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Abstract: The paper provides some theoretical results on the analysis of the expected time needed by
a class of Ant Colony Optimization algorithms to solve combinatorial optimization problems. A part of
the study refers to some general results on the expected runtime of the considered class of algorithms.
These results are then specialized to the case of pseudo-Boolean functions. In particular, three well
known functions and a combination of two of them are considered: the OneMax, the Needle-in-a-
Haystack, the LeadingOnes, and the OneMax-Needle-in-a-Haystack. The results obtained for these
functions are also compared to those from the well-investigated (141)-Evolutionary Algorithm. The
results shed light on a suitable parameter choice for the considered class of algorithms. Furthermore,
it turns out that for two of the four studied problems, the expected runtime for the considered class,
expressed in terms of the problem size, is of the same order as that for (14-1)-Evolutionary Algorithm.
For the other two problems, the results are significantly in favour of the considered class of Ant Colony
Optimization algorithms.

1 Introduction

Ant Colony Optimization (ACO) has developed in the last fifteen years to one of the most
frequently used metaheuristic techniques for solving "hard” combinatorial optimization prob-
lems. Numerous publications in a large variety of fields demonstrate the broad applicability
and the good performance of this approach. ACO developed from the seminal works by Dorigo,
Maniezzo and Colorni [5, 6], which were originally motivated by the attempt to solve the well-
known Travelling Salesperson Problem (TSP). Already soon, the inventors of the technique
recognized that the approach could be applied to a much larger range of optimization prob-
lems. This led to the development of the ACO metaheuristic, elaborated by Dorigo and Di
Caro in [4]. A recent survey on ACO is given in the excellent book by Dorigo and Stiitzle [7].
Despite a huge number of experimental investigations on ACO, much less has been done in
the field of ACO theory. It was not before the year 2000 that the first convergence proofs for
ACO algorithms appeared (see Gutjahr [9]-[11] and Stiitzle and Dorigo [20]). In the meantime,
the convergence behavior is already well-explored for a good deal of ACO variants. However,
even if an ACO algorithm is ensured to converge to the optimal solution with probability one,
there remains the question of how much time it takes (e.g., in the average) until the solution is
found. At the moment, results concerning the last question are still scarce in the ACO area.
When proceeding from the question of convergence to that of the speed of convergence,
one cannot expect anymore to obtain general positive results. This is a consequence of NP-
completeness theory and the so-called “no-free-lunch theorems” which state that for each algo-
rithm that performs very well on some optimization problems, there must be other problems



where it fails to be efficient. Runtime analysis of a metaheuristic algorithm has therefore to
be done on a detailed level of the investigation of various specific test problems. These test
problems may seem simplistic from the viewpoint of applied research, but their investigation
can provide helpful information nevertheless in so far as each of them incorporates some typi-
cal feature (or several features) of real problems, such that their separate analysis helps us to
understand why and on which conditions certain algorithmic variants or parametrizations work
resp. do not work in real-life applications.

In the present paper, we study the runtime behavior of the MAX-MIN Ant System
(MMAS) developed by Stiitzle and Hoos [21, 22] in the version where it uses best-so-far
reinforcement. The runtime is investigated in dependence of the problem size for four specific
example problems. Three of them, the OneMax problem, the LeadingOnes problem and the
Needle-in-a-Haystack (NH) problem, are well-known and well-analyzed test problems in the
Genetic Algorithms (GA) literature. OneMax is a typical example for a problem where the
fitness function gives helpful (and never misleading) information supporting the search for the
optimal solution. Contrary to that, in the Needle-in-a-Haystack problem, no information of
this type is provided. In order to have also a look at a mixture between these two extreme
situations, we analyze, as a fourth problem, a combination NH-OneMax of Needle-in-a-Haystack
with OneMax.

The MMAS algorithm studied here is basically identical to the variant called GBAS/Ib
investigated in [14], with the exception that upper bounds for the so called pheromone val-
ues are used in addition to lower bounds. For GBAS/Ib and the related algorithms GBAS,
GBAS/tdlb and GBAS/tdev, strong theoretical convergence properties can been shown (see
[9]-[11]). Similar results were also provided for an extension of GBAS/tdev (see [19]).

There are a few articles providing some first results on the runtime of GBAS variants of
ACO: In [12, 14], GBAS with specifically chosen lower bounds for the pheromone values was
studied for the OneMax problem. In those studies, it was shown that for values sufficiently
close to one of an important ACO parameter called evaporation factor, the runtime of the
algorithm until reaching the optimal solution is of order O(nlogn), where n is the problem
instance size, which is the same runtime behavior as that of the (1+1)-Evolutionary Algorithm
(short: (141)-EA), a simplified GA variant that has been intensely studied in the literature.
The meaning of the terms “pheromone value”, and “evaporation factor” will be explained in
details in Section 2.

Neumann and Witt [18] studied the behavior of a GBAS modification they called 1-ANT
with specific lower and upper pheromone bounds, where pheromone values are re-normalized
to a certain sum after each iteration. The authors showed that 1-ANT behaves identically
to the (1+1)-EA on all pseudo-boolean fitness functions, provided that the evaporation factor
p is chosen sufficiently large (basically, larger than about 1/3). Moreover, some probabilistic
bounds for the behavior of 1-ANTS on OneMax for small evaporation factor were given; in
particular, these bounds show that the runtime behavior is exponential for evaporation factor
values close enough to zero.

In the present article, we do mot use explicit re-normalization of pheromone values after
update as described in [18], considering that an implicit re-normalization is performed in ACO
anyway. (As to this point, see the results on the “scale-invariance” of ACO in Birattari et
al. [1].) However, as in [21, 22, 18], upper pheromone bounds in addition to lower bounds
will be used. The investigation in [14] (in the slightly changed context effected by the upper
pheromone bounds) will be extended in several directions: First of all, we give a complete



picture of the behavior of the considered algorithm for the whole range of possible evaporation
factor values. It will turn out that also in our framework, high evaporation factor values lead
to a degeneration of the algorithm to the (141)-EA. In the described circumstances, however,
this only happens if evaporation factor values are chosen in a small neighborhood of 1. For the
main part of the range of possible evaporation factor values, the behavior of the algorithm will
turn out to be essentially different from (141)-EA. Nevertheless, we will demonstrate that our
ACO variant also shows a O(nlogn) runtime behavior on OneMax for evaporation factor values
where the algorithm does not behave identically as (1+1)-EA, provided that the evaporation
factor is chosen as constant in n. This is also true for very small evaporation factor values,
indicating that keeping the evaporation factor rather close to zero than close to one needs not
to be a poor choice for the considered ACO variant. This observation will be confirmed at
the LeadingOnes example, where even schemes letting the evaporation factor tend to zero as
n — oo can be shown to provide the O(n?) runtime behavior of (1+1)-EA.

Furthermore, we shall show that using high values of the evaporation factor has even distinct
disadvantages as soon as fitness functions are considered that do not “guide” the search to a
sufficient extent: For the NH and the NH-OneMax problem, we will demonstrate that the
performance of both (1+1)-EA and the ACO with high evaporation factor is very poor. In
particular, we are able to show that (1+1)-EA has a lower bound for the expected runtime of
(exponential) order (n/2)°&2" on NH-OneMax, whereas a suitable scheme for ACO where the
evaporation factor is chosen of order n=2 ensures an upper bound for the expected runtime of
(polynomial) order n*logn.

The plan of the paper is as follows: Section 2 introduces basic definitions and presents
the investigated algorithm in formal terms. Section 3 provides three basic lemmas that will
be used to prove our main results. In section 4, we provide some general results concerning
the optimization of pseudo-boolean functions by ACO. Section 5 specializes the discussion
to the OneMax problem and derives runtime results for two different variants of pheromone
reinforcement. In section 6, we deal with the NH and the NH-OneMax problem, comparing
(1+1)-EA to ACO. Section 7 is devoted to the LeadingOnes problem, and section 8 gives
concluding remarks.

