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Abstract

For stochastic multi-objective combinatorial optimization (SMOCO) problems, the Adaptive
Pareto Sampling (APS) framework has been proposed, which is based on sampling and on
solution of deterministic multi-objective subproblems. We show that when plugging in the
well-known Simple Evolutionary Multiobjective Optimizer (SEMO) as a subprocedure into
APS, ε-dominance has to be used to achieve fast convergence to the Pareto front. Two general
theorems are presented indicating how runtime complexity results for APS can be derived
from corresponding results for SEMO. This may be a starting point for the runtime analysis of
evolutionary SMOCO algorithms.

Keywords: multi-objective optimization, stochastic optimization, combinatorial optimization,
evolutionary algorithm, runtime analysis.

1 Introduction

In the recent years, both the fields of multiobjective combinatorial optimization (MOCO) and of stochas-
tic combinatorial optimization (SCO) have made considerable progress, and numerous articles ap-
peared in these areas. Authors in the MOCO field argue that most real-world problems are char-
acterized by multiple objectives, and authors from SCO emphasize that in real-world situations,
decision makers typically face a smaller or larger degree of uncertainty on parameters on which
the decisions have to be based. If we join these arguments, we arrive at the conjecture that in a very
broad range of applications of decision technology, realistic quantitative models will be character-
ized by the presence of both multiple objectives and uncertainty (the latter represented by stochas-
tic models). This makes it desirable that, in particular, the toolkit for combinatorial optimization
is extended to methods solving stochastic multi-objective combinatorial optimization (SMOCO) prob-
lems. Indeed, problems of this type have been described in diverse areas such as financial engi-
neering (Spronk et al., 2005), production planning (Hnainen et al., 2010), transportation logistics
(Hassan-Pour et al., 2009), supply chain management (Amodeo et al., 2009), health care manage-
ment (Baesler and Sepúlveda, 2001), or project management (Gutjahr and Reiter, 2010).

A general methodology for tackling SMOCO problems has begun to develop only recently. Both
in the MOCO and in the SCO field, evolutionary algorithms (EAs) play an important role, as seen,
e.g., from the surveys (Coello Coello, 2006) for MOCO and (Jin and Branke, 2005; Bianchi et al.,
2008) for SCO. This suggests an application of EAs also to SMOCO.
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Let us give a short review of available approaches for the solution of SMOCO problems. Con-
cerning the multi-objective part, we focus on the solution concept of determining Pareto-optimal
(or: efficient) solutions, which appears to be best-suited for the purposes of a decision maker who
does not want (or is not able) to weigh the different objectives against each other a priori. Ca-
ballero et al. (2004) deal with stochastic multi-objective continuous optimization problems, which
differ from the stochastic multi-objective combinatorial optimization problems investigated in this
paper. Nevertheless, their work is also interesting in our context since they outline the two basic
alternative pathways along which a stochastic multi-objective problem can be attacked: Either it
is reduced, in a first step, to a deterministic counterpart problem, which is then still multi-objective
and can be solved by suitable techniques of multi-objective optimization, or it is first reduced to a
single-objective problem, which is then still stochastic and can be solved by techniques of stochastic
optimization. In the present work, we choose the first alternative—called the “multi-objective”
approach in (Caballero et al., 2004)—, which seems to be the more common in the literature, but
let us mention that also the second alternative—called the “stochastic” approach in (Caballero et
al., 2004)—has been applied in the SMOCO area, e.g., by adopting the quality indicator concept
for scalarizing the given multi-objective problem, see (Basseur and Zitzler, 2006) or (Liefooghe et
al., 2007).

The most frequent approach to the solution of a SMOCO problem consists in using a fixed
sample of random scenarios1 in order to reduce the stochastic (multi-objective) problem to a deter-
ministic (multi-objective) one, and then to apply some exact or metaheuristic technique to obtain
the set of Pareto-optimal solutions w.r.t. the average objective function values over the sample. If
an exact technique is chosen, authors typically apply the so-called ε-constraint method for further
reducing the multi-objective problem version to a series of single-objective ones, and solve the
resulting single-objective combinatorial optimization problems by mathematical programming
(MP) methods. Examples for this solution strategy can be found in (Guillén et al., 2005; Cardona-
Valdés et al., 2011; Franca et al., 2010). Alternatively, it is also possible to apply a metaheuristic to
deal with the multi-objective problem. For an example, see (Claro et al., 2010a; Claro et al.,2010b),
where a multi-objective heuristic hybridizing Tabu Search and Variable Neighborhood Search is
used for this purpose.

Fixed-sample approaches have the limitation that the probability model specified by the drawn
sample scenarios is only an approximation to the original probability model given by the problem
formulation. As a consequence, finally, a changed problem is solved. The changed problem may
considerably differ from the original one especially in a situation where the high computational
effort for solving the resulting MOCO problem only allows the consideration of a relatively small
sample of scenarios, which bears the risk that practically relevant scenarios are not represented
among the chosen scenarios. In the case where the probability model includes events that are
rare but connected with high losses, this may be particularly detrimental. In the area of single-
objective sampling-based stochastic optimization, variable-sample methods have been used as a
possible alternative to fixed-sample methods. Contrary to techniques working with a fixed ran-
domly selected sample, the application of a variable-sample method can be shown to converge,
under suitable conditions, to the solution of the original stochastic optimization problem; see, e.g.,
(Homem-de-Mello, 2003).

Also in the SMOCO field, some papers use variable-sample approaches. Typically, variable-
sample techniques for SMOCO rely on modifications of evolutionary algorithms, especially multi-
objective genetic algorithms such as the NSGA-II algorithm by Deb et al. (2002). Whereas the first
articles of this kind, e.g., (Hughes, 2001; Teich; 2001; Gutjahr, 2005), pursue the variable-sample

1In the stochastic programming literature, a scenario is a specific outcome of a random experiment, see (Birge and
Louveaux, 1997), p. 50.
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idea in a rather empirical way, it has been shown in (Gutjahr, 2009; Gutjahr and Reiter, 2010) that
by a suitable iterative procedure called Adaptive Pareto Sampling (APS) exchanging random sam-
ples from iteration to iteration, convergence of the currently proposed solution set to the exact set
of Pareto-optimal solutions with probability one can be ensured under mild conditions. However,
the mentioned articles do not provide analytical results on the speed of convergence. This topic is
the subject of the present paper.

We shall study an APS version where the Simple Evolutionary Multiobjective Optimizer
(SEMO) by Laumanns et al. (2002b) is used for the solution of the occurring deterministic multi-
objective subproblems. As a performance measure, we shall use the expected runtime until the
exact Pareto front of the SMOCO problem has been found. It will turn out that for obtaining an
efficient algorithmic variant, SEMO has to be modified by including the concept of ε-dominance,
using a sufficiently small value of ε. Our theorems show how available runtime results for SEMO
on MOCO problems can be translated to runtime results for our APS version on corresponding
SMOCO problems. For a recent survey on theoretical analysis of multi-objective evolutionary
algorithms in general and SEMO in particular, the reader is referred to Brockhoff (2011).

The plan of this paper is the following: Section 2 presents the investigated APS algorithm.
Section 3 introduces the analyzed class of SMOCO problems and explains the sampling technique.
In section 4, the way how SEMO is modified by an ε-dominance concept and how it is incorporated
into APS is described. Section 5 derives the general results in expected runtime and provides
examples. The final section 6 gives concluding remarks.

2 Adaptive Pareto Sampling

We focus on the case of two objective functions. However, the algorithm APS described below can
be generalized to more than two objectives in a straightforward way.2 Let a stochastic bi-objective
combinatorial optimization problem

Maximize (F1(x), F2(x)) subject to x ∈ X (1)

with Fi(x) = E(fi(x, ω)) (i = 1, 2) be given, where X is a finite decision space, and ω denotes the
influence of randomness.3 Maximizing the vector of the two objective functions is understood in
the sense of determining the Pareto front of the problem.

We make use of the following customary definitions: For zi = Fi(x) and z′i = Fi(x′) (i =
1, 2; x, x′ ∈ X), x′ dominates x if z′i ≥ zi for i = 1, 2, and z′i > zi for at least one i. In this case,
we write z′ Â z. Furthermore, x is nondominated by some S ⊆ X if there is no x′ ∈ S such that x′

dominates x, and x is efficient (or: Pareto-optimal) if it is nondominated by X . For abbreviation,
we shall write F (x) for the image point (F1(x), F2(x)) ∈ R2 in objective space to which solution
x is mapped by the objective functions. The set X∗ of all efficient solutions is the efficient set; its
image in objective space is the Pareto front F (X∗) = {F (x) |x ∈ X∗}.

