodes as infeasible after a certain partial walk has been traversed.
When there is no feasible unvisited successor node anymore, the walk stops and
is decoded as a complete solution for the problem.

The encoding must be such that each walk that is feasible in the sense above
corresponds to exactly one feasible solution. (Usually, also the reverse holds, but
we do not make this to an explicit condition.) Since, if the indicated condition
is satisfied, the objective function value is uniquely determined by a feasible
walk, we may denote a walk by the same symbol x as a decision or solution and
consider S as the set of feasible walks.

When constructing a walk in the algorithm, the probability pkl to go from a
node k to a feasible successor node l is chosen as proportional to τkl ·ηkl(u), where
τkl is the so-called pheromone or trail level, a memory value storing how good
step (k, l) has been in previous runs, and ηkl(u) is the so-called attractiveness or
visibility, a pre-evaluation of how good step (k, l) will presumably be (e.g., the
reciprocal of the distance from k to l in a TSP). ηkl(u) is allowed to depend on the
given partial walk u up to now. This pre-evaluation is done in a problem-specific
manner. Pheromone initialization and update is performed as follows:

Pheromone initialization: Set τkl = 1/m, where m is the number of arcs of
the construction graph.
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Pheromone update: First, set, for each arc, τkl = (1− ρ)τkl, where ρ is a so-
called evaporation factor between 0 and 1. This step is called evaporation. Then,
on each arc of the best walk x̂ found up to now, increase τkl by ρ /L(x̂), where
L(x) denotes the length of walk x, defined as the number of arcs on x. Thus, the
overall amount of pheromone remains equal to unity. This step reinforces the
arcs (partial construction steps) of already found good solutions.

Random walk construction and pheromone update are iterated. Instead of a
single walk (“one ant”), s walks (s > 1) are usually constructed sequentially or,
in parallel implementations, simultaneously (“s ants”).

Note that for being able to do the pheromone update as described above,
the best found walk up to now has to be stored in a global variable x̂. Each
time a new random walk x is completed, the objective function value of the
corresponding feasible solution is computed and compared with the objective
function value of x̂. If x turns out to be better than ŵ, the walk stored in x̂ is
replaced by x.

4 Extension of the algorithm to stochastic problems

We present now an extension S-ACO of the algorithm GBAS of the last section
to the case of the stochastic optimization problem (1). S-ACO leaves the basic
procedure largely unchanged, but modifies the pheromone-update subprocedure
by introducing a stochastic test whether the solution stored as the current best
one should still be considered as optimal.

In the pseudo-code formulation below, we write τkl(n) instead of τkl in order
to denote the dependence on round number n; the same for pkl(n). For τmin(n),
see the comments after the procedure.

Feasibility of a continuation (k, l) of a partial walk u ending with node k
is defined as in Section 3: The continuation (k, l) is feasible if node l is not yet
contained in u, and none of the (eventual) additional rules specifies l as infeasible
after u has been traversed.

procedure S-ACO {
do pheromone-initialization;
for round n = 1, 2, . . . {

for ant σ = 1, . . . , s {
set k, the current position of the ant, equal to the start node of C;
set u, the current walk of the ant, equal to the empty list;
while (a feasible continuation (k, l) of the walk u of the ant exists) {
select successor node l with probability pkl(n), where

pkl(n) =

{

0, if (k, l) is infeasible,

τkl(n) ηkl(u) /
(

∑

(k,r) τkr(n) ηkr(u)
)

, otherwise,

the sum being over all feasible (k, r);
set k = l, and append l to u;

}
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set xσ = u;
}
from {x1, . . . , xs}, select a walk x;
do S-pheromone-update(x, n); // see below

}
}

procedure S-pheromone-update(x, n) {
compute estimate

F̃ (n) =
1

Nn

Nn
∑

ν=1

f(x, ων)

by applying Nn independent sample scenarios ων to x;
if (n = 1) {
set x̂ = x;
set F̂ (n) = F̃ (n);

}
else {
compute estimate

F̂ (n) =
1

Nn

Nn
∑

ν=1

f(x̂, ω′

ν)

by applying Nn independent sample scenarios ω′

ν to x̂;
if (F̃ (n) < F̂ (n))
set x̂ = x;