2 The Algorithm

In this section, we will start by describing an ACO algorithm in its general form. An ACO
algorithm is an iterative and stochastic procedure, containing three basic elements. The first
element is a construction graph G= (V,.A), where V is the set of vertices and A the set of
oriented edges (arcs), furnished with some rules to construct paths on G and to make them
correspond to the feasible solutions of the search space S. The second element is a probabilistic
mechanism to build such paths. This mechanism is parametrized by two vectors 7 and 7
whose elements are associated to the elements of A, called pheromone vector and wisibility
vector, respectively. Contrary to the visibility vector, the pheromone vector changes along
iterations by means of a recursive rule, which is the third element of an ACO algorithm. Each
of these three elements is important and influences the properties of the ACO algorithm. ACO
algorithms are named and classified mainly based on the specific form of the updating rule for
the pheromone vector.

We will focus here on a type of ACO algorithms with a specific pheromone updating rule.



This type can alternatively be denoted either by MMAS,, (abbreviating MAX-MZN Ant
System with best-so-far pheromone update) when referring to the key algorithmic idea de-
veloped by Stiitzle and Hoos in [21, 22], or by GBAS/Ib/ub (GBAS with lower and upper
pheromone bound) when referring to the algorithmic framework in [10, 14] that has evolved
from the first ACO convergence study [9]. A third possible notation relying on the classification
of ACO algorithms in Dorigo and Blum [3] would be ACOps +,.,., 7a.- FoOr the sake of simplicity,
we shall refer here to the investigated algorithm usually simply by ACO.

The results provided in section 3 are general for the considered ACO algorithm, i.e., they
refer to the treatment of arbitrary combinatorial optimization problems. In the subsequent
sections 4-7, we will focus on the treatment of pseudo-boolean functions as objective functions.

2.1 The Construction Graph

To present the general algorithmic framework, we use the notion of a construction graph in the
strict formal sense as given in [9]. This approach has the advantage of combining mathemat-
ical preciseness and generality with the possibility of providing easily understandable visual
representations of the algorithmic procedure in applications to concrete optimization problems.

Definition 2.1. Let an instance of a combinatorial optimization problem f(-) — arg max f(x)
re

with finite feasible set S be given. By a construction graph for this instance, we mean a directed
graph G = (V, A) together with a solution decoding function ® and the following rules to build
paths:

(1) In G, a unique node is marked as the so—called start node.
(2) Let W be the set of directed paths w in G satisfying the following conditions:

(i) w starts at the start node of G;
(ii) w contains each node of G at most once;

(iii) the last node on w has no successor node in G that is not already contained in w
(i.e., w cannot be prolonged without violating (ii)).

The function ® maps a subset W of the set W onto the set of feasible solutions of the
given problem instance: To each path w € W, there corresponds a feasible solution

T :ﬁ)(w) € S, and to each feasible solution x € S, there corresponds at least one path
in W such that ¢(w) = x.

The objective function value (fitness value) assigned to a complete path w is always that of
®(w), i.e., of the corresponding feasible solution z. As a consequence, we may identify paths
and solutions: Each path w € W is considered as a separate solution, such that the feasible set
becomes identical to W. For this reason, we use the symbol z also for paths in the sequel. If
an edge (i, 7) is contained in a path x, we shall write (7, j) € .

In general, for a given problem instance, different kinds of construction graphs can be considered
(see [7, 13] for the case of pseudo-Boolean functions). A construction graph for pseudo-Boolean
functions known as chain graph [13] will be illustrated in details in section 4.



Example. Let us consider an instance of the TSP, with n cities, numbered from 1 to n,
and distance matrix D = (d;;). The goal is to find a tour starting and ending at the city
with number “17, visiting all cities only once, such that the sum of the distances between
consecutive cities on the tour is minimized. In this case, the state space S is the set of all
closed tours visiting each city exactly once; alternatively, S can be identified with the set of
the (n — 1)! permutations of (2,3,...,n), since both the initial node and the end node of the
tour are pre-defined as the city with number “1”. A natural construction graph is based on the
complete directed graph G with each element of V representing one of the n cities. The start
node corresponds to the city numbered as “1”. Each path w € W is constructed by starting in
the start node and connecting iteratively the current node to one of the nodes not yet visited.
If all cities are visited, the path construction terminates. The function ® associates to each
path a uniquely defined feasible solution of S, obtained from the path by completing the tour,
i.e., by connecting the last visited node to the start node.

2.2 The Probabilistic Mechanism

In ACO, to each arc (i,j) € A, a pheromone value 7;;(t) is assigned, which can change with
the iteration number ¢ of the algorithm. The pheromone values are combined to a vector
7(t), each component of which corresponds to an arc of A.! In each iteration of ACO, the
same probabilistic mechanism is applied to generate independently N paths in the construction
graph G. The conceptual unit generating a path is called an ant. Serially (or, on a parallel
processor, in parallel), each of the N ants constructs a path, starting the construction process
in the start node of G. Given that an ant has already constructed the partial path u with last
added node ¢, the path is prolonged via edge (7, ) with probability p;; given by

7ij (1)

pl] Z Tir(t)7 (1>

reS(u)
where only feasible continuation edges (7, j) for u are taken into consideration. In (1), the set
of nodes r with the property that (i,7) is a feasible continuation of partial path u is denoted
by S(u). Therein, feasibility of a continuation (i,r) of a current partial path wu is defined by
property (2) of Definition 2.1: The complete path must be an element of W, so the continuation
obtained by appending edge (i,7) to partial path u must be such that a path w € W starting
with v and traversing then edge (i,7) exists. In most part of the present paper, we restrict
ourselves to the special case W = W, which makes the feasibility check trivial. Obviously,
eq. (1) defines the probability of adding a feasible continuation edge (¢, ) as proportional to

the corresponding actual pheromone value 7;;(%).

Often, a more general rule is used in practice which replaces the one in (1) by

Py = (735 (1) (mij(w))?
TN (1) (ir(w)?

reS(u)

n the classical articles on ACO, which focus mainly on routing and scheduling problems, the values 7;;(t)
are arranged rather in a matrix form than in the form of a vector, with ¢ as the row number and j as the column
number. For our purposes, this is less convenient, since for the construction graphs usually applied to the
optimization of pseudo-boolean functions, some elements of the matrix would then be undefined. That is why
we prefer to arrange the values 7;;(t) in vector form, which has an additional advantage for the mathematical
representation in section 3.



where «, 3 are non-negative real numbers and the wvisibility vector n(u) (which is allowed to
depend on the current partial path u, but not on the iteration number ¢) also appears. For
example, for the TSP we can choose n;j(u) = g(d;;), where the function g is non-increasing and
has positive values. For the sake of simplicity, in the following sections we will not consider the
visibility, i.e., we will set =1 and 3 = 0.

2.3 The Pheromone Update

The algorithm is usually initialized by setting each 7,;(0) to an identical initial value 7(*).
For some problems, this produces a uniform distribution on the set S of solutions in the first
iteration, but in general this needs not to be the case.

The principle of pheromone update in ACO is that a certain share p € [0, 1] of pheromone
“evaporates” on each edge, which is compensated by increasing pheromone as a “reward” on
the edges of the “best” found path. We say then that this path has been reinforced in the
current iteration. The parameter p is called the evaporation factor. A rather general form of
the pheromone update rule is the following:

Tig(m+1) = (1 = p(m)) - 7i5(m) + p(m) - [((i, j) € &(m))) for all (i,7) € A, (2)

where I denotes the indicator function, a general time varying evaporation factor is considered,
1 is a non-decreasing function which assumes positive values, and Z(m) denotes a “best” path
in some sense of the word “best”. In the ACO literature, different notions of “best” have led
to different types of ACO variants (cf. [7]). Two prominent variants consist in either taking
the best path among those generated by the N ants in the current iteration m (iteration-best
reinforcement), resp. in taking the best path among all paths generated by some ant in some of
the iterations 1, ..., m (best-so-far reinforcement). In the second case, the best path is replaced
as soon as some ant generates a path with a strictly higher objective function value than that
of the current one.