The Adaptive Pareto Sampling (APS) framework algorithm has been proposed in (Gutjahr, 2009)
and further investigated in (Gutjahr and Reiter, 2010). Its purpose is to enable the solution of (1)
in the frequently occurring case where the expectation Fi(x) = E(fi(x, ω)) cannot be computed
directly (or only at high computational costs), but has to be estimated by sampling instead. For

2Presumably, also our runtime results in section 5 can be extended to more than two objectives by a rather straight-
forward generalization of the proofs, but we leave this topic outside the scope of the present paper.

3Formally, for each x and i, the function fi(x, ·) is a random variable on a probability space (Ω,A, P ), and ω is
an element of the sample space Ω. Each ω determines a specific realization of the random variables fi(x, ·), i.e., a
scenario; hence the notation fi(x, ω). As customary in the stochastic programming literature, we shall identify ω with
the scenario determined by it (cf. Birge and Louveaux, 1997).
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getting an estimate of E(fi(x, ω)), APS draws s random scenarios ω1, . . . , ωs independently from
each other. Then, the sample average estimate f̄i(x) of Fi(x) is given by

f̄i(x) =
1
s

s∑

ν=1

fi(x, ων) ≈ E(fi(x, ω)). (2)

Evidently, the sample average estimate is an unbiased estimator for Fi(x). An approximation
to the solution of the given problem (1) can be computed by solving a related problem where
the two expectations forming the objective functions are replaced by the corresponding sample
average estimates under a sample of size s. In this way, we obtain the following deterministic
bi-objective problem:

Maximize (f̄1(x), f̄2(x)) subject to x ∈ X. (3)

We call problem (3) the bi-objective sample average approximation (BSAA) problem corresponding to
the original problem (1). The vector ((f̄1(x), f̄2(x)) will shortly written as f̄(x).

In Fig. 1, we present the pseudocode of the APS algorithm. The algorithm is iterative and
works with a current solution set L(k) which is updated from iteration to iteration. In each of these
iterations, first of all a corresponding deterministic BSAA problem is solved in order to obtain a
proposal for the solution set. After that, the elements of the solution of the BSAA problem are
merged with those contained in L(k−1), the elements in the union of both sets are evaluated based
on independent samples for each solution and each objective function, and dominated elements
(w.r.t. the evaluation results) are eliminated. This yields the new solution set. The sample sizes
are controlled by sequences (sk) and (s̄k) of positive integers (k = 1, 2, . . .).

Procedure APS
initialize the solution set L(0) as the empty set;
for iteration k = 1, 2, . . . {

(a) solution proposal:
draw a sample {ω1, . . . , ωsk

} of sk scenarios;
for the drawn sample, determine the Pareto-optimal set S(k) of the BSAA

problem with sample size sk;
(b) solution evaluation:

for each x ∈ L(k−1) ∪ S(k) and each i = 1, 2 {
draw a sample {ω′1, . . . , ω ′̄sk

} of s̄k scenarios;
based on this sample, determine an estimate of Fi(x);

}
obtain L(k) as the set of nondominated solutions in L(k−1) ∪ S(k)

according to the objective function estimates just determined;
}

Fig. 1. Pseudocode of the procedure APS (Adaptive Pareto Sampling).

The determination of the efficient set S(k) in part (a) of APS can either be performed by a
(multi-objective) exact algorithm, e.g., the Adaptive ε-Constraint Algorithm by Laumanns et al.
(2006), or alternatively by a (multi-objective) metaheuristic.

As shown in (Gutjahr, 2009), APS converges under mild conditions with probability 1 to the
efficient set. This extends even to the situation where the deterministic subproblem is only solved
heuristically, provided that the used heuristic possesses a suitable convergence property itself.
The most essential condition is that the sample size s̄k for the solution evaluation part is increased
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sufficiently fast; linear growth is sufficient. In particular cases, convergence can be obtained for
a scheme where the sample size sk for the solution proposal part is kept constant, but to ensure
this, certain problem-specific conditions have to be verified. The problem-specific check can be
dropped and replaced by a mild (random-search type) convergence property of the heuristic for
the solution of the deterministic subproblem, if a scheme is used where also sk is increased, see
(Gutjahr and Reiter, 2010). In the following, we choose the scheme

sk = k, s̄k = mk (k = 1, 2, . . .) (4)

with an integer constant m ≥ 1 .
To give an example of application, let us consider a location problem where out of a set of n

possible locations (nodes) for public facilities, a subset of nodes has to be selected. In each se-
lected node j, a capacitated facility is to be built (“opened”) at a random cost Cj with known
distribution function Φj (j = 1, . . . , n). The facilities provide service for r population nodes. The
demand in population node ρ is a random variable Qρ with a known distribution function Ψρ

(ρ = 1, . . . , r). Suppose that costs and demands in different nodes are independent. From in-
dependent random numbers ω1, . . . , ωn+r uniformly distributed on [0,1], realizations of Cj and
Qρ can be computed by Cj = Φ−1

i (ωj) and Qρ = Ψ−1
ρ (ωn+ρ), respectively. We can consider

ω = (ω1, . . . , ωn+r) as a particular scenario and write Cj = Cj(ω) and Qρ = Qρ(ω). The deci-
sion is given by the vector x = (x1, . . . , xn) where the variable xj takes the value 1 if a facility
in node j is opened and 0 otherwise. As the objective functions, let us consider the expectations
F1(x) and F2(x) of the negative total cost −f1(x, ω) = −∑n

j=1 Cj(ω) xi and of a public benefit
function f2(x, ω) = G(x1, . . . , xn, Q1(ω), . . . , Qr(ω)), respectively, where G builds on the distances
of customers to opened facilities that can serve them under the given capacity restrictions. If a
procedure computing the function G and a random number generator is available, APS can be
applied to solve this problem, based on the BSAA estimates (2). Note that although in this exam-
ple, the expectation F1(x) could also be computed analytically, i.e., without sampling, this may
be very difficult or impossible for the expectation F2(x) since G is typically a complex nonlinear
function.

3 Analyzed Problems and Scenario Sampling

3.1 Considered Problem Class

From now on, the investigation will be restricted to a somewhat more special case of the general
class of problems of the form (1). As the search space X , the set {0, 1}n of binary strings of length n
will be considered. (Of course, the assumption that further constraints are absent, which is also
made in many other works on the analysis of evolutionary algorithms, is rather strong. It should
be noted, however, that by the use of penalty functions, constrained problems can be included in
the present framework as well.) By X∗ ⊆ X , we denote the efficient set. Concerning the influence
of randomness, we assume that the noise terms

ξi(x, ω) = fi(x, ω)− E(fi(x, ω)) = fi(x, ω)− Fi(x) (i = 1, 2; x ∈ X) (5)

are independent. We start with the assumption that the noise terms are normally distributed with
fixed variance σ2:

ξi(x, ω) ∼ N (0, σ2) (i = 1, 2; x ∈ X). (6)

We will then also proceed to situations where the noise terms follow other distributions. The
assumptions above are less restrictive than they look like: Using binary problem encodings is
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standard in applications of evolutionary algorithms, which justifies the special choice of X . The
assumption of independence of the noise terms is w.l.o.g., since dependent noise terms would
leave the optimization problem (1) unchanged.4 If the variances of the noise terms are not equal,
we may replace them by their maximum value σ2, which gives a conservative estimate as long as
upper runtime bounds are investigated. The assumption that the noise distribution is Gaussian,
finally, is suggested by the observation that in the application of APS to a problem of the above
kind, the noise only enters through sample averages over i.i.d. random variables, and if the num-
ber of iterations is large, the sample size k is large as well during later iterations, which, by the
Central Limit Theorem, shows that we do not obtain a completely different situation if we replace
the given noise distribution by a normal distribution.

3.2 Sampling Procedure

Mathematically, the sampling procedure in the solution proposal part of APS can be imagined as
the random choice of a sample {ω1, . . . , ωk} of sk = k independent scenarios where each scenario
ων can also be represented by a [2n × 2] matrix




ξ1(x(1), ων), ξ2(x(1), ων)
. . .
. . .

ξ1(x(2n), ων), ξ2(x(2n), ων)


 (7)

of noise terms assigned to the elements x(1), . . . , x(2n) of X = {0, 1}n. It is clear that in the com-
puter implementation, not all line vectors of the [2n×2] matrix above have to be generated at once
when the νth sample is created: only those line vectors are of interest that correspond to the single
solutions x examined in the current iteration by the (possibly heuristic) solution algorithm for the
deterministic subproblem. These line vectors are generated in the order as they are needed. E.g., if
we would apply random search with ten random solutions to get an approximate solution to the
BSAA problem, we would choose ten random elements x, corresponding to ten lines, and gener-
ate the noise terms only for these ten lines within each of the k matrices.5 The s̄k = mk scenarios
ω̄ν in the solution evaluation part of APS can be represented by analogous matrices.