}
set, with L(x) denoting the length of walk x,

τkl(n+ 1) :=

{

max ((1− ρ) τkl(n) + ρ /L(x̂), τmin(n)), if (k, l) ∈ x̂,
max ((1− ρ) τkl(n), τmin(n)), otherwise;

(3)

}

Comments:

The essential difference to the deterministic case is that in the stochastic
case, it is not possible anymore to decide with certainty whether a current solu-
tion x is better than the solution currently considered as the best found, x̂, or
not. This can only be tested by statistical sampling, which happens in the spe-
cific pheromone update subprocedure used here, S-pheromone-update. Even the
result of this test can be erroneous, due to the stochastic nature of all objective
function evaluations, i.e., the test yields the correct comparison result only with
a certain probability.

For the same reason, it is not even possible to decide which ant has, in the
current round, produced the best walk. The procedure above prescribes that one
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of the s produced walks is selected, according to whatever rule. A promising way
to do that would be to evaluate each xσ at a random scenario drawn specifically
for this round and to take x as the walk with best objective value.

The first part of the subprocedure S-pheromone-update compares the solu-
tion x selected in the present round with the solution considered currently as the
best, x̂. This is done by determining sample estimates for both solutions (prac-
tically speaking: by estimating the expected costs of both solutions by means
of Monte-Carlo simulation with Nn runs each). Scenarios ω′

ν have to be drawn
independently from scenarios ων (i.e., the simulation runs have to be executed
with two independent series of random numbers). The winner of the comparison
is stored as the new x̂. The question which sample size Nn should be chosen in
round n will be dealt with in the next section.

In the second part of the subprocedure, pheromone update is performed es-
sentially in the same way as described in Section 3, but with an additional
feature: If the computed pheromone value τkl(n) would fall below some prede-
fined lower bound τmin(n), we set τkl(n) = τmin(n). (The idea of using lower
pheromone bounds in ACO is due to Stützle and Hoos [20], [21]). Again, the
question how τmin(n) should be chosen in dependence of n will be treated in the
following section.

The computation of the attractiveness values ηkl(u) needs some explana-
tion. As mentioned, these values are obtained from a suitable problem-specific
heuristic. Although, in principle, one could work with “zero-information” attrac-
tiveness values, all set equal to a constant, the choice of a good attractiveness
heuristic will improve the performance of the algorithm considerably. In the
stochastic case, there is the difficulty that certain variables possibly used by
such a heuristic are not known with certainty, because they depend on the ran-
dom influence ω. This difficulty can be solved either by taking the expected values
(with respect to the distribution of ω) of the required variables as the base of
the attractiveness computation (in most stochastic models, these expected val-
ues are directly given as model parameters), or by taking those variable values
that result from a random scenario ω drawn for the current round. Presumably,
both will perform much better than applying zero-information attractiveness.

5 Convergence

For the validity of the algorithm S-ACO presented in Section 4, we are able to
give a strong theoretical justification: It is possible to prove that, under rather
mild conditions, the current solutions produced by the algorithm converge with
probability one to the globally optimal solution. In the sequel, we first present
and then discuss these conditions.

(i) The optimal walk x∗ is unique.
(ii) The function f(x, ων) observed at random scenario ων can be decomposed

in expected value and error term as follows:

f(x, ων) = f(x) + εxν ,
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where f(x) = E (f(x, ω)), εxν is normally distributed with mean 0 and vari-
ance (σ(x))2, and all error variables εxν are stochastically independent.

(iii) The attractiveness values ηkl(u) satisfy

ηkl(u) > 0 for all prefices u of x∗ and for all (k, l) on x∗.

(iv) The lower pheromone bound is chosen as

τmin(n) =
cn

log(n+ 1)

with limn→∞ cn > 0. (E.g., τmin(n) = c/ log n for some c > 0 fulfills the
condition.)

(v) The sample size Nn grows at least linearly in n, i.e., Nn ≥ C · n for some
constant C > 0.