The MMAS,, algorithm considered in the following uses a best-so-far reinforcement rule:

Tij(m +1) = (1 = p) - 7i;(m) + p- 1((i,§) € &(m))) for all (i,7) € A, (3)

where the evaporation factor is constant along time, the path Z(m) is the best seen so far in
one of the previous iterations including the current one, and the function v is defined by

Tmin, 1f O S T < Tmin
¢(T) = T, if Tmin <7< Tmaz s (4)
Tmazs L T > Tz,

with lower and upper pheromone bounds 7,,;, and T,,q., respectively. We always assume 0 <
Tmin < Tmaz-

More frequently, in MMAS, the reward for reinforced arcs is not chosen simply as a con-
stant p, but as a number p - ¢(2(m)) that is allowed to depend on Z(m) (usually in a fitness-
proportional manner). In this case, we apply

Tig(m+1) = ¢ ([1 = p-c(&(m))] - 7i;(m) + p - c(&(m)) - 1((i, j) € &(m))) for all (i,7) € «‘(15)



instead of (3). The function ¢(-) must be chosen in such a way that 1 — p - ¢(z) is always
nonnegative. We shall call ¢(-) the reward function.

In this paper, we restrict ourselves to the special case N = 1 of one single ant. Our
derivations can be generalized to the case of N > 1, but providing them for N = 1 gives a more
transparent picture.

3 General Lemmas

For being able to provide rigorous proofs of the results in the later sections, we will derive now
three lemmas. The proofs of these lemmas can be found in the Appendix. We will use the
lemmas for analytical investigations on the runtime of the considered type of ACO algorithms.
However, they may possibly be useful also for the analysis of other meta-heuristic algorithms.
In order to better understand the link between these general lemmas and the considered ACO
algorithm, we first describe a relevant property of the last. After that, we will state two very
general lemmas. Then, the application of the two lemmas to our ACO framework together with
a more specific third lemma will be outlined.

Definition 3.1. For an arbitrary fitness function, assume that the elements fi,..., fa of the
finite set {f(z)|x € S} are sorted in such a way that f; < fo < ... < fy. Then we call
Li={zeS[flx)=1fi} G=1...,M) (6)

the level set with index j (1 < j < M). The number M of level sets can be as small as one, as
in the case of the constant function, and as large as the cardinality of S, as in the case where
there are no pairs of solutions in S with the same value of the objective function.

We now consider the stochastic process X™ = (X(m),7(m)), m = 0,1, ..., where X(m) is
the best-so-far solution in iteration m and 7(m) is the vector of pheromone values in iteration
m. We assume that the evaporation factor p, the initial value 7(9 of the pheromone and the
lower and upper pheromone bounds 7,,;, and 7,,., are rational numbers. This assumption
is not at all restrictive from a practical point of view. In fact, ACO algorithms are run on
digital computers where real numbers are approximated by rational numbers. Since the set
() of rational numbers is closed under addition, subtraction, multiplication and division, it
follows that under the considered assumption all pheromone values assumed during the process
evolution are rational. The set () is countably infinite, and therefore the realizations of X™ at
any time m belong to the same countably infinite state space S x Q. A partition of the state
space S x QM into sets satisfying the conditions of the following Lemmas 3.1. and 3.2 is given
by

M M M
Sx QM =1 L x QW = [J (L x QM) = | X,
k=1 k=1 k=1
where £}, is the level set with index k, and &}, = £, x Q.
It is easy to see that X™, m = 0,1,... is a homogeneous Markov process. Note that if at
iteration m, the best-so-far solution #(m) belongs to £, for some j € {1,..., M —1}, then Z(m/)
remains identical to Z(m) in the subsequent iterations m’ = m + 1,...,m — 1, until at some

iteration m some solution x(m) € L), with k > j is found; in the last case, &(m) = x(m) € L,



and so on. Therefore, at any iteration m, the vector &(m) € L, is allowed to have transitions
only towards points of the level sets L, with k& > j. In terms of the process X™, m =0,1,...,
this can be stated as

(X =y X =) =0 Vy € X, and Vr € X, if k<.

Furthermore, because of the lower bound on the pheromone, it is easy to see that there is a
strictly positive transition probability from #(m) € L£; towards each point x € Ly, for any
k > j. Formally:

p(Xm+1:y‘Xm:$)>0 VZJG Xka and VI'GX]', if k>] (7>

After stating the above property, we will now present the two general lemmas. The proofs of
these lemmas can be found in the Appendix.

Lemma 3.1. Let X° X! ... denote a homogeneous Markov process on a countably infinite
state space X, partitioned into the sets A7, ..., Xa, each of which is also countably infinite,
such that

(X =y|X'=2)>0 Vy € X, and Vo € X, if k> j

p(XT =y|X'=2)=0 Vye Xy, and Ve € X, if k<7,

and let E[T,_x,,] denote the expected value of the time to reach the set X, starting from
x & Xy, that is

BT, x,) =) tp(X'€ Xy, X* ¢ X, 1 <s<t—1|X°=n2).

t=1
Then, for x € &}, and j =1,..., M — 1, it follows

M-1 oo

E[TIHXM] < E[T:c—>é’?j] + Z ZE[TIe,kHXM] p(x - x@,k) )
k=j+1 =1

where U{l‘gyk} = X},

/=1
BT, z) =3 tp(X'¢ X, X" € X1 <s<t-1|X" =),
t=1

and .
plx =) => p(X' =z, X € X1 <s<t—1|X"=1x).
t=1

Lemma 3.2. Under the hypotheses of Lemma 3.1, it follows that the expected value of the
time T}, to reach the set X, that is

E[TM] = th(Xt € XM,XS g_ﬁ XM,O <s St— 1)

t=1



is bounded from above by

TMst (X0 %)Y sup (BT, ul} < 3 sup {BIT,5]},

k=j y e Xy k—1 YE Xk

We now state another relevant property of the considered ACO algorithm: Let z(0) =g €
L. Provided that 7,,,, < 1, there is a time t* = t*(k), independent on the specific initial
pheromone vector 7(0) = 7 and on the influence of randomness (i.e., on the actual trajectory),
such that, for all following times ¢ > t* for which Z(¢) still remains unchanged before leaving
Ly, the pheromone vector 7(t) also remains constant along time and equal to 7(t*) = 7(7)
where () = Tyae on arcs (i,7) belonging to ¢, and 7%(y) = T, otherwise. In fact, if
X = y € Ly, for 0 < s < ¢, then the pheromone values 7;;(s) of arcs not belonging to ¢ will
never be reinforced and will evolve in time as 7;;(s) = ¢¥(7;;(1 — pc(9))®). It is easy to verify
that after at most

1 min 1 max

0g T, og j’ (8)
log(1 — pc(7))

time steps, 7;;(s) has reached the minimum value 7,,;, and will then not change anymore before

the set Ly is left, provided that 1 — p-¢(x) < 1Vz € S. Since p > 0, the last inequality always
holds if migl c(x) > 0.
Te

In a similar way, the pheromone values 7;;(s) of arcs belonging to § will be reinforced at
each time step and will evolve as

t1:

s—1

() = 0 (ﬁ-ju S S pc@))'f) (1 (1= 21— pe(@))").

k=0

After at most

log(1 = pe() ¥
time steps, 7;;(s) has reached the maximum value 7,,,, and will then not change anymore before
the set Ly is left. After the time ¢,,,, = max{ty, 3}, the whole pheromone vector will remain
unchanged until we leave Lj.
For variable reward function c(-), the integers t; and ty given by (8) resp. (9) still depend
on ¢, and hence also t,,,, depends on g, which we can write as ¢4 = timas(9). Let us define

t*(k) = max {tmas (9) | § € Li}- (10)

Since the set L contains only finitely many elements, the integers t*(k) are finite.

In terms of the process X!, it holds that, conditionally to the event X° = y = (¢, 7), with
y € Xy, if the event {X*® € X}, 1 < s <t} happens for t > t*(k), then, independently on y, the
event {X* = 2'"®) *(k) < s <t} happens with probability one. In other words, the specific
state the process assumes within &} does not change anymore after time ¢*(k), until the set X
is left.