The objective functions of the BSAA problem are then

f̄i(x) = Fi(x) + ξi(x) (i = 1, 2) (8)

with

ξi(x) =
1
k

k∑

ν=1

ξi(x, ων) (i = 1, 2). (9)

4Of course, dependence could make a difference in the way the sampling is done in the solution proposal part of APS.
However, in order to stay within the premises of the following analysis, we may always replace dependent sampling
by independent sampling, drawing a specific, independent scenario for each x and each i, as it is done in the solution
evaluation part. This may deteriorate the performance of the algorithm, but as we are interested in upper runtime
bounds, this is not a problem.

5In particular, the described procedure implies that if the solution algorithm for the deterministic subproblem ex-
amines one and the same solution x more than once, always the same noise term realizations should be used. For this
purpose, the algorithm has to store the sample average estimates for the already examined solutions in a look-up table.
Such an implementation may be less efficient than one where, if a solution is examined a second time, the noise is eval-
uated by a new independent simulation. For large n, however, the case where an evolutionary search algorithm returns
in a later iteration to a solution that has already been examined before is comparably rare, such that it can be expected
that in terms of the quality evolution of the successively examined solutions, the second implementation variant will
behave very similarly to the variant investigated in this paper.
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For a given sample {ω1, . . . , ωk}, the functions ξi : X → R are well-defined. In the sequel, the
sample error terms ξi(x) will be comprised to the vector ξ(x) = (ξ1(x), ξ2(x)).

4 Incorporating SEMO into APS

4.1 Basic Version

As mentioned in Section 2, any exact or heuristic algorithm for multi-objective combinatorial op-
timization problems can be plugged in into APS for the solution of the BSAA subproblem. In the
following, we shall discuss the use of the well-known SEMO (Simple Evolutionary Multiobjective
Optimizer) algorithm (Laumanns et al., 2002b) for this purpose. The pseudocode of SEMO is pre-
sented in Fig. 2. Therein, f(x) = (f1(x), f2(x)) is the vector of objective function values of solution
x ∈ X , and Â is the dominance relation in objective space defined in Section 2. SEMO uses an
archive P which is initialized by a random solution and successively updated by the addition of
non-dominated mutants and the removal of elements dominated by mutants. In the pseudocode,
the termination criterion is left unspecified; later, we shall use a maximum number of iterations
as a termination criterion. When SEMO is terminated, the current P is taken as the proposed
approximation to the efficient set.

Procedure SEMO
Choose x ∈ X uniformly at random;
P = {x};
loop

choose x ∈ P uniformly at random;
create x′ by flipping a randomly chosen bit of x;
P = P \ {y ∈ P | f(x′) Â f(y)};
if 6 ∃y ∈ P : f(y) Â f(x′) ∨ f(y) = f(x′) then P = P ∪ {x′};

end loop

Fig. 2. Pseudocode of SEMO.

Although the algorithm APS/SEMO obtained by applying SEMO as a subprocedure of APS
“works”, its efficiency is usually rather poor. The reasons can be explained at hand of the following
example:

Example 1. Consider the following stochastic extension of the bi-objective LOTZ (“Leading Ones,
Trailing Zeros”) problem introduced in (Laumanns et al., 2002b). For x = (x1, . . . , xn) ∈ X =
{0, 1}n, problem LOTZ is given by

Maximize LOTZ(x) =




n∑

j=1

j∏

r=1

xr,

n∑

j=1

n∏

r=j

(1− xr)


 . (10)

The first and second objective function is the number of leading ones and the number of trailing
zeros, respectively, in the binary string x. We extend LOTZ to the stochastic bi-objective problem
SLOTZ by adding Gaussian noise: The objectives of SLOTZ are the expectations F1(x) and F2(x)
of the random functions

(f1(x, ω), f2(x, ω)) = LOTZ(x) + (ξ1(x, ω), ξ2(x, ω)) (11)
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with independent noise variables ξ1(x, ω) and ξ2(x, ω) distributed according to (6). Obviously,
F (x) = LOTZ(x). Applying a black-box consideration, it is assumed that the solution algorithm
does not “know” this but has to work based only on the observation of the noisy realization vectors
(f1(x, ω), f2(x, ω)).

An application of APS/SEMO to SLOTZ is inefficient for the following two reasons: Also in the
case where the sample error vectors ξ(x) are very small,

(a) different solutions x and x′ with the same image F (x) = F (x′) in objective space (e.g.,
10110100 and 10100100) usually have different sample average evaluations, which lets the
archive P grow too fast, and

(b) it may easily happen that although x is dominated by x′ (but the points in objective space are
identical in one component), the sample average evaluations of x and x′ are incomparable,
which misleads the search by SEMO.

In order to modify APS/SEMO to an algorithm overcoming these difficulties, we adopt the
idea of ε-dominance, which has also turned out as useful in deterministic multi-objective optimiza-
tion.

4.2 A Variant Based on ε-Dominance

The key idea is to replace—during the execution of the algorithm—the standard dominance rela-
tion Â by an “ε-tolerant” version Âε, but to do this in such a way that for small ε, the efficient set
is nevertheless determined based on the original relation Â. The concept of ε-dominance has fre-
quently been applied in the multi-objective optimization literature; for examples, see (Laumanns
et al., 2002a; Grosan, 2004; Schuetze et al., 2007; Horoba and Neumann, 2008). In this paper, the
following definition will be used (we give reasons below):

Definition 1. Let ε > 0. For two points z and z′ in the objective space R2, we say that

(a) z′ weakly ε-dominates z, written as z′ ºε z, if and only if z′i ≥ zi − ε (i = 1, 2).

(b) z′ is ε-equal to z, written as z′ =ε z, if and only if |z′i − zi| ≤ ε (i = 1, 2).

(c) z′ ε-dominates z, written as z′ Âε z, if and only if z′ ºε z and not z′ =ε z. In other words, z′

ε-dominates z exactly if z′i ≥ zi − ε (i = 1, 2) and ∃i : z′i > zi + ε.

For two points x and x′ in the solution space, ε-dominance or ε-equality holds if it does so for
their respective image points z and z′ in the objective space. For fixed z ∈ R2, we define:

D(z) = {u ∈ R2 |u Â z} (set of points dominating point z),

Dε(z) = {u ∈ R2 |u Âε z} (set of points ε-dominating point z),

Eε(z) = {u ∈ R2 |u =ε z} (set of points ε-equal to z).

Furthermore, we set Hε(z) = Eε(z) ∪ (Dε(z) \ D(z)). Fig. 3 illustrates the sets defined above.
Let us discuss the connections of Definition 1 to the definitions in the literature. The relationºε

is an additive (or “absolute”) version of the multiplicative (or “relative”) definition of ε-dominance
given in (Laumanns et al., 2002a), where z′ is said to ε-dominate z if and only if (1 + ε) · z′i ≥ zi for
all i. In our context, it is more natural to choose the additive version because also noise is assumed
to be additive. Except of a marginal modification, such an additive version has also been used in
(Schuetze et al. 2007). Note that the relationºε relaxes the ordinary definition of dominance. This
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¾-ε ¾-ε
. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .

Fig. 3. Illustration of the sets D(z), Dε(z), Eε(z) and Hε(z) related to Definition 1.

is not true anymore for Âε, i.e., in the case where z′ =ε z is excluded. In this latter case, we obtain
an “indented” dominance region which is similar (but not identical) to that of the ε-dominance
relation used in (Grosan, 2004). At the end of this section, we shall see that the exemption of
z′ =ε z is useful in our context, because it removes one possible source for a too rapid growth of
the archive P in the case of noisy evaluations.

Definition 2. Let M⊆ R2 be a finite set of cardinality larger than one. By

ε∗M = min{|ζi − ζ ′i| > 0 : ζ ∈M, ζ ′ ∈M, i = 1, 2},
we denote the minimal nonzero distance between two points in M in one of the two coordinates.
By the finiteness of M, we have ε∗M > 0.