Condition (i) is in some sense the strongest of the four conditions, but it
can probably be removed along the same lines as the corresponding condition
in [14] for the deterministic special case. Also if this should not be the case, a
negligible change of the objective function (e.g., adding ε · i(x), where i(x) is the
index of solution x according to some order, and ε is sufficiently small) makes
(i) satisfied.

As to Condition (ii), it should be observed that it is always possible to decom-
pose a random variable f(x, ω) with existing expected value into this expected
value and an error term. That the error terms are normally distributed is not
a very restrictive assumption, since in S-ACO, the observations f(x, ων) are al-
ways used as independent terms in the sample estimate (2), where they produce
(after suitable normalization and for large sample size Nn) an approximately
normally distributed random variable by the central limit theorem, so it does
not make an essential difference if they are assumed as normally distributed from
the beginning. If one wants to get rid of the assumption of normally distributed
error terms, one can also apply stochastic dominance arguments, as, e.g., in [15]
for the convergence of stochastic Simulated Annealing. By independent simu-
lation runs each time a value f(x, ων) is required, the condition on stochastic
independence of the error terms can easily be made satisfied.

Condition (iii) is very weak, since it is only violated if the problem-specific
attractiveness values have been chosen in such an inappropriate way that the
optimal walk x∗ is blocked by them a priori.

Condition (iv) is easy to satisfy.
Also Condition (v) makes, in general, no problems (cf. Remark 1 after the

theorem below).

Theorem 1. If conditions (i) – (v) are satisfied, then for the currently best
found walk x̂(n) in round n, for the pheromone values τkl(n) in round n and for
the probability Pσ(n) that some fixed considered ant σ traverses the optimal walk
x∗ in round n, the following assertions hold:

lim
n→∞

x̂(n) = x∗ with probability 1, (4)
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lim
n→∞

τkl(n) =

{

1/L(x∗), if (k, l) on x∗,
0, otherwise

with probability 1, (5)

lim
n→∞

Pσ(n) = 1. (6)

In informal terms: On the indicated conditions, the solutions subsequently
produced by S-ACO tend to the (globally) optimal solution, pheromone concen-
trates on the optimal walk and vanishes outside, and the current walks of the
ants concentrate on the optimal walk.

We prove Theorem 1 with the help of five lemmas. In the proofs, we use the
following notational conventions:

– x(n) is the walk selected in round n, i.e., the first parameter given to the
procedure S-pheromone-update when it is called in round n,

– x̂(n) is the current value of x̂ before the update of x̂ in the else-branch of
S-pheromone-update in round n. In particular: x̂(1) = x(1).

In all five lemmas, we always assume implicitly that conditions (i) – (v) are
satisfied.

Lemma 1. For each fixed positive integer n1, there exists with probability one
an integer n = n(ω) ≥ n1, such that x∗ is traversed by all ants in round n.

Proof. Because of the lower pheromone bound as given by condition (iv),

τkl(n) ≥ τmin(n) =
cn

log(n+ 1)
≥ c

2 log(n+ 1)
(7)

for some c > 0 and for n ≥ n0 with some n0 ∈ IN. By condition (iii),

ηkl(u) ≥ γ > 0 for all prefices u of x∗ and for all (k, l) on x∗,

since the optimal walk x∗ contains only a finite number of arcs. Moreover,
ηkl(u) ≤ Γ for some Γ ∈ IR, since there is only a finite number of feasible
paths. Therefore, for the probability that the optimal walk x∗ is traversed by
a fixed ant in round n, the estimate below is obtained, where uk(x

∗) denotes
the prefix of walk x∗ ending with node k (note that the sum of the pheromone
values is unity):

∏

(k,l)∈x∗

pkl(n, uk(x
∗)) =

∏

(k,l)∈x∗

τkl(n) ηkl(uk(x
∗))

∑

(k,r) τkr(n) ηkr(uk(x
∗))

≥
∏

(k,l)∈x∗

γ

Γ

τkl(n)
∑

(k,r) τk,r(n)
≥

∏

(k,l)∈x∗

γ

Γ
τkl(n)

≥
∏

(k,l)∈x∗

γc

2Γ log(n+ 1)
=

(

γc

2Γ log(n+ 1)

)L(x∗)

. (8)
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Obviously, estimation (8) holds as well, if the l.h.s. refers to the probability of
traversing x∗ conditional on any event in round 1 to n− 1.