Pog(l — Tinaz) — log(1 — Tmm)—‘
t2 ==

Lemma 3.3. For the considered type of ACO algorithms and for 7,,,,. < 1, it holds that

sup ([T, ]} < (k) + 1/pi. (11)

ye Xy



where t*(k) is given by (10), and

pe= inf p(X' ¢ X | X’ = (y,7* (1) >0 (1<k<M). (12)

Y€ Ly,

Proof. Let us abbreviate t*(k) by ¢* in the proof. We observe that indeed, p, > 0 because of
the property (7) of the considered type of ACO algorithms. Furthermore, we have

ET, %] = Y tp(X'¢ X, XP€eX,1<s<t—1]X"=y)
t=1
t*
= > ip(X'¢ X, X €eX,1<s<t—1|X"=y)
t=1
+ > tp(X'¢ X, XPeX,1<s<t—1|X"=y)

t=t*41

t*
< fp(U{Xtié Xk,XseXk,lgsgt—l}yX0:y>

t=1

+ > tp(X'¢ X, X eX,1<s<t—1|X"=y)

t=t*+1

= t'p(X" ¢ X | X" =y)
+ Z tp(Xt¢Xk,X5€Xk,1§3§t—1\X0:y).

t=t*+1

Fort > t*+1,

p(X'¢ X, X €eX,1<s<t—1|X"=y)

PX e, 1<s<t'|X"=y)

pX'E X, X X, t" +1<u<t—1|X°€A,1<s<t" X" =y)

(X" e X | X =y) p(X' ¢ X, X" € X, " +1<u<t—1]X" € 4, X0 =1y)
(

(

= D

= pXT e X =y) p(X' ¢ X, X e X P +1<u<t—1|X" =(§,7(%)))

= AT € X X0 =y) p(XT ¢ X, X € X 1 <u<t—t" =1 X = (§,7(D)))
Therefore,

<

Yootp(X' ¢ X, XP € X, 1<s<t—1]X"=y)

t=t*+1

p

(X" e | X0=y)- > tp(X'"" ¢ X, X" eX, 1 <u<t—t'—1|X"=(9,77(9)))
t=t*+1

p(XT € XX =y) D (" +0) p(X" ¢ X, XM € X1 <u<v—1]X" = (3.7(7))

p
p

(X7 € X | X0 = g) - [t 1+ 1/p(X" & X | X = (5, 7(4)))

(X" € 4| X0 =y)- (" + 1/pr).

In total, we obtain:

£

T,

o) S P(X7 ¢ X X0 =y) +p(X" € X[ X0 =y)] - t* + (X" € X | X" =y) - 1/Di

10



<1-t"41-1/pg,

which proves the result. 0

Finally, by using Lemmas 3.1-3.3, we obtain that the expected value of the time T}, to
reach the set X, is bounded from above by

M-1 M—

ETy] < Z k) +1/pe) = Z ) + Z_:ll/ﬁ/m (13)

which we will use in the following sections.

4 Optimization of Pseudo-Boolean Functions

Since at the moment, the majority of analytical results on the runtime of evolutionary algo-
rithms refer to test functions to be optimized that belong to the class of pseudo-boolean func-
tions, we restrict our analysis in the present paper to this type of functions. A pseudo-boolean
function is a function f mapping the set S = {0,1}" of binary vectors of length n into the set
of real numbers. All kinds of subset selection problems, as they frequently occur in the field
of combinatorial optimization, can be interpreted as optimization problems for pseudo-boolean
functions by interpreting {1,...,n} as a set of items and the binary vector x = (z1,...,x,)
with x; € {0,1} (i = 1,...,n) as the encoding of the subset {i|z; =1} C {1,...,n}.

For optimizing pseudo-boolean or subset selection problems by an ACO approach, different
construction graphs have been proposed (see [7, 13]). In this article, we consider the most
simple of them, the chain construction graph introduced in [13]. It is given as follows: The
node set V consists of the nodes 1,...,n, the nodes —1,..., —n and auxiliary nodes 0, ..., n.
The arc set A consists of the arcs (i — 1,4), (i —1,—1), (¢,2) and (—i,4) (i = 1,...,n). Given
a possible path w, the corresponding feasible solution x € S = {0, 1}" is obtained by means of
the function ®(w), as follows. If the (24)-th node of w is 1 (—1), then z; = 1 (z; = 0). An
example is shown in Fig. 1 for the case n = 4. Note that only the pheromone values on the
arcs (i —1,7) and (i — 1, —1) are relevant: Since, after passing through node i or node —i, the
agent can only proceed to node ¢, the pheromone values on the arcs (i,4) and (—i,1) need not
to be taken into account.

-1 -2 -3 -4

Fig. 1. Chain construction graph for n = 4.

For shorter notation, we shall use the following abbreviations in the sequel:
T-lITifll' Tl-OZTﬂ’,i (izl,...,n),

11



Thus, 78 and 77 are the pheromone values for an up-move resp. for a down-move in the i-th
rhombus of the chain, and p; resp. p! are the corresponding transition probabilities. We write
7t (m), 7P(m), p}(m) resp. pY(m) if we refer to the state in iteration m.

With the notation above, the general pheromone update rule (5) takes the following special

form for the chain graph:
F(m+1) = Y([1—p-c(2(m)]-7F(m)+p-c(&(m))-1(Z:(m) =k)) (i=1,...,nk=0,1). (14)

Throughout this paper, lower and upper pheromone bound are always chosen in a symmetric
fashion within the interval [0,1]: We choose Ty € (0, %] and set Tyge = 1 — Tin. It can be
shown that on this condition, if the sum of the pheromone values is chosen as equal to one on
all links of the chain initially, then this property is preserved through all iterations:

Proposition 4.1. Let, in the general case (14), the initial pheromone values be normalized in
such a way that for m = 0,

w(m)+7(m)=1 (i=1,....n) (15)
holds. Then (15) holds also for each m > 1.

Proof. The statement is shown by induction w.r.t. m. By assumption, it is true for m = 0.
Assume that it is true for some m > 0. For abbreviation, set p,, = p - ¢(Z(m)). From (14), we
have

Til(m +1) = (1 —pm] - Til
(m+1) = (1= pm) -7}
= (1 = pul - (L =7 (m)) + po - (1 = I(@:(m) = 1)) = ¥(1 —a),

By the graph of ¢(z) versus x when 7,4, = 1 — Tonin, it is evident that ¥ (a) + (1 —a) = 1
(0 < a < 1). Therefore, it follows 7°(m + 1) + 7(m + 1) = 1. Hence, (15) holds for all m. O

From now on, we shall always suppose that the sum of the pheromone values is chosen as
equal to one on all links initially. Since the values have to be chosen as equal on all links,
this gives the initialization 7%(0) = 1/2 (i = 1,...,n, k = 0,1). Then, as a consequence of
Proposition 4.1, in each iteration m,

p?(m)z 0 T(m) =7t

) i (m) "

i.e., the pheromone value 7}(m) is identical to the probability p}(m) of having a 1-bit in

(]
position 4 of the solution z, and the pheromone value 7°(m) is identical to the probability
pY(m) = 1—p}(m) of having a 0-bit in position 4 of the solution x. In other words: Within our
framework, the pheromone values can be interpreted immediately as probabilities. As a further
consequence, we can also interpret the pheromone bounds 7,,;, and 7,,., as probability bounds
Pmin a0d Pas, respectively. The recursions for the pheromone values (14) can be transformed

to recursions for the probability values (with p;(m) = p;(m)):
pilm +1) = &([L = p-c(&(m))] - pi(m) + p- c(&(m)) - &:(m)) (i=1,...,n).  (16)

12



(Note that I(xz; = 1) = x; for z; € {0,1}.) Because of p?(m) = 1 — p}(m), the corresponding
equations for £ = 0 (down-moves) are redundant.

Let us mention that for initial pheromone values that are not normalized to a sum of unity
on each link, a more complicated dynamic occurs, where, however, the sums 7} (m) + 74(m)
tend to 1 as m grows. In other words, a kind of “self-normalization” takes place. (For the
sake of brevity, we omit the details.) Since this scaling aspect for pheromone values is not the
focus of interest in the runtime analysis, but may rather be seen as a marginal phenomenon
of the process, we consider it as appropriate to assume normalized pheromone values from the
beginning.

The behavior of the process (p(m)) = (p1(m),...,p.(m)) (m =0,1,...) is essentially influ-
enced by the size of the evaporation factor p. The following proposition describes two marginal
cases for the specific situation of constant reward.

Proposition 4.2. Let ¢(z) =1 for all z € S (case of constant reward).