In our proofs, we shall use the fact that for ε < ε∗M,

Hε(z) ∩M = {z} ∀z ∈M. (12)

This follows immediately from the observation that each point in Hε(z), except z itself, has in
at least one coordinate a strictly positive distance to z that is smaller or equal to ε < ε∗M, and
can therefore not belong to M by definition of ε∗M. An immediate consequence of (12) is that for
ε < ε∗M, also

Eε(z) ∩M = {z} ∀z ∈M, (13)

since Eε(z) ⊂ Hε(z).
It is not difficult to verify that for ε > 0 small enough, ε-dominance coincides with dominance,

and ε-equality coincides with equality:6

Proposition 1. For ε < ε∗M and z, z′ ∈M,

z′ Â z ⇔ z′ Âε z and z′ = z ⇔ z′ =ε z.

Proof. Easy. 2

The modified overall algorithm, which we shall call APS/ε-SEMO, differs from APS/SEMO
by the following simple changes: Each comparison of objective function values via “Â” is replaced

6Observe that contrary to Âε, the relation ºε of Definition 1 does not coincide with ordinary dominance even for
small ε because z does not dominate itself.
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by a comparison via “Âε”, and each comparison of objective function values via “=” is replaced
by a comparison via “=ε”. More precisely, the following two modifications have to be performed:
First, in the solution proposal part of APS, SEMO is replaced by its ε-tolerant version, the algorithm
ε-SEMO shown in Fig. 4. Secondly, also in the solution evaluation part of APS, the trimming, i.e.,
the statement “obtain L(k) as the set of nondominated solutions in L(k−1) ∪ S(k) according to the
objective function estimates just determined”, is now implemented in an ε-tolerant way by the
procedure ε-TRIM described in Fig. 5. Therein, for abbreviation, L(k−1) ∪ S(k) is denoted by X+,
and L(k) is denoted by X−. In both procedures, for f(x), the sample average approximation f̄(x)
of F (x) has to be inserted when they are used within the APS framework.

Procedure ε-SEMO
Choose x ∈ X uniformly at random;
P = {x};
loop

choose x ∈ P uniformly at random;
create x′ by flipping a randomly chosen bit of x;
P = P \ {y ∈ P | f(x′) Âε f(y)};
if 6 ∃y ∈ P : f(y) Âε f(x′) ∨ f(y) =ε f(x′) then P = P ∪ {x′};

end loop

Fig. 4. Pseudocode of ε-SEMO.

Procedure ε-TRIM(X+)
X− = ∅;
for all x ∈ X+

X− = X− \ {y ∈ X− | f(x) Âε f(y)};
if 6 ∃y ∈ X− : f(y) Âε f(x) ∨ f(y) =ε f(x) then X− = X− ∪ {x};

end for all

Fig. 5. ε-tolerant trimming of solution set X+ = L(k−1) ∪S(k) in the solution evaluation part of APS.

Returning to Example 1, we observe that the disadvantages (a) and (b) of APS/SEMO men-
tioned there do not occur anymore with APS/ε-SEMO, as soon as the noise has become small
enough: First, for small noise, sample average evaluations of two different solutions x and x′ with
F (x) = F (x′) are considered as ε-equal, with the consequence that only one of the two solutions
is kept in the archive. Secondly, if x dominates x′ but F (x) and F (x′) are equal in one component,
then for small noise (and small ε), the sample average evaluation of x still ε-dominates that of x′

(cf. Fig. 3).

5 Runtime Analysis

In this section, we turn to the analysis of the expected runtime that is needed until APS/ε-SEMO
proposes a solution set whose image (in objective space) is the entire Pareto front of problem (1),
i.e., until F (P) equals F (X∗). This runtime is called the optimization time. The expected opti-
mization time according to the definition above has been used in several investigations of MOCO
algorithms, see, e.g., (Neumann and Wegener, 2006). Note that the stopping criterion does not
require to find all Pareto-optimal solutions; it is sufficient to find, for each z on the Pareto front, at
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least one solution x with F (x) = z. When this has been achieved, we shortly say that the Pareto
front has been found. This does not mean that the current (disturbed) objective function value es-
timates f(x) coincide with the points on the Pareto front, but only that the Pareto front is covered
with respect to the undisturbed evaluations F (x) of the proposed solutions.

In the theory of evolutionary algorithms, it is customary to use the number of fitness evalu-
ations as a measure for the runtime required by an algorithm. Essentially, we shall follow this
convention, but in our context where fitness approximations are based on random samples, it is
necessary to extend the definition in order to obtain a meaningful measure, since an evaluation
based on a sample of size, say, one million, will certainly require much more computation time
than an evaluation based on a sample of size one. For this reason, the following runtime unit
definition will be applied:

Runtime measure: An approximate objective function evaluation (2) based on sample size s is
assumed to require s time units.

Essentially, Theorem 1 below (which is proven with the help of three lemmas) states that by
passing from the deterministic to the noisy version of the problem, the optimization time is only
increased by a certain factor; this factor is polynomially bounded in important special cases. Be-
fore precisely formulating the result and giving a rigorous proof, let us shortly outline the key
proof ideas.

First, it is shown (Lemma 1) that for ε small enough, function evaluations disturbed by less
than ε/2 will induce an ε-dominance relation between image points that is equivalent to the origi-
nal dominance relation between the image points for undisturbed function evaluations, and anal-
ogously for the ε-equality relation. Thus, if the function evaluation vectors obtained from the
sample averages fall into sufficiently small squares around the exact objective function vectors,
the ε-dominance relation on the noisy problem behaves precisely like the ordinary dominance
relation on the deterministic problem.

Secondly, the following consequence of the increasing sample size used in APS/ε-SEMOit is
shown (Lemma 2 and Corollaries 2–4): The probability that in a given iteration, all function vec-
tor estimates fall into squares of a given size around the exact objective function vectors, can be
bounded from below by certain explicit expressions (tending to one with increasing iteration in-
dex). Note that increasing the sample size in a sample average estimate decreases the probability
of large deviations from the true value.

Furthermore, it is also necessary to show (Lemma 3) that in the solution evaluation part of
APS/ε-SEMO, already found efficient solutions are confirmed, provided that the disturbances by
the sample average estimates are small enough.

In the proof of Theorem 1, finally, the obtained expressions are used to bound the probability
of the “sample success event”, i.e., the event that in a certain iteration, the noisy evaluations do not
lead to a wrong judgement about mutual dominance relations between the currently considered
solutions. The desired bound on the expected runtime is then obtained by adding (i) the time
required to reach an iteration such that in all subsequent iterations, the sample success event has
become likely enough, and (ii) the expected optimization time after this iteration.

In the following, ||x||∞ = max{|x1|, |x2|} denotes the sup-norm, and as usual, the image set
{F (x) ∈ R2 |x ∈ X} is denoted by F (X).

Lemma 1. Let z, z′ ∈ F (X) and u, u′ ∈ R2 with ||z − u||∞ < ε/2 and ||z′ − u′||∞ < ε/2, where
ε < ε∗/2 with ε∗ = ε∗F (X) according to Definition 2. Then

u Âε u′ ⇔ z Â z′ and u =ε u′ ⇔ z = z′.

11



Proof. (a) We start by showing the second equivalence. If z = z′, then

|ui − u′i| ≤ |ui − zi|+ |z′i − u′i| < ε/2 + ε/2 = ε (i = 1, 2)

and hence u =ε u′. Conversely, let z 6= z′. Then, according to the second equivalence of Proposi-
tion 1, z 6=ε′ z′ for ε′ = 2ε < ε∗. Hence there is an i with |zi − z′i| > ε′ = 2ε. Since

2ε < |zi − z′i| ≤ |zi − ui|+ |ui − u′i|+ |u′i − z′i| < |ui − u′i|+ ε,

this implies |ui − u′i| > ε, and therefore u 6=ε u′.
(b) Now we show the first equivalence. Let u Âε u′. Since u Âε u′ and u =ε u′ cannot hold

simultaneously, u Âε u′ implies u 6=ε u′ and hence also z 6= z′ by the already shown second
equivalence of the lemma. We show z Â z′ by contradiction: Assume z Â z′ does not hold.
Because of z 6= z′, this means that either z′ Â z, or z and z′ are incomparable. In both cases, there
is a coordinate i such that z′i > zi. By definition of ε∗ and because of 2ε < ε∗, even z′i > zi +2ε must
hold in this case. It follows that

ui < zi +
ε

2
< z′i −

3ε

2
< u′i +

ε

2
− 3ε

2
= u′i − ε.