Now, let Bn denote the event that x∗ is traversed in round n by all ants.
Evidently,

¬Bn1
∧ ¬Bn1+1 ∧ . . .

is equivalent to the statement that no round n ≥ n1 exists such that x∗ is
traversed in round n by all ants. We show that

Prob (¬Bn1
∧ ¬Bn1+1 ∧ . . .) = 0. (9)

This is seen as follows. With n′ = max(n0, n1), the last probability is equal to

Prob (¬Bn1
) · Prob (¬Bn1+1 | ¬Bn1

) · Prob (¬Bn1+2 | ¬Bn1
∧ ¬Bn1+1) · . . .

≤
∞
∏

n=n′

Prob (¬Bn | ¬Bn1
∧ ¬Bn1+1 ∧ . . . ∧ ¬Bn−1)

≤
∞
∏

n=n′

[

1−
(

γc

2Γ log(n+ 1)

)L(x∗)·s
]

because of (8) and the remark thereafter. The logarithm of the last expression
is

∞
∑

n=n′

log

(

1−
(

γc

2Γ log(n+ 1)

)L(x∗)·s
)

≤ −
∞
∑

n=n′

(

γc

2Γ log(n+ 1)

)L(x∗)·s

= −∞,

since
∑

n(log n)
−λ diverges for λ > 0. It follows that (9) holds, which proves the

lemma.
ut

Lemma 2. Conditionally on the event that x̂(n) = x∗ and x(n) 6= x∗,

Prob(F̃ (n) < F̂ (n)) ≤ g(n),

and conversely, conditionally on the event that x̂(n) 6= x∗ and x(n) = x∗,

Prob(F̂ (n) < F̃ (n)) ≤ g(n),

where g(n) = φ(−C√n) with φ denoting the distribution function of the standard
normal distribution, and C is a constant only depending on

σ = min
x∈S

σ(x) (10)

(cf. condition (ii)) and on

δ = min{F (x)− F (x∗) | x 6= x∗} > 0 (11)
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(cf. condition (i)). In other words: The probability that x∗ looses a comparison
against a suboptimal solution is always smaller or equal to g(n).

Proof. Because of condition (ii) and by definition of F̃ (n),

F̃ (n) =
1

Nn

Nn
∑

ν=1

f(x, ων)

is normally distributed with mean F (x) and

var(F̃ (n)) =
1

N2
n

·Nn · (σ(x))2 =
(σ(x))2

Nn

.

For the same reason, F̃ (n) is normally distributed with mean F (x̂) and

var(F̂ (n)) =
(σ(x̂))2

Nn

,

and F̃ (n) and F̂ (n) are stochastically independent. Hence F̃ (n) − F̂ (n) is nor-
mally distributed with mean F (x)− F (x̂) and variance

(σ(x))2

Nn

+
(σ(x̂))2

Nn

≤ 2
σ2

Nn

≤ 2σ2

an

with a > 0 given by condition (v), and σ given by (10).
For x̂(n) = x∗, this yields:

Prob (F̃ (n)− F̂ (n) < 0) = φ

(

− F (x)− F (x∗)
√

(σ(x))2/Nn + (σ(x∗))2/Nn

)

≤ φ

(

− δ
√

2σ2/an

)

= φ(−C
√
n)

with C = δ
√
a / (

√
2σ) > 0.

The second part of the assertion follows immediately because of the symmetry
in the computation of F̂ (n) and F̃ (n). ut

Lemma 3. For the function g(n) defined in Lemma 2,

lim
n1→∞

∞
∏

n=n1

(1− g(n)) = 1 (12)

holds.