(a) For p = 0, all pheromone values (and therefore also all transition probabilities) remain
unchanged throughout the process. In this case, the investigated ACO variant degenerates
to random search, i.e., each configuration of S has the same probability 27".

(b) For p > (1 = 2pmin)/(1 = Pmin) = 1 — Pmin/Pmaz, only the two extremal probabilities are
possible in each iteration:

pi(m + 1) = Pz Ti(M) + prmin (1 — 2;(m)) (i =1,...,n; m > 0).

Proof. (a) follows immediately from (16). As to (b), observe that p;(m) € [Pmin, Pmaz| for
all m. Let m > 0. By (16), p;(m + 1) = ¥((1 — p) pi(m) + pzi(m)). If Z;(m) = 1, by the
monotonicity of the function v, we have

pi<m + 1) = ¢((1 - p) pz(m) + P) Z ¢((1 - p) Dmin + P) = ¢(pmin + /0(1 - pmm))
> 1/}<pmm + (1 - zpmin)) = 1/1(1 - pmin) =1~ Pmin »

so pi(m+1) =1 — prmin = Pmaz- If Z;(m) = 0, again by the monotonicity of ¢, it holds
pi(m+1) = (1 —p)pi(m)) <Y1 = p)Pmaa) < V(L = (1 = Prmin/Pmaz) )Pmaz)
= Y(Pmin) = Pmin »
so pi(m + 1) = ppin. In a compact way:
pi(m + 1) = Prag Ti(m) + prin (1 — 25(m)) -

We observe that in situation (b), the algorithm sets the probability of preserving a reinforced
bit t0 Praz = 1 — Pmin, and hence the probability of switching it to p,in- O

We see that for small p,,;,, the range of p values for which the degeneration of type (b)
takes place is a rather small domain near the maximum value 1 of p. In the open interval
p € (0, 1 = pmin/Pmaz), the investigated ACO variant behaves as a “true” ACO algorithm with
a potentially infinite number of pheromone values resp. transition probabilities. We note that

13



the degenerate ACO algorithm obtained under the premises of condition (b) in Proposition 4.2
is a generalization of a standard technique for solving problems with pseudo-boolean objective
functions and studied in several articles on the runtime analysis of evolutionary algorithms:
the (1+1)-Evolutionary Algorithm (short: (14-1)-EA). For literature references, the reader may
consult [8] or [2]. In the present paper, we shall use the (1+1)-EA as the main comparison
yardstick for ACO. It is given by the following procedure (see [8]):

(14+1)-EA:
1. Set p=1/n.
2. Choose randomly an initial bit string x € {0,1}".

3. Repeat the following mutation step: Compute z’ by flipping independently each bit x;
with probability p. If f(z') is better than f(z), replace z by «’.

The degenerate ACO algorithm resulting under condition (b) in Proposition 4.2 is a gener-
alization of the (14+1)-EA obtained by setting the probability p of flipping a component of z’

t0 P = Dmin-

5 Behavior of ACO on OneMax

In this section, we analyze the behavior of the investigated ACO variant on the well-known
OneMax problem

f(x) = Z T (17)

r;€{0,1} (i=1,...,n).

It is a special problem from a broader class of single-mode optimization problems with objective
function f(z) = d(x,x*) for some fixed z* € {0, 1}", where d denotes the Hamming distance
(for OneMax, z* = (0,...,0)). Since ACO with the chain construction graph shows equivalent
behavior on each of these problems by symmetry, and since the same holds for (1+1)-EA, it is
sufficient to investigate OneMax.

In the special case of OneMax, the level set £; is just the set

Li={xe{0,1}"|f(x)=7—-1} (=1,...,n+1).

In particular, we have M =n + 1.

5.1 Constant Reward

First, we analyze the ACO behavior on the assumption of constant reward, i.e., for the case
c(x)=1foral z e S={0,1}"

Proposition 5.1. Expressed by the expected number of function evaluations until reaching the
optimal solution, the expected runtime of the non-degenerate MMAS with constant reward,

14



symmetric upper and lower pheromone bounds and the chain construction graph, applied to
OneMax, is bounded from above by

H,

TLt* Pmin, P + 9 18
( ) Pmin (1 - pmin)n_l ( )
where | log( )
* O0& Pmin — 10g 1 - Pmin
t (Pmin, p) = : 19
( ) log(1 — p) (19)
and H, = Z 571 is the n-th harmonic number.
j=1
M-1 M-1
Proof. By (13), in general for MMAS we have E[Ty] < > t*(k) + > 1/pk, where t*(k) is
k=1 k=1

given by (10), and py, is given by (12). In the case of constant reward, t*(k) = t* is independent
on the level set index k£ and then

E[Ty] < (M —1)t* + Mf 1/ .

Furthermore, if as in our case 7y, + Timee = 1, it follows that

10g Prmin — 10g(1 — Prnin)

=t =ty =
log(1 — p)

For OneMax, we have

B = inf (X' ¢ G| X0 = (5,7 () 2 inf p(X! € X | X° = (35,7 (1))

T yeLy

> inf p(X' € QW)X = (1.7 (W),

where Q(y) = {z € Xpy1 |2 > y; Vi}. Notice that Q(y) is the set of points obtained from
y € Ly, by flipping one of the n — (k — 1) of its 0-bits. Since 7 = 7*(y), the probability of a
bit not to change value is equal to e = 1 — Pmin, and the probability of a bit to flip is equal
t0 Pmin. There are n — (k — 1) possibilities to choose the position of the flipping bit, and the
corresponding events are mutually exclusive. Therefore,

pX" € QW) X" = (y, 7" () = (n = (k= 1)) - Prvin* (1 = Ppuin)" -

Hence pr, > (n— (k= 1)) * prnin - (1 — pmin)™ ', and

108 Prmin — 10g(1 — Prmin) $ el
BITy] < n [0 DO |3 (1) o (1= s

n

= 21/3‘.
O

Special Cases: In all three special cases below, we assume p,,;, = 1/n in order to preserve
comparability with (1+1)-EA (cf. Proposition 4.2 (b) and the remarks after it), for which
expected runtime of order O(nlogn) on OneMax has been shown in the literature.
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(i) Pmin = = and p = 1— . The chosen value of p is the lowest value for which ACO degen-
erates to (1+1)-EA, since for p,,;,, = 1/n, the threshold for p given in Proposition 4.2 (b)
is just

1

Prmin/ (1 = Prmin) m—

In this case, we obtain

t* (pmina p) =

log(1/n) — log(1 — 1/n)w _ {—log(n—l)—‘ _1
log(1/(n — 1) Tlogln—1)| ~ "

As to be expected, one single (additional) iteration suffices here to achieve p;(m) = pyqa-

We obtain
1 1-— % n ( )
= ~— (n— .
Pmin (1 - pmin)nil % (1 - %)n € OO

The bound (18) of Proposition 5.1 becomes asymptotically equal to

n+ EH,L = O(n logn).
e

Thus, in this boundary situation, the well-known O(nlogn) runtime behavior of (1+1)-
EA is reproduced, which must be the case in view of Proposition 4.2 (b).

(i) pmin = + and p = py = const. In this case, a similar calculation as in (i) yields

n

log(n — 1)

—=r | < [e logn
—log(L—po) | — 0 logn]

t*(pmina p) = ’V

with ¢g = —1/(log(1 — pg)), such that the bound becomes

n [co logn] + “H, = O(nlogn).
e

(ili) pmin = + and p = L. In this case,

<

t* (Pmin, p) = { W — n [logn],

such that the we obtain the bound

n*llogn] + “H, = O(n? logn).
e

Special case (ii) shows that as long as we do not decrease p with growing n, the O(nlogn)
upper runtime bound is preserved. This is valid even for small values of p. To obtain the
indicated favorable runtime behavior, it is not necessary to let p = p, tend to one as n — oo,
as it is required for producing the (1+1)-EA boundary case. Thus, the O(nlogn) behavior
on OneMax holds for a “standard” range of ACO parametrizations and not only for certain
extreme parameter choices where only two pheromone values can occur.
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5.2 Fitness-proportional reward

In standard MMAS implementations according to Stiitzle and Hoos [22], the reward function
¢(+) for reinforced solutions is not chosen as constant, but in a fitness-proportional way. Se-
bastiani and Torrisi [19] have shown that the general convergence property of GBAS derived
in [10] also extends to the modification with fitness-proportional reward, and experiments in-
dicated faster convergence of the modified algorithm. For this reason, we analyze in the sequel
the runtime behavior of the investigated algorithm under the modified pheromone update rule,

assuming
c(-) = f() (20)

in this subsection. Note that (15) still holds in this context, and that the evolution of the
transition probabilities is described by (16), considering (20).