However, u Âε u′ entails ui > u′i − ε, which contradicts the just derived inequality.
Conversely, let z Â z′. If z1 > z′1 and z2 > z′2, it follows that zi > z′i + 2ε (i = 1, 2) and thus

ui > u′i + ε (i = 1, 2) analogously as above, so u Âε u′. Now assume that there is an i such that
zi = z′i; w.l.o.g., let i = 1. From z Â z′ we conclude z 6= z′ and thus in particular z2 > z′2 + 2ε. It
follows that u2 > u′2 + ε. Furthermore,

u1 > z1 − ε

2
= z′1 −

ε

2
> u′1 −

ε

2
− ε

2
= u′1 − ε.

In total, we have u Âε u′. 2

Corollary 1. Suppose that for the noise terms in a fixed iteration k of the part solution proposal of
APS, it holds that

||ξ(x)||∞ <
ε

2
∀x ∈ X with ε <

1
2

ε∗F (X).

Then ε-SEMO, applied to the problem with objective function vector f̄ , produces the same se-
quence of mutated solutions x′ and the same sequence of current solution sets P as SEMO, ap-
plied to the problem with objective function vector F , provided that the same (pseudo-)random
numbers for the choice of the initial solutions and the bit mutations are used. In particular, the
runtime of ε-SEMO is then just k times the runtime of SEMO.

Proof. As seen by comparing ε-SEMO with SEMO, it suffices to show that for two solutions x(1)

and x(2),

f̄(x(1)) Âε f̄(x(2)) ⇔ F (x(1)) Â F (x(2)) and f̄(x(1)) =ε f̄(x(2)) ⇔ F (x(1)) = F (x(2)). (14)

According to (8), we have f̄(x) = F (x) + ξ(x), so by assumption, ||F (x) − f̄(x)||∞ < ε/2 with
ε < (1/2) ε∗F (X) for all x ∈ X . Thus, with z = F (x(1)) ∈ F (X), z′ = F (x(2)) ∈ F (X), u = f̄(x(1)) ∈
R2 and u′ = f̄(x(2)) ∈ R2, the conditions of Lemma 1 are satisfied. The first and the second
equivalence of the Lemma translate then immediately into the first and the second equivalence of
(14), respectively. The statement about the runtime follows directly from the equivalent behavior
of SEMO and ε-SEMO in the considered iteration and from our chosen runtime definition, since
in iteration k, the sample size k is applied. 2
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For the sequel, it is convenient to introduce the notation

Qr(z) = {ζ ∈ R2 | ||ζ − z||∞ < r}
for the open square with half side length r > 0 around z. Moreover, let 0 = (0, 0).

Lemma 2 below is a technical auxiliary result, providing a bound for the probability that sam-
ple averages of Gaussian random variables do not deviate “too much” from their means. We shall
apply it later (in Corollaries 2 to 4) to the sample average estimates used in APS.

Lemma 2. For fixed r > 0, i.i.d. random variables ξ
(ν)
i ∼ N (0, σ2) (i = 1, 2; ν = 1, . . . , k), and with

k+ =
2σ2

r2
ln

4σ

r
√

2π
, (15)

the probability

πk = Pr

{(
1
k

k∑

ν=1

ξ
(ν)
1 ,

1
k

k∑

ν=1

ξ
(ν)
2

)
∈ Qr(0)

}

is bounded below by

πk ≥ 1− 4σ

r
√

2πk
exp

(
− r2k

2σ2

)
(16)

for each k ≥ k+.

Proof. With Yi = 1
k

∑k
ν=1 ξ

(ν)
i ∼ N (0, σ2

k ), we find

πk = Pr{|Yi| < r (i = 1, 2)} =

(
1− 2φ

(
−r
√

k

σ

))2

,

where φ(x) denotes the cumulative distribution function of the standard normal distribution.
Since φ(x) ≤ −ϕ(x)/x with ϕ(x) = φ′(x) = (2π)−1/2 exp(−x2/2) for x < 0, one obtains

1− 2φ

(
−r
√

k

σ

)
≥ 1− 2σ

r
√

2πk
exp

(
− r2k

2σ2

)
.

For k ≥ k+, the bound on the r.h.s. is positive, since then

2σ

r
√

2πk
exp

(
− r2k

2σ2

)
≤ 2σ

r
√

2π
exp

(
− r2k

2σ2

)
≤ 2σ

r
√

2π
exp

(
− r2

2σ2

2σ2

r2
ln

4σ

r
√

2π

)
=

1
2
. (17)

Therefore,

πk ≥
(

1− 2σ

r
√

2πk
exp

(
− r2k

2σ2

))2

.

From the last inequality, the statement of the Lemma follows by (1− z)2 ≥ 1− 2z (z ∈ R). 2

Let us now apply Lemma 2 to the solution proposal part of APS by choosing the variables ξ
(ν)
i

as the noise terms ξi(x, ων), such that 1
k

∑k
ν=1 ξ

(ν)
i becomes equal to the error term ξi(x) of the

sample average estimate as given by (9):

Corollary 2. For k ≥ k+, the probability

ηk = Pr {(ξ1(x), ξ2(x)) ∈ Qr(0) ∀x ∈ {0, 1}n}
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that for the solution proposal part of iteration k of APS, the error terms of the sample average
estimates are in Qr(0) for all x ∈ X , is bounded below by

ηk ≥ 1− 2n+2σ

r
√

2πk
exp

(
− r2k

2σ2

)
.

Proof. In the Appendix.

Corollary 3. Let η∗k denote the probability that not only for the solution proposal part of iteration k of
APS, but also for the solution evaluation part of this iteration, the error terms of the sample average
estimates are in Qr(0) for all x ∈ X . Then, for k ≥ k+,

η∗k ≥ 1− 2n+3σ

r
√

2πk
exp

(
− r2k

2σ2

)
.

Proof. In the Appendix.

Corollary 4. For η∗k as in Corollary 3, C ∈ R, and with

k̄0 = k̄0(n) =
⌈

2σ2

r2
max

(
ln

4σ

r
√

2π
, (n + 3) ln 2 + C

)⌉
,

it holds that
η∗k ≥ 1− σ

r
√

2π
exp(−C) ∀k ≥ k̄0.

Proof. In the Appendix.

Lemma 3. If F (X∗) ⊆ F (X+) holds for the efficient set X∗, and if for the error terms of the sample
average estimates in the solution evaluation part of iteration k of APS, the inequalities ||ξ(x)||∞ <
ε/2 ∀x ∈ X with ε < (1/2) ε∗F (X) hold, then the application of ε-TRIM(X+) in this iteration
produces an X− with F (X−) = F (X∗).

Proof. We have to show that after the execution of ε-TRIM, (i) for every z ∈ F (X∗), an element x
with F (x) = z is contained in X−, and (ii) no element y 6∈ X∗ is contained in X−. The proof uses
Lemma 1 in an analogous way as it is used in the proof of Corollary 1.

To verify (i), let z ∈ F (X∗). Because of F (X∗) ⊆ F (X+), there is an element x ∈ X+ with
F (x) = z, so x ∈ X∗ and there is an iteration of ε-TRIM in which x is the current element of X+

to be checked for possible insertion. Because of Lemma 1, f̄(y) Âε f̄(x) for some other solution y
would entail F (y) Â F (x) in contradiction to the efficiency of x. Again by Lemma 1, f̄(y) =ε f̄(x)
entails F (y) = F (x). Therefore, if there is an element y in the current set X− with f̄(y) Âε f̄(x) ∨
f̄(y) =ε f̄(x), then F (y) = F (x). As a consequence, either x is added to X− in this iteration,
or X+ already contains a y with F (y) = F (x) = z. In both cases, F (X−) contains z after the
current insertion trial. It remains to show that the element of X− with image z (let it call it x for
simplicity) will not be removed from X− in any later iteration. A removal of x could only take
place if another element x′ with f̄(x′) Âε f̄(x) would be added. However, by Lemma 1, this would
entail F (x′) Â F (x) and thus contradict the efficiency of x.

To verify (ii), let y 6∈ X∗. Then there is a z ∈ F (X∗) such that z Â F (y). Because of F (X∗) ⊆
F (X+), there is an iteration where an element x with F (x) = z is the current element to be checked
for possible insertion. If in the beginning of this iteration, y is contained in X−, it will be removed
from X−, because f̄(x) Âε f̄(y) by Lemma 1, and x will be inserted instead. In a later iteration, y
cannot be added to X− anymore, because x or an element x′ with F (x′) = F (x) is already in X−,
which prevents the insertion of y. 2
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Now we are in the position to prove our main results, Theorems 1 and 2 below. For a complete
specification of APS/ε-SEMO, we have still to define how many iterations of ε-SEMO are to be
performed in each iteration of APS. In agreement with our general assumption that we can base
our analysis on corresponding results for SEMO on the deterministic (i.e., noise-free) limiting case
of the problem under consideration, we make the mentioned decision dependent on an upper
bound hn for the expected number of function evaluations required by SEMO to find the Pareto
front of a noise-free problem instance of size n: In each iteration of APS, exactly 2hn iterations of
ε-SEMO are executed.