Proof. Because of C > 0, we have 0 < g(n) < 1. Taking logarithm, we obtain
that (12) is equivalent to

lim
n1→∞

∞
∑

n=n1

(− log(1− g(n)) = 0, (13)
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where each term in the sum is positive. Because of − log(1− x) ≤ x for all x, a
sufficient condition for (13) being satisfied is

lim
n1→∞

∞
∑

n1=1

g(n) = 0. (14)

Let ϕ(x) = φ′(x) denote the density function of a standard normal distribution.
By elementary calculations, it is seen that φ(x) ≤ ϕ(x)/(−x) for x < 0. Therefore
one obtains

∞
∑

n=1

g(n) =

∞
∑

n=1

φ(−C
√
n) ≤

∞
∑

n=1

ϕ(−C√n)
C
√
n

≤ 1

C

∞
∑

n=1

ϕ(−C
√
n) =

1

C
√
2π

∞
∑

n=1

exp

(

−C
2n

2

)

.

The function exp
(

−C2n
2

)

is decreasing in n, so

∞
∑

n=1

exp

(

−C
2n

2

)

≤
∫

∞

0

exp

(

−C
2x

2

)

dx <∞.

Thus,
∑

∞

n=1 g(n) < ∞. Since g(n) > 0, this proves (14) and therefore also the
lemma. ut

Lemma 4. With probability one, there is an n2 = n2(ω) such that x̂(n) = x∗

for all n ≥ n2.

Proof. Let n0 be the index introduced in the proof of Lemma 1, such that (7)
holds for all n ≥ n0. We choose n1 ≥ n0 in such a way that

∞
∏

n=n1

(1− g(n)) ≥ 1− ε,

which is possible by Lemma 3. Let Gn denote the event that in round n, the
optimal solution x∗ is taken for the comparison in S-pheromone-update, either
as the currently selected solution x(n), or as the current best-solution candidate
x̂(n), or both, and that x∗ wins the comparison, such that x̂(n+1) = x∗. Event
Gn occurs in two possible situations:

(a) x(n) = x̂(n) = x∗. Then automatically (i.e., with probability 1) x̂(n + 1) =
x∗.

(b) x(n) 6= x̂(n), and either x(n) = x∗ or x̂(n) = x∗. In this situation, by Lemma
2, x∗ wins the comparison with a probability of at least 1 − g(n), with the
effect that x̂(n+ 1) = x∗.

Furthermore, let Dn denote the event that round n is the first round with n ≥ n1

where x∗ is traversed by all ants. With the notation in the proof of Lemma 1,

Dn = ¬Bn1
∧ ¬Bn1+1 ∧ . . . ∧ ¬Bn−1 ∧Bn.
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Consider two arbitrary fixed rounds n2 and n with n1 ≤ n2 ≤ n. For n > n2,
the event Dn2

∧Gn2
∧Gn2+1 ∧ . . . ∧Gn−1 implies that x̂(n) = x∗, hence

Prob (Gn |Dn2
∧Gn2

∧Gn2+1 ∧ . . . ∧Gn−1) ≥ 1− g(n) (15)

by the consideration above. For n = n2, on the other hand, the event Dn2
∧

Gn2
∧ . . . ∧ Gn−1 reduces to Dn2

, which implies x(n2) = x∗, such that also in
this case, (15) holds by the consideration above. Therefore,

Prob (Gn2
∧Gn2+1∧. . . |Dn2

) =

∞
∏

n=n2

Prob (Gn |Dn2
∧Gn2

∧Gn2+1∧. . .∧Gn−1)

≥
∞
∏

n=n2

(1− g(n)) ≥
∞
∏

n=n1

(1− g(n)) ≥ 1− ε.

The events Dn1
, Dn1+1, . . . are mutually exclusive, and by Lemma 1,

Prob (Dn1
) + Prob (Dn1+1) + . . . = 1.

Using this, we obtain: The probability that there is a round n2 ≥ n1, such that
round n2 is the first round after round n1 where x∗ is traversed by all ants and
x̂(n) = x∗ for all n ≥ n2, is given by

∞
∑

n2=n1

Prob (Dn2
∧Gn2

∧Gn2+1 ∧ . . .)