In order to guarantee that the factor 1 — pc(z(m)) in (16) always remains non-negative, we
have to impose the condition p f(z) < 1, which requires pn < 1 or p < 1/n for the OneMax
problem because of max f(x) = n. We observe that the condition 1 — p - ¢(z) < 1 needed to
have finite values for expressions (8), and (9) is fulfilled for all  # z = (0, ...,0). Furthermore,
for x = z, from (14) we have that 7(m) = 7(0) until the level set £, is left. Hence, the time
t*(1), after which we have i.i.d. sampling until the level set £, is left, is zero.

Proposition 5.2. Expressed by the expected number of function evaluations until reaching the
optimal solution, the expected runtime of non-degenerate MMAS with fitness-proportional re-
ward, symmetric upper and lower pheromone bounds and the chain construction graph, applied
to OneMax, is bounded from above by

n—1 Hn
t* Pmin, P,] + ) 21
j;l ( ) Pmin (1 - pmin)nil ( )
where | log( )
* . 0g Pmin — 10g 1— Pmin . *
t* (Pmin p1 J) = (J=1), t*(pmin,p,0) =0, (22)

log(1 — pj)
and H, is the same as in Proposition 5.1.

Proof. The proof is essentially the same that of Proposition 5.1, but now ¢*(k) is not indepen-
dent on the level set index k. Therefore, the first summation still remains and is not equal to

nt*(pmin7p)' O

Remark. Comparison between (19) and (22) shows that

As a consequence, we obtain now a better runtime bound than in the case of constant reward
(Proposition 5.1). Note, however, that because of the necessary restriction p, < 1/n in the
case of fitness-proportional reward for OneMax (cf. the beginning of this subsection), we cannot
apply anymore the schemes indicated in special cases (i) and (ii) of subsection 5.1. The scheme
of special case (iii) is possible. For this scheme, also under fitness-proportional reward, we do
not get a runtime bound of order O(nlogn) anymore, but a slightly worse behavior:

Corollary. If p,,;, = 1/n and p = 1/n, then the upper runtime bound given in Proposition 5.2
is of order O(n(logn)?).
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Proof. As in the case of fixed reward, the second term in (21) is of order O(nlogn). For the
made choice on p,,;, and for 0 < 7 < n,

. log(n — 1) -‘
tr Pmin, Py J) = ’V ; . 24
( ) —log(1 —j/n) 2
Since —log(1 — j/n) > j/n > 0for 0 < j/n < 1, we have
n—1 1 n—1 1
, < — =nH, 1 =0(nlogn).
jz::l —log(1 — j/n) j;]/n 1= O )

It is easy to see that the order of the last bound is sharp. Considering (21), (24) and the
O(nlogn) behavior of the second term in (21), the assertion is obtained. O

We see that the bound has improved compared to the O(n?logn) bound obtained for special
case (iii) in subsection 5.1. Nonetheless, a comparison with the special cases (i) and (ii) may
suggest that it is disadvantageous anyway to work with evaporation factors p, tending to zero
with speed O(1/n) as n — oo, such that fitness-proportional reward (requiring a scheme like
this) does not help. This is indeed true for the “pure” OneMax case. However, we shall show
in the next section that p, schemes tending quickly to zero as n — oo can be advantageous in
more complex optimization problems where a OneMax-type component only forms one special
aspect of the overall fitness.

6 Needle-in-a-Haystack Problem and Combination with
OneMax

Contrary to prior theoretical results [12, 14, 18] that might be interpreted as arguments for the
use of high evaporation factor values p in variants of ACO with best-so-far reinforcement, we
will demonstrate in this section that applying high values of p to instances of some optimization
problems runs the risk of making the search too “aggressive”, with the possible effect of a very
poor performance. This effect can be avoided by letting p tend to zero as the problem size n
grows. Simultaneously, our investigation will, for the first time, reveal an essential advantage
of an ACO algorithm compared to the simpler evolutionary algorithm (1+1)-EA by providing
a test problem where the runtime of (141)-EA has an exponential lower-bound, whereas that
of a type of MMAS ACO has a polynomial upper bound.

6.1 Needle-in-a-Haystack

The disadvantage of the (1+1)-EA lies in the vulnerability with respect to lacking “guidance”
the fitness function may give to the search process. Whereas high guidance is provided by
OneMax (this can also be quantified by measures as fitness-distance-correlation [15]), guidance
is missing or even misleading already in some very basic test problems, the simplest of which
is possibly the Needle-in-a-Haystack (NH) problem (see, e.g., [16]) which assigns indifferent
fitness values to all solutions except to the optimal solution, and gives thus no guidance for the
search at all. Formally, the objective function of the NH problem is

F = e

otherwise,



where z* € {0,1}" is the optimal solution, and x € {0,1}". Both for (1+1)-EA and for ACO
with the chain construction graph, it can be assumed w.l.o.g. that z* = (1,...,1).

The following observation shows that on NH, the required runtime of (1+1)-EA grows
extremely fast with the problem instance size. This has already been proved in [8], but we
repeat the (easy) argument here for the sake of completeness.

Proposition 6.1. On NH, the (141)-EA has an expected runtime with lower bound of order

(n/2)".

Proof. For this problem, we have only two level sets, and M = 2. (1+1)-EA starts with a
random initial solution z° € {0,1}". After that, all bits are flipped independently from each
other with probability 1/n. None of the new solutions is accepted, unless if it is identical to
x* = (1,...,1). Therefore, we have i.i.d. sampling until we hit *. Hence, the expected runtime
starting from 2% # a* is the reciprocal value of the probability that x* is reached already in a
single iteration, which gives

B 1 B d(IO x*) n n—d(xo’m*) d(IO CC*)
E[TIO—>£M] - (1/n)d(zo’m*) . (1 _ 1/n)nfd(g;0’m*) =n . (TI, _ 1) Z n

where d represents again the Hamming distance. Denoting the current solution in iteration ¢
by X, we have

E[Ty] = itp(Xt € Ly, X2 ¢ Ly,0<s<t—1)
=1
> itp(f(t € Lo, X*¢ La,1<s<t—1,X"=2"¢ Ly)
=1
= p(X0=2"¢ ﬁM)itp(Xt € Ly, X ¢ Ly, 1<s<t—1X"=2"¢ L))
=1
= (RO =40 ¢ L) BTz,
If the random initial solution is 20 = (0,...,0), we have d(2°,2*) = n. In any case, p(X° =

20 ¢ L) = (1/2)"

Therefore,

s> (1) (3)

It should be mentioned that even random search behaves much better than (1+1)-EA on
NH: Since in a single trial of random search, the probability of hitting z* is (1/2)", the expected
runtime is 2".

It is easy to see that ACO with arbitrary p,..., arbitrary p and fitness-proportional reward
performs random search on NH, which results again in an expected runtime of order 2". (Note
that at the beginning, all p; values are equal to 1/2, because all pheromone values are identical
initially.) This behavior becomes worse if a constant ¢ > 0 is added to the objective function
f(zx), such that it must be stated that the comparably good behavior for ¢ = 0 is only a chance
effect.

O
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Concerning ACO with fized reward, the following result shows that for a suitable
parametrization where p decreases with n, ACO is at least distinctly faster on NH than (1+1)-
EA, although still slower than random search. We choose p,,;, = 1/n to have a fair comparison
with standard (1 + 1)-EA (identical behavior in the boundary case of p close to one by Propo-
sition 4.2 (b)).

Proposition 6.2. The expected runtime of the considered ACO variant with fixed reward,
Pmin = 1/n and p, = 57" on NH has an upper bound of order O(5").