Theorem 1. Let the assumptions in Section 3 be satisfied, let hn be an upper bound for the expected
optimization time of SEMO on noise-free problems of instance size n, let ε∗n denote the minimum
of the values ε∗F (X) (given by Definition 2) over all problem instances of size n, let σn denote the
maximum of the noise standard deviations σ over all problem instances of size n, and let

k0 = k0(n) =
⌈

8σ2
n

ε2

(
(n + 3) ln 2 + ln

4σn

ε
√

2π

)⌉
(18)

where ε = εn = ε∗n/4. Then

(2hn + 1)(m + 1)
(

1
3

k3
0 + k2

0 + 6k0 + 21
)

is an upper bound for the expected optimization time of APS/ε-SEMO in an implementation
where each call of ε-SEMO performs 2hn iterations.

Proof. We set r = ε/2 in Corollaries 2–4, such that for the error terms ξ(x) (x ∈ X), the condition
||ξ(x)||∞ < ε/2 (x ∈ X) with ε < (1/2) ε∗F (X) required in Corollary 1 as well as in Lemma 3 is
satisfied. Furthermore, in Corollary 4, we choose the constant C as C = − ln(ε

√
2π/(4σ)). By this

special choice, Corollary 4 yields

η∗k ≥ 1− σ

(ε/2)
√

2π
· ε
√

2π

4σ
=

1
2

∀k ≥ k̄0 (19)

with

k̄0 =
⌈

8σ2

ε2
max

(
ln

8σ

ε
√

2π
, (n + 3) ln 2 + ln

4σ

ε
√

2π

)⌉
.

Therein, the first argument of “max” is smaller than the second argument and can therefore be
omitted. Moreover, σ can obviously be replaced by an upper bound σn without making (19)
invalid. Therefore, k̄0 can be replaced by k0 as defined in (18). Hence, eq. (19) says that in each
iteration k ≥ k0 of APS, with a probability of at least 1/2, samples are drawn for which the error
terms both in the solution proposal part and in the solution evaluation part all lie within the square
Qε/2(0). We call the event that this happens the sample success event. Let us denote the ensemble
of samples used for the solution proposal in a fixed iteration k by “sample 1”, and the ensemble of
samples used for the solution evaluation in this iteration by “sample 2”.

Let us now use Corollary 1. It ensures that in the sample success event, the procedure ε-SEMO,
applied to the disturbed problem according to sample 1, behaves equivalently to the procedure
SEMO, applied to the noise-free problem. In particular, if given an unlimited number of iterations,
ε-SEMO finds then the Pareto front in an expected runtime with upper bound hn. Denoting the
runtime until F (X∗) has been found by T , the well-known Markov inequality yields

Pr(T ≥ 2hn) ≤ Pr(T ≥ 2E(T )) ≤ 1/2,
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such that within 2hn iterations, the Pareto front will be found with probability of at least 1/2.
Observe that as soon as SEMO has found F (X∗) for the first time in the sense that the current P
satisfies F (P) = F (X∗), it preserves this current solution P during the remaining iterations until
iteration 2hn, and again by Corollary 1, in the sample success event, the same holds for ε-SEMO.

By Lemma 3, in the sample success event, the solution evaluation part of APS, applied to the
disturbed problem according to sample 2, confirms the P with image F (X∗) if the last has been
found by ε-SEMO in the solution proposal part.

In total, we obtain that in each iteration k ≥ k0, with a probability larger or equal to (1/2) ·
(1/2) = 1/4, the solution set L(k) proposed by APS at the end of this iteration has image F (X∗).
Note that the random numbers used for obtaining the two samples and those used for the muta-
tions during the run of ε-SEMO are independent, and that in the sample success event, the error
terms do not matter anymore. Moreover, for future use, it should be noted that the lower over-
all success probability bound 1/4 for an iteration k ≥ k0 holds independently from the events in
previous iterations.

Now we compute the runtime required by iteration k of APS/ε-SEMO. In this iteration, ε-
SEMO performs 2hn iterations, i.e., at most 2hn new solutions x′ are evaluated in addition to
the initial solution. Because of sk = k, this yields a runtime smaller or equal to (2hn + 1) k for the
solution proposal part. The set L(k−1)∪S(k) of solutions to be evaluated in the solution evaluation part
contains at most k ·(2hn+1) elements, because in each APS iteration, at most 2hn+1 new solutions
can be proposed. Considering s̄k = mk, this gives an upper runtime bound of (2hn + 1)mk2 for
the solution evaluation part in iteration k. Therefore, the cost of the entire iteration is bounded from
above by (2hn + 1)(k + mk2) ≤ Rk2 with R = (2hn + 1)(m + 1).

The total runtime in iterations 1 to k0 − 1 of APS is therefore bounded from above by

R

k0−1∑

k=1

k2 ≤ R

∫ k0

0
k2dk = R

k3
0

3
. (20)

Finally, we turn to the expected total runtime in iterations k0, k0 + 1 etc. until X∗ has been iden-
tified. We use the lower bound 1/4 on the total success probability in an iteration k ≥ k0 and
assume pessimistically that the total success probability is equal to 1/4 instead of larger or equal.
This gives the following upper bound for the expected optimization time after the start of itera-
tion k0:

R k2
0 ·

1
4

+ R (k0 + 1)2 · 3
4
· 1
4

+ R (k0 + 2)2 ·
(

3
4

)2

· 1
4

+ . . .

=
R

4

∞∑

k=k0

k2 ξk−k0 =
R

4

∞∑

k=0

(k2 + 2k0k + k2
0) ξk.

with ξ = 3/4. By using the well-known summation formulas for the series
∑

k ξk,
∑

k kξk and∑
k k2ξk, we can evaluate the last expression as R (k2

0 + 6k0 + 21). Addition to (20) and insertion
of the expression for R yields the result. 2

Remark 1. From an application point of view, Theorem 1 raises the question how ε and the runtime
given to ε-SEMO in each call of this procedure should be chosen in an implementation of APS/ε-
SEMO if ε∗n and/or the bound hn are not known. A pragmatic answer is to tune both parameters
experimentally for the considered class of problem instances, such as it is usually done for other
parameters of a metaheuristic. Obviously, an upper bound for the expected optimization time
under the choice of these two parameters as described in Theorem 1 is also an upper bound for
the expected optimization time under the choice of the (experimentally found) best combination of
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these parameters. A more sophisticate way of handling the issue would be to gradually decrease
εn during the run of the APS framework algorithm, and to gradually increase the runtime given to
ε-SEMO. For all iterations where εn has fallen below ε∗n/4 and the runtime of ε-SEMO has exceeded
2hn, analogous estimations as in the proof of Theorem 1 become applicable. Possibly, this will
allow an extension of Theorem 1 to the described self-adapting variant.

Remark 2. Our presentation of the SEMO algorithm has been based on the original version of
SEMO as introduced in (Laumanns et al. 2002b). In the literature, also a slightly modified version
of SEMO has been analyzed, see, e.g., (Neumann and Wegener 2006). This version, which we
shall denote by SEMO’, differs from the original one by the fact that if to an element x′ considered
for insertion, there exists already an element y ∈ P with the same objective function values, then
instead of keeping y and disregarding x′, the new x′ is inserted into P , and y is omitted. More
formally, the two last statements in the loop of SEMO (Fig. 2) are replaced by

if (6 ∃y ∈ P : f(y) Â f(x′)) then P = (P \ {y ∈ P | f(x′) Â f(y) ∨ f(x′) = f(y)}) ∪ {x′};

By obvious analogous replacements, we obtain corresponding procedures ε-SEMO’ and ε-TRIM’
from ε-SEMO and ε-TRIM, respectively. Going through our proofs, it is easily seen that Theorem 1
remains valid if in APS/ε-SEMO, subprocedure ε-SEMO is replaced by ε-SEMO’, and subproce-
dure ε-TRIM is replaced by ε-TRIM’.

We immediately obtain from Theorem 1:

Corollary 5. If ε∗(n) = Ω(1) and σn = O(1), the expected optimization time of APS/ε-SEMO
grows at most by a factor of order O(n3) faster in n than that of SEMO applied to the noise-free
problem.