=

∞
∑

n2=n1

Prob (Gn2
∧Gn2+1 ∧ . . . |Dn2

) · Prob (Dn2
)

≥ (1− ε)

∞
∑

n2=n1

Prob (Dn2
) = 1− ε. (16)

Since the l.h.s. of (16) does not depend on ε and ε > 0 is arbitrary, the considered
probability must be exactly 1, which proves the assertion. ut

Lemma 5.With probability one, τkl(n)→ 1/L(x∗) for (k, l) ∈ x∗ and τkl(n)→ 0
for (k, l) /∈ x∗, as n→∞.

Proof. By Lemma 4, there is with probability one an integer n2 such that
x̂(n) = x∗ for all n ≥ n2.

(i) Let (k, l) ∈ x∗. In round n2 and all subsequent rounds, (k, l) is always
reinforced. Set L = L(x∗) for abbreviation. A lower bound for τkl(n) is obtained
by omitting the rule that τkl(n+1) is set equal to τmin(n) if it would otherwise
decrease below τmin(n) by evaporation. Based on this lower bound estimation,
we get by induction w.r.t. t = 1, 2, . . . that

τkl(n2 + t) ≥ (1− ρ)t τkl(n2) +
ρ

L

t−1
∑

i=0

(1− ρ)i. (17)
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As t→∞, the expression on the r.h.s. of (17) tends to

ρ

L

∞
∑

i=0

(1− ρ)i =
1

L
.

Therefore, for sufficiently large t, τkl(n2 + t) > 1/(2L). On the other hand,
τmin(n) → 0, hence τmin(n2 + t) < 1/(2L) for sufficiently large t, which means
that updates by setting τkl(n+ 1) equal to τmin(n) do not happen anymore for
large values of t. Thus, for some t0 and integers t′ ≥ 1, we find in analogy to
(17) (but now with equality instead of inequality) that

τkl(n2 + t0 + t′) = (1− ρ)t
′

τkl(n2 + t0) +
ρ

L

t′−1
∑

i=0

(1− ρ)i,

and the expression on the r.h.s. tends to 1/L as t′ →∞.
(ii) Let (k, l) /∈ x∗. Then (k, l) is never reinforced anymore in round n2 and

any subsequent round. Thus the pheromone on (k, l) decreases geometrically
until the lower bound τmin is reached. Since τmin → 0 as well, we have τkl(n)→ 0
as n→∞. ut

Proof of Theorem 1. The first two assertions of the theorem, eqs. (4) and (5),
are the assertions of Lemma 4 and Lemma 5, respectively. The third assertion,
eq. (6), is seen as follows: From (5), we obtain for (k, l) ∈ x∗ and prefix u of x∗

that, with δkr = 1 if k = r and δkr = 0 otherwise,

lim
n→∞

pkl(n, u) =
1 · ηkl(u)

∑

(k,r) δkr · ηkr(u)
= 1.

Therefore also the probability that a fixed ant σ traverses x∗, which is given by

Pσ(n) =
∏

(k,l)∈x∗

pkl(n, u),

tends to unity as n→∞. ut

Remark 1. In Gutjahr and Pflug [15], a similar convergence result has been
shown for a modification of the Simulated Annealing metaheuristic designed for
the application to stochastic optimization problems. There, however, a growth
of the sample size Nn of order Ω(n2γ) with γ > 1 was required for obtaining the
convergence property. The growth of order Ω(n) required in Theorem 1 is much
more favorable. While runtime limits are reached soon when the sample size is
increased faster than with quadratic order, a linear increment usually does not
impose severe practical restrictions.

Remark 2. For the solution of deterministic combinatorial optimization prob-
lems by metaheuristic approaches, some convergence results exist. For Simulated
Annealing, e.g., it has been demonstrated by Gelfand and Mitter [11] and by Ha-
jek [17] that by applying a suitable “cooling schedule”, one can achieve that the
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distribution of the current solution tends to the uniform distribution on the set
of globally optimal solutions. A related result for two particular ACO algorithms
(both of the GBAS-type outlined above) has been obtained in [13].