Proof. Let us consider the time ¢, until when a generic never reinforced component 7 takes
for the last time a value not smaller than 1/4. Accordingly to (16), we look for the largest m

This happens for m equal to

A e

Similarly to what has been done in the proof of Lemma 3.3, one can show that

ElTy] < bty p(X™=y) > tp(X'€ Xy, X* ¢ Xy, 1<s<t—1]|X"=y)

TE L t=1
_ 00 -1
= Y X =) S ep(X € Ay X = o) [ p(X7 = 2 | X7 = )
9¢ Ly t=1 m=1

= oty p(X"=y) Y tp(X'e Xy | X" =2
7€ L t=1
t—1
[I(1—p(X™ € Xy | X =™

m=1

where y abbreviates the expression (§,1(7(0)[1 — p]")), and 2™ abbreviates the expression
(@, ¥ (T (0)[L = p]™ ™).
Now, we have p(X™ € Xy | X™ ! = 2™ 1) > p'. = n~". As shown in the appendix by
Lemma 6.1, this implies that

00 t—1

Stp(Xte Xy | X =" [JQ—p(X™ € Xy | X =2™h) <1/pl,, =n".

t=1 m=1
Therefore, since the probability of not hitting #* during the first ¢, iterations is smaller or equal

to [1 — (1/4)"]™, it follows that

E[Ty) < T + 3 p(X™ = y)n" =T, +p(X" & Xar)n" < T+ [1— (1/4)"] 7 n".
J¢Lm

It is easy to see that for 0 < z < 1/2,

z < —log(l—2) < (2log2) - z. (25)
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Applying this to z = 57", we obtain

log 2 S )

5" . log2 > —.
%7 = Tlog(1—(1/5)7) ~ 2

As a consequence, it follows

log([1 — (1/4)"]™ n™) = #, log[l — (1/4)"] + nlogn < 52 log (1 —(1/4)") + nlogn
o™ /IN\" 1 /5\"
< —2 (= logn = —= - (2 1 _ 2
< 5 <4> +nlogn 5 (4) +nlogn — —oo, (27)

such that the expression [1 — (1/4)"]" n™ must be bounded in n. On the other hand, again by
(26), the term ¢, is of order O(5").

We can then conclude that the upper bound £, + [1 — (1/4)"]% n™ for the expected runtime is
of order O(5"™). O

In the proof of Proposition 6.2, only rather loose estimations were used, such that the
bound can possibly be improved. Moreover, it should be emphasized that long strings that
can only be optimized by trial-and-error (this corresponds to the NH situation) are not typical
for applications of evolutionary algorithms. Rather than that, the string to be optimized may
contain a certain, comparably small part for which only trial-and-error works (no guidance by
the fitness function), whereas for a larger part, the fitness function provides guidance. In the
next subsection, we give an analytical result for a test function of this type.

6.2 Combining NH with OneMax

To give a precise example for a test problem of the type outlined at the end of subsection 6.1, we
define the problem NH-OneMazx, which combines the features of NH and OneMax, as follows:

Problem NH-OneMax: Let integers n and k < n be given.

flz) = (ﬁ%)(i xi+1) :

i=k+1

r;€{0,1} (i=1,...,n).

As it can be seen, for obtaining fitness values larger than zero, the first factor in the definition
of f(x) has to be given a value 1, which is only possible if all variables x1,. ..,z are set to
1. This corresponds to the solution of a NH problem. If this is achieved, the second factor
in the definition of f(x) has to be maximized. This corresponds to the solution of a OneMax
problem. Evidently, (i) the position of the “NH bits”, (ii) the values the “NH bits” have to
take in order to solve the NH part of problem, and (iii) the values of the “OneMax bits”
that optimize the OneMax part of the problem, can also be chosen in another way, leading
to equivalent runtime behavior of ACO, and the same holds for (1+1)-EA. Thus, the example
above is to be considered as a representative of a more general problem class where for some
part of a string, the exact “key” has to be found by trial-and-error, and for another part, the
degree of congruence with an optimal sequence has to be maximized.
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To make the problem relevant, one should assume that the number of bits k for which the
correct combination has to be found by trial-and-error is small compared to n (otherwise, all
heuristic algorithms will have to resort essentially to blind search). The choice k = [log,n]
gives a meaningful ratio. Moreover, for the sake of simplicity, we shall assume that n is a power
of k,i.e., n = 2% and k = log, n.

Proposition 6.3. The expected runtime of (14+1)-EA on NH-OneMax with k = log, n has
lower bound (n/2)182",

Proof. For this problem, T}, is the smallest ¢ such that X* = (1,...,1). Therefore, the time
Tz, when X' € £y = {x|z; = ... = 2 = 1} for the first time cannot be larger than T}y, i.e.
Ty > Tf,, and E[Ty] > E[Tz,]. Let us consider any starting point 2° € £ := {z|2; =0,i =
1,...,k} C £y. As done in the proof of Proposition 6.1, one can show that

E[T;] > p(X° € L) E[Ty0_z,]

where z° is any point in £, and T,o_z, is the time when the first level set £ is left starting
from 2°. We note that p(X° € £') = (1/2)*. As for the NH problem, when starting from
20 e L, X' is never changed from z° until the first & bits are all flipped to 1. Therefore, the
expected time to leave level set £; starting from 2° is the reciprocal value of the probability
(1/n)* that all k bits are flipped in a single iteration, which gives E[T,o_z ] = n*. Hence, we
have
1\ F
E[Ty) > E[Tz,] > (2) P

As a conclusion, the expected number of steps until the NH-OneMax problem has been solved

has lower bound
1\ N n\ ¥ n\ logan
() = () B () )
2 2 2

It is easy to see that the lower bound indicated in Proposition 6.2 is not polynomial. Con-
trary to that, we show that ACO can cope with the problem within a polynomial expected
runtime. As in sections 5 and 6.1, we choose pp;, = 1/n for the sake of comparability with
(14+1)-EA.

O

Proposition 6.4. The expected runtime of the considered ACO variant with p,,;, = 1/n and
pn = n~3 on NH-OneMax with k = log, n has an upper bound of order O(n*logn).

Proof. For this problem, we have M = n — k 4 2 level sets. We apply here Lemma 3.2, i.e.

n—k+1
BTy < Y. sup{E[T,_x]}.
i=1 YEX;

We note that T,_, g, is the smallest time such that the first & bits of Xt are all 1 starting from
an initial point y = (¢, 7°) with at least one 0 among the first & bits of §. This means that
T, is the first time that the NH problem on the subvector of the first & components is solved,
when starting with one 0 in the subvector. Therefore, analogously to what has been done to
prove Proposition 6.2, it can be shown that

sup {E[T, x|} < o+ [1 = (1/4)"]" 0",

yEeX
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where now

t, =

with

Llogl(ig—2 n‘?’)J ’

nS

n®-log2 > t, > —.

It also holds

log([1 — (1/4)*]" n*)

Hence, £, 4+ [1 — (1/4)F]™ nF = O(n?).

2

t, log[l — (1/4)*] + klogn
(n3/2)log[1 — (1/4)¥] + log, n logn
—(n?/2) (1/4)* + logy n logn

= —(n*/2)/n® +logyn logn

—n/2 4 log,n logn — —o0.

IA A

Analogously to what has been done to prove Proposition 5.1, we have

n—k+1

n—k+1

Y sup{E[T, ]} < (n— k) (Pmin,p) + D 1/b;

i=2 YEX;

=2
n—k+1

= (n - k)t*(pmim p) + Z 1/[(” —k— (Z - 2)) * Pmin ° (1 - pminyhl]

= (n— k)t (Pmin, p) +

< nt*(Pmin, p) +

_1Og]%nhz__10g(1 _’pnwn)

=2
1
Pmin(L = Pmin
1
Prmin(1 — Dmin)" 1

21/

H,

1
H,

IN
S

VAN
S

Finally, we get

log(1 — p)
[—log(n — 1)
log(1 —n=3)

n? lognw +nH,/e.

w ]%nhz'(l —’pnnn)"

[0

E[Ty] <t +[1— (1/4)""n* +n {n?’lognw +n H,/e=0(n"logn).

Thus, all in all, the expected runtime has a bound of the claimed order.

7 LeadingOnes

In this section, we consider the LeadingOnes function, given by

f(f)zzn:ﬁ%‘

i=1j=1
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r;€{0,1} (i=1,...,n).

If the value f(x) is returned on a generic binary string z, this means that in the first f(z)
positions of the string there are 1-bits, while in the next position there is a 0-bit. It is known
that the expected runtime of (1+1)-EA on this function is of order O(n?). We show that
an upper bound of the same order is also valid for a broad range of ACO parametrizations,
including cases where both p,,;, and p tend to zero as n — oo. We restrict ourselves to the
case of constant reward. As for OneMax, the level sets are given by

Li={ze{0,1}"|f(x)=j—-1} (G=1,....,n+1).

Proposition 7.1. Expressed by the expected number of function evaluations until reaching the
optimal solution, the expected runtime of the non-degenerate MMAS with constant reward,
symmetric upper and lower pheromone bounds with p,,;, = 1/n, and the chain construction
graph, applied to LeadingOnes, is bounded from above by

nt*(pmnwp) + en2, (29>

where t*(pmin, ) is given by (19). In particular, for p = p,, of order Q((logn)/n), the expected
runtime is of order O(n?). (Note that the symbol Q(h(n)) denotes a lower bound of the form
constant-h(n).)

Proof. The proof combines that of Proposition 5.1 with the standard derivation of the O(n?)

behavior of (141)-EA on LeadingOnes, so the presentation can be short. As in the proof of
M-1

Proposition 5.1, it follows that E[Ty] < nt*(pmin, p) + > 1/Dk. Moreover, in this case we
k=1

p(Xl ¢ Xk ‘ XO = (Q7T*<Q))) = Pmin * (1 _pmin>ka
where § € L;,. Hence pr, = Prin - (1 — Pmin)*. Since ppin = 1/n, it follows

1 N 1 N1 1
Y I I
n n mn n (& n

Nt (Pmin, p) + en’?

have

Hence,

is an upper bound for the expected runtime. The second part of the proof follows immediately
by insertion of P, = 1/n and p > const - (logn)/n into (19), considering the first inequality
of (25). O

We see that for LeadingOnes, already in the case of constant reward, there exist p,, schemes
tending to zero as n — oo that preserve the O(n?) runtime behavior of (1+1)-EA. Presumably,
it is easy to show that if the LeadingOnes problem is combined with NH analogously as OneMax
with NH in subsection 6.2, ACO with a diminishing p,, scheme yields again considerably better
results than (14+1)-EA or ACO with high p values.
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8 Conclusions

We have analyzed the runtime complexity of an ACO variant that can be classified as MMAS
with best-so-far reinforcement on some well-known basic test problems as OneMax, Needle-
in-a-Haystack and LeadingOnes. The obtained results are twofold: First, we have shown that
the runtime complexity results for these test problems known from the EA literature can be
transferred to ACO algorithms not only for parameter choices where ACO imitates the behavior
of (14+1)-EA, but also for parametrizations where a broad range of pheromone values is used.
In particular, we demonstrated that the O(nlogn) result for OneMax and the O(n?) result for
LeadingOnes also extend to the “true” ACO case.

Secondly, our aim was to shed light on the choice of a crucial ACO parameter, the evapo-
ration factor p. Former analytical results may lead to the conjecture that in ACO algorithms
working with best-so-far reinforcement, high values of p are generally more efficient than low
values. Our results contradict this conclusion: Not only is it possible to achieve a good runtime
complexity on standard test functions as OneMax or LeadingOnes also by using p values near
to zero, but there is also a risk connected with high p values: It turns out that for the efficiency
obtained on “easy” functions by choosing a large p, the price has to be paid that the more
aggressive search forced in this way makes the algorithm less robust with respect to eventual
“missing guidance” given by the fitness function. We were able to illustrate this effect by a
combination of a OneMax with a Needle-in-a-Haystack problem where ACO with a scheme of
p values suitably decreasing in n shows polynomial runtime behavior, whereas both (14+1)-EA
and ACO with high p show an exponential behavior. Our results indicate that to ensure robust-
ness, it may be advisable to keep p rather small and even to decrease it with growing problem
instance size, but also to avoid too small values which would impair the performance on easy
problems (or on easy parts of a problem). Of course, this tradeoff deserves future investigations.

Results for (1+1)-EA as those presented in Section 3 have already been used in other publi-
cations, although without including an explicit formal proof or a reference to it. Furthermore,
for (14+1)-EA, the involved Markov process is on a finite state space. In the ACO context,
the presence of the pheromone vector has to be taken into account. This leads to the case of
an infinite state space. We have therefore put these assertions on a solid mathematical base
by proving them explicitly in a Markov process framework that fits with the ACO situation.
Hopefully, the lemmas derived in Section 3 will also be useful in a more general context.

Although the purpose of this article is not yet to provide analytical comparisons between
different metaheuristics, the simultaneous consideration of an algorithm from the EA field with
an ACO algorithm might prepare and stimulate investigations of this type. The most urgent
goal for the next future, however, is to extend available runtime results to a broader class of
test problems, especially also to NP-hard problems, for which no results seem to be available
at present in the ACO literature.
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Appendix

Proof of Lemma 3.1
Denoting by Q] the event Qf = {X? € A, X* ¢ &;,1 < s < ¢ — 1}, we have for z € &)

tp(Qy | X° = 1)

WE

E[Tw—v\’M] -

-
Il
i

t—1 M-1 oo t’'—1
ST S p(@, (XY =2, € X} ﬂ{XSe X} X0 =x2)
t'=1k=j+1n=1
t—1
tp({X' € Xy} ({X° € 4} X" =u).

s=1

I
M8

-
Il
)

hE

_|_

-
Il
i

Denoting by B, the first term of the last expression, we obtain

M—-1 oo t—1 oo t/'—1

B = 33T S0 (X =€ M) () (X7 € X0 =)

k=j+1t=2t'=1n=

-1 t'—1

M-—1 T N
-2 T%JSW{Z > p( (XY =20 € K} ({X € X} X0 =0)
=j+1 t=2t'=1n=1

s=1

~+

————

t—1 t'—1

S {zzztmn{xt’zxneka{chmxozm

k=j+1 T\NEN | n=11=2¢/=1 s=1

———

M—-1 oo oo t—1 t'—1

= 2 33 3 tp( @ (X" =wn € A [1{X7 € X0 =0),

k=j+1n=1t=2¢'=1

where we used the known result that the sum (finite or infinite) of a non-negative series is the
supremum of the set of all its partial summations. By using the same results, we further obtain:

k=j+1n= 1TeN | t=2¢/= s=1
T t'+1+T t'—1 }

= Z i sup {Z Z thﬁ\/[ﬂ{Xt,—xne Xk}ﬂ{X 6X}|X0—x)

k=j+1n=1TT'€N | t/=1 ¢=¢/41

B, = i isup {th:tp(Qﬁwﬂ{Xt,:an Xk}tﬁ {X° ¢ Xj}|X0:x)}

M—-1 oo oo oo t'—1

= 233 3 (@ XT =wn € X} (X e X)X =a)

k=j+1n=1¢=1t=t'+1

= leii i t'+t— ({Xt =z, € Xk}thl{Xse Xj}|X°:x)

k=j+1n=1t'=1t=t'+1 s=1

Xo—x)

p(Xte Xy, X° ¢ Xy t' <s <t X' =1, € X))
M—-1

- ¥ iit p({Xt’_xne Xk}tﬂ{xs

t
k:_j—i-l n=1t'=1

p(Xt € X, X ¢ Xy, 0<s<t|X'=2x, € &)

t=1
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+ ,iip({X“zxneXk}tﬂl{XSer}‘X0=x>

s=1

St —tp(Xt e Xy, X* ¢ Xyt < s < t| X! =, € &)

XO—J:>

p<U {X'€ X, X* ¢ X0, 0 < s <t} X" =, € Xk>

t=1

k=j+1n=1t'=1

= Z iit/p ({Xt'—xne X} ﬁ{Xs

n il ii p({Xt, — 1, € Xk}tﬁl{Xs c Xj}‘ oniU)

k=j+1n=1t=

8

dotp(Xte X, X° ¢ Xy, 0<s <t|X’ =z, € X))
1

M-1 oo oo t'—1

< >ty ({th:xne X} () {X® ona:)
k=j+1n=1t'=1 s=1
M-1 oo oo t'—1

+ ZZp({Xt/:xne Xt ({X