Example 1 (continued). For the SLOTZ problem introduced in subsection 4.1, we have ε∗n = 1 ∀n.
A well-known result by Laumanns et al. (2002b) states that the expected optimization time re-
quired by SEMO to find the efficient set for LOTZ is of order Θ(n3), with an upper bound hn =
(1/2)n3 − (1/2)n2. By applying our Theorem 1, we derive from this result that the expected opti-
mization time for finding the efficient set for SLOTZ is at most of order O(n6).

Example 2. The article (Neumann and Wegener 2006) analyzes the expected optimization time
of SEMO’ (cf. Remark 2) for a bi-objective Minimum Spanning Tree (MST) problem. In an edge-
weighted graph with r nodes and n edges, to each subset x (representable as a binary string) of
the set of edges, two objective functions are assigned: The first objective c(x) is the number of
connected components of the subgraph defined by x, the second objective w(x) is the total weight
of the edges in x. Both objectives are to be minimized. Weights are assumed to be integers with
a maximum value of wmax. Neumann and Wegener show that the expected optimization time of
SEMO’ is of order O(nr(log r + log wmax) + nr2).

In a first noise model, we extend the problem to the stochastic case in an analogous way as it
has been done for SLOTZ by adding random Gaussian noise to each objective:

(f1(x, ω), f2(x, ω)) = (c(x) + ξ1(x, ω), w(x) + ξ2(x, ω)),

with independent noise variables ξ1(x, ω) and ξ2(x, ω) distributed according to (6). For the stan-
dard deviations, we assume σn = O(1). Similarly as in the SLOTZ example, it is supposed that
the solution algorithm is “blind” with respect to the underlying MST structure of the problem.
Because of the integrality of the objectives, we have ε∗n ≥ 1 ∀n. Let us assume that wmax ≤ 2r, and
that the relation between the number of nodes and the number of edges satisfies r = O(nα) with
some α ≥ 1/2. (The case α = 1/2 represents dense graphs.) Then hn = O(n2α+1), and Corollary 5
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yields an expected optimization time of order O(n2α+4) on the stochastic problem.
As an alternative, let us also consider a second noise model where the noise ξ2(x, ω) results

from imprecise measurement of the weights of the edges on the assumption that an estimate of
w(x) is obtained by summing up the individual weight estimates of the edges contained in x.
Suppose that the individual noise terms for the measurement of the edges are independent and
normally distributed with a variance smaller or equal to some constant independent of n, and that
the number c(x) of components can be determined without noise. Then σn = O(n1/2), and again
on the assumptions wmax ≤ 2r and r = O(nα), Theorem 1 yields an expected optimization time of
order O(n2α+7).

Corollary 5 shows that in many cases, the transition from a MOCO problem to a SMOCO
problem only generates a polynomial-time overhead factor. Although this is a helpful insight,
the bounds presented in Corollary 5 and the SLOTZ example are still rather weak. We conjecture
that stronger bounds hold, and below we shall outline a situation where stronger bounds can be
rigorously derived indeed. Before turning to this issue, a generalization of Theorem 1 will be
demonstrated. We start with a definition.

Definition 3 (Birnbaum, 1984). For two random variables ξ and ξ′, the variable ξ is called more
peaked about zero than the variable ξ′ if

Pr{|ξ| ≥ z} ≤ Pr{|ξ′| ≥ z} ∀z > 0. (21)

Corollary 6. The assertion of Theorem 1 remains still valid if theN (0, σ2)-distributed noise ξi(x, ω)
is replaced by independent noise ξ̄i(x, ω) following some other distribution (which is allowed to
depend on i and x), provided that for all x ∈ X and i = 1, 2,

(i) the density of ξ̄i(x, ω) is continuous, symmetric (i.e., the density in−z is equal to the density
in z) and non-increasing for positive arguments z, and

(ii) ξ̄i(x, ω) is more peaked about zero than a random variable Zn ∼ N (0, σ2
n).

Proof. Theorem 1 in (Birnbaum, 1984) states that under the indicated conditions, the correspond-
ing sample averages inherit the “more peaked” relation, i.e., ξ̄i(x) = 1

k

∑k
ν=1 ξ̄(x, ων) is more

peaked about zero than ξi(x) = 1
k

∑k
ν=1 ξi(x, ων) with ξi(x) ∼ N (0, σ2

n). A re-inspection of the
proof of our Theorem 1 above and the preceding lemmas (especially Lemma 2 and Corollaries
2–4) shows that this property is all that is needed to make the used upper bound estimations still
valid for the case where the ξi(x, ω) are replaced by the ξ̄i(x, ω). 2

Corollary 6 above allows it to include also the case of bounded noise, e.g., noise following a
triangular distribution or a truncated normal distribution7. Our next result shows that in the case
of bounded noise, a considerably stronger runtime bound than that of Theorem 1 can be derived:

Theorem 2. Let the conditions of Corollary 6 be satisfied, and let for all n,

(i) F (X) ⊆ [an, bn]× [an, bn] (an > 0, bn > 0),

(ii) |ξi(x, ω)| ≤ cn with probability 1 (i = 1, 2, x ∈ X) with cn > 0.

7Strictly speaking, in the last case, the truncation must be defined in such a way that the density function remains
continuous, which can of course approximate a non-continuously truncated normal distribution to any desired degree
of accuracy.
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Then the expected optimization time of APS/ε-SEMO on an instance of size n in an implementa-
tion where each call of ε-SEMO performs 2hn iterations is bounded from above by

[
2hn +

(
8(bn − an + 2cn)

ε∗n
+ 2

)
m + 1

] (
1
2

k2
0 +

1
2

k0 + 3
)

with ko as in Theorem 1.

Proof. First of all, we compute the maximal length of an ε-antichain in a square with side length γ
(γ > 0). An ε-antichain is a set A ⊆ R2 of points with the property that two different points
z, z′ ∈ A are ε-incomparable, i.e., that neither z Âε z′ nor z′ Âε z nor z =ε z′. In particular,
this means that two elements z and z′ in an ε-antichain differ by at least ε in each of their two
coordinates. By projection to one of the two coordinate axes, one immediately sees that in the
considered square, not more than γ/ε + 1 mutually ε-incomparable elements can exist. We choose
ε = ε∗n/4 as in Theorem 1. Then we have that an ε-antichain can contain not more than 4γ/ε∗n + 1
elements.

In iteration k, both the solution S(k) delivered by ε-SEMO and the solution L(k−1) delivered in
the previous iteration by ε-TRIM are ε-antichains. Since by assumption, the modulus of the noise
is smaller or equal to cn, also

∣∣∣∣∣
1
s

s∑

ν=1

ξi(x, ων)

∣∣∣∣∣ ≤
1
s

s∑

ν=1

|ξi(x, ων)| ≤ 1
s
· scn = cn

holds, and therefore both the sample average estimates used for the elements of S(k) in the call
of ε-SEMO in iteration k and those that have been used for the elements of L(k−1) in the solution
evaluation part of iteration k−1 lie all in the square [an−cn, bn+cn]×[an−cn, bn+cn], i.e., in a square
with side length γn = bn − an + 2cn. Using the bound above, we conclude that |S(k)| ≤ 4γn/ε∗n + 1
and |L(k−1)| ≤ 4γn/ε∗n + 1, so |L(k−1) ∪ S(k)| ≤ 8γn/ε∗n + 2.

Now we go through the proof of Theorem 1, resp. that of Corollary 6 which allows a gener-
alization to noise that is more peaked than Gaussian noise. In these proofs, we used an upper
bound of k · (2hn + 1) for the number of elements in |L(k−1) ∪ S(k)| that have to be re-evaluated
in the solution evaluation part of the APS iteration. On the current premises, this set can con-
tain at most 8γn/ε∗n + 2 elements. For iteration k of APS, this yields an upper runtime bound of
(2hn + 1)k + mk · (8γn/ε∗n + 2) = C̄k with

C̄ = 2hn + 1 + m

(
8γn

ε∗n
+ 2

)
= 2hn +

(
8(bn − an + 2εn)

ε∗n
+ 2

)
m + 1.

Therefore, the total runtime in iterations 1 to k0 − 1 of APS is bounded from above by

C̄

k0−1∑

k=1

k = C̄

(
1
2
k2

0 −
1
2
k0

)
,

and the expected total runtime in iterations k0, k0 + 1 etc. until F (X∗) has been identified is
bounded from above by

C̄k0 · 1
4

+ C̄(k0 + 1) · 3
4
· 1
4

+ C̄(k0 + 2) ·
(

3
4

)2

· 1
4

+ . . .