Nevertheless, it is clear that when applied to NP-hard problems, these algo-
rithms cannot overcome the general limitations demonstrated by NP-complete-
ness theory: If an algorithm is designed in such a way that it is guaranteed
to find the optimal solution of any (or even: some) NP-hard problem, a price
must be paid: runtime will get prohibitive for larger problem instances. For ex-
ample, the theoretical cooling schedule assumed in the convergence results for
Simulated Annealing is too slow to be well-suited for practical applications; it
has to be modified towards faster cooling, which, on the other hand, introduces
the risk of premature convergence to suboptimal solutions. (This dilemma has
sometimes been formulated under the term of “No-Free-Lunch Theorems”.) For
this reason, algorithms with theoretical guarantee of convergence to optimality
are sometimes considered as not practicable.

It is interesting to see that this restriction needs not to hold for the algorithm
S-ACO presented here: Of course, when applied to large instances of problems
that are NP-hard even in the deterministic boundary case, S-ACO is subject
to the same limitations as the deterministic-problem algorithms converging to
optimality. Very large problem instances, however, are not typical for stochastic
combinatorial problems in current practice. As argued at the end of Section 2,
such problems are already nontrivial in the case of small feasible sets, say, with
a few hundred elements or even less. For such problem instances, the algorithm
S-ACO can be implemented without any modification; also the linear increase of
the sample size will not lead to prohibitive runtime behavior.

6 Modifications

The algorithm S-ACO can be modified in several different ways. Let us only
indicate one possible line of extension:

Our procedure S-pheromone-update follows a “global-best” reinforcement
strategy (see Gambardella and Dorigo [10]): the arcs on that walk that is con-
sidered as the best found up to now (in any of the previous rounds) are rein-
forced. An alternative strategy is the classical pheromone update of Ant System
[7], where the amount of reinforcement is chosen proportional to the “fitness” of
the solution, or the rank-based pheromone update, introduced by Bullnheimer,
Hartl and Strauss [5]: the arcs on the k best walks found in the current round
are reinforced by a pheromone increment proportional to (k − j + 1)/k for the
walk with rank j (j = 1, . . . , k). We shortly outline the rank-based case; the
classical case can be treated analogously. In the stochastic context, one cannot
determine the absolute ranks of the walks, but, as indicated in the Comments in
Section 4, one can evaluate the walks at a random scenario or at a small sample
of random scenarios drawn specifically for this round. In this way, ranks relative
to the current scenarios(s) can be computed. Now, one can choose between two
alternatives:
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(i) Perform S-ACO in two phases: In the first phase, replace in S-pheromone-
update the global-best update rule by rank-based pheromone update
w.r.t. the the currently drawn scenario(s). For this kind of update, sam-
pling for getting the estimates F̃ and F̂ is not required. In the second phase,
start with the pheromone values obtained in the first phase, and perform,
from now on, in S-pheromone-update the (global-best) update rule described
in Section 4.

(ii) Instead of working in two phases, perform pheromone update in each round
by a weighted mix between the global-best update described in Section 4 and
the rank-based update w.r.t. the current scenario(s).

It is likely that the convergence result of Section 5 can be generalized to alter-
native (i) above. A generalization to alternative (ii) is much more difficult; pre-
sumably, convergence to the optimal solution can only be obtained if the weight
for the application of the rank-based update scheme is gradually reduced.

Both alternatives may be advantageous in practice compared with the basic
algorithm, since they allow a broad initial exploration of the solution space (the
results of this “learning” rounds are stored in the pheromone), which can possibly
speed up convergence by guiding the search in later rounds.

7 Conclusion

We have presented a general-purpose algorithm S-ACO applicable to all prob-
lems of one of the most frequent problem type in stochastic combinatorial opti-
mization, namely expected-value optimization under deterministic constraints,
and shown that on specific, rather mild conditions, S-ACO converges with prob-
ability one to the globally optimal solution of the given stochastic optimization
problem. Since the algorithm can usually be applied without the necessity of
tuning parameters from “theoretical” to “practical” schemes and still keeps the
property of convergence to optimality, it might be a promising candidate for
computational experiments in diverse areas of application of stochastic combi-
natorial optimization. Of course, experimental comparisons with other meta-
heuristic algorithms for this problem field, either ACO-based or derived from
other concepts, would be very interesting and could be of considerable practical
value.
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