=
C̄

4

∞∑

k=k0

k ξk−k0 =
C̄

4

∞∑

k=0

(k + k0) ξk =
C̄

4
· (12 + 4k0) = C̄(k0 + 3)
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with ξ = 3/4. Hence C̄ · (1
2 k2

0 + 1
2 k0 + 3

)
is an upper bound for the total expected optimization

time. Insertion for C̄ gives the result. 2

Example 1 (continued). Replace in the SLOTZ problem introduced in subsection 4.1 the Gaussian
noise ξi(x, ω) ∼ N (0, σ2) by noise ξ̄i(x, ω), where the distribution of ξ̄i(x, ω) is more peaked about
zero than N (0, σ2), and where ξ̄i(x, ω) ≤ c for all x ∈ X with some constant c > 0.8 Note that for
an = 0, bn = n and cn = c the conditions of Theorem 2 are satisfied, and that bn − an + 2cn =
n + 2c = Θ(n). Then Theorem 2 yields an upper bound for the expected optimization time of

[O(n3) + (O(n) + 2)m + 1] ·O(n2) = O(n5), (22)

which is only by a factor of order O(n2) worse than the expected optimization time in the deter-
ministic boundary case of LOTZ. With a view at the proof of Theorem 2, it can also be seen from
(22) that now, the term of order O(n) ·m referring to the solution evaluation part of APS is negligible
compared to the term of order O(n3) referring to the solution proposal part. This is a typical situa-
tion also for applications to more complex problems, since the current approximation L(k−1)∪S(k)

of the efficient set is usually rather small, such that the solution evaluation part is computationally
unproblematic.

Remark 3. Obviously, the O(n2) bound for the ratio of expected optimization times between
stochastic and deterministic problem in the bounded-noise case can be generalized from SLOTZ
to a broader class of problems, analogously as in Corollary 5. However, it is not quite general, as
the following example shows.

Example 2 (continued). For the stochastic bi-objective MST problem of Example 2, let us perform a
similar replacement of the Gaussian noise ξi(x, ω) ∼ N (0, σ2) by noise ξ̄i(x, ω) with a distribution
of ξ̄i(x, ω) more peaked about zero thanN (0, σ2) as in Example 1 above. Let all other assumptions
be the same as before. For wmax ≤ 2r, Theorem 2 yields in this case an exponential bound. How-
ever, if wmax = O(nβ) with some β > 0, Theorem 2 (with an = 0, bn = wmax and cn = c) gives a
bound for the expected optimization time of order O(n2α+3 + mnβ+2).

Remark 4. Also for a normal distribution, in the case of sufficiently large cn > 0, absolute noise
values larger than cn are very unlikely. Therefore, it can be conjectured that for Gaussian noise,
the expected optimization time is bounded by an order that even conforms to the often stronger
bound of Theorem 2 instead of only to the bound of Theorem 1. We leave a rigorous proof of this
conjecture as an open question.

Remark 5. We do not claim that the sample size increment scheme sk = Θ(k) and s̄k = Θ(k) is
optimal for the expected optimization time of APS/ε-SEMO. Concerning the upper bound for the
expected optimization time, it can even be shown that it becomes the better the faster the sample
size is increased: Consider a scheme where sk = s̄k = kp with some p ≥ 0. For the sake of
simplicity, let us restrict the discussion to the SLOTZ special case. Then by analogous derivations
as those in Theorems 1 and 2, we find an expected optimization time bound of order O(n4+2/p)
and of O(n4+1/p) in the case of Gaussian and of bounded noise, respectively, which decreases for
increasing p. Nevertheless, it should be kept in mind that these are only upper bounds. It is easily
possible that the actual expected optimization time of the linear scheme is better than Θ(n4), since
in our proofs, we used rather coarse bound estimations, assuming that the efficient set has to be
identified as a whole in one of the APS iterations, whereas APS can also find the elements of the
efficient set one after another or subset by subset, which considerably speeds up the process. This

8The special case of large c and a continuously truncated normal distribution produces a very close approximation
to the Gaussian model.
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gradual identification of the efficient set, however, is prevented if the sample size is increased to
fast.9

6 Conclusions

In this paper, an algorithm for stochastic multi-objective combinatorial optimization (SMOCO)
has been analyzed. The algorithm is obtained by inserting the Simple Evolutionary Multiobjective
Optimizer (SEMO) as a subprocedure into Adaptive Pareto Sampling (APS). Normally distributed
noise as well as more general noise distributions have been investigated. It has been shown that
if SEMO applies a specific ε-dominance relation instead of the ordinary dominance relation, the
expected optimization time of the overall algorithm can be bounded from above, provided that ε
is chosen small enough. The bound depends on the expected optimization time of SEMO on the
corresponding deterministic counterpart problem. An explicit expression for this dependence has
been given. In the special case where the variance of the noise is bounded from above by a con-
stant independent of the problem size n, and ε is bounded from below by a constant independent
of n, the ratio between the expected optimization times for the stochastic and the corresponding
deterministic problem, respectively, is of order O(n3). For bounded noise, the ratio reduces to
O(n2).

Since the underlying deterministic single- or multi-objective optimization problems of prac-
tically relevant SMOCO problems are often NP-hard, such that the optimization time for them
must be anticipated to grow exponentially fast in the instance size, the results show that in typical
cases, stochastic MOCO problems are not essentially harder than their deterministic counterparts.

Future research should address several topics. A question of practical relevance is whether the
results presented here can also be transferred from the use of SEMO to the use of a more elaborated
multi-objective metaheuristic such as NSGA-II or SPEA2. This question is especially important in
view of well-known drawbacks of SEMO, e.g., the fact that SEMO can end up with prohibitively
large populations. Furthermore, a generalization of the results presented here to the case of more
than two objective functions would be of interest.

Expected optimization time is not the only relevant criterion for the performance of an evolu-
tionary optimization algorithm; often, the immediate goal is not to find the exact solution (in the
multi-objective case: the efficient set), but rather to identify a good approximate solution within
short time. For investigating this question in the multi-objective situation, the behavior of the
hypervolume or of another quality indicator during the run of a combined algorithm of the type
considered here could be studied.

The bounds derived here are rather coarse, and it is possible that tighter bounds may be found
if the way how APS gradually adapts the currently proposed solution set is taken into more de-
tailed consideration. Moreover, in the present work, we focused on upper bounds for the expected
optimization time. A most interesting question would be how good lower bounds look like and
whether there are cases where it can be shown that their order matches that of the found upper
bounds. Based on such results, also the question how the sample size scheme in APS can be orga-
nized in order to obtain the fastest possible convergence to the Pareto front could be addressed.
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during the Dagstuhl seminar 2010 on “Theory of Evolutionary Algorithms”, and three anonymous

9In the case where instead of SEMO, a solver based on Mathematical Programming is used for the solution of
the deterministic subproblem, as it has been done in (Gutjahr, 2009), a rapid increase of the sample size is especially
detrimental, since the runtime of such a solver typically increases exponentially fast in the sample size, such that high
sample sizes have to be avoided at any price.
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APPENDIX

Proof of Corollary 2: From (17), we see that for k ≥ k+, the lower bound in (16) is nonnegative.
Considering (9), (6) and the independence of the random variables ξi(x, ων) for different x ∈ X ,
and observing that the power function up (p even) is nondecreasing as long as u ≥ 0, we obtain
from Lemma 2:

ηk = π2n

k ≥
[
1− 4σ

r
√

2πk
exp

(
− r2k

2σ2

)]2n

(k ≥ k+).
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From this inequality, the statement follows by means of the inequality (1 − z)p ≥ 1 − pz (z ∈
R, p even). 2

Proof of Corollary 3: If the size of a sample of i.i.d. random noise variables is increased, the
variance of the sample average decreases. As a consequence, the probability that the error terms
of the sample average estimates over a sample of size s̄k = mk with m > 1 all lie in Qr(0) is
larger or equal to the corresponding probability for the case m = 1. Therefore, the choice m = 1 is
conservative w.r.t. the lower bound on η∗k. For m = 1, the only difference to Corollary 2 is that now,
not only in 2n, but in 2n + 2n = 2n+1 random experiments, the error terms have to be sufficiently
small. This immediately yields the indicated formula. 2

Proof of Corollary 4: By Corollary 3,

1− η∗k ≤ σ

r
√

2πk
exp

(
(n + 3) ln 2− r2k

2σ2

)
≤ σ

r
√

2π
exp

(
(n + 3) ln 2− r2k

2σ2

)

for each k ≥ k+. The assertion follows since if k ≥ (2σ2/r2) · ((n + 3) ln 2 + C) in addition to
k ≥ k+, then the argument of “exp” in the rightmost expression above is smaller or equal to −C.
2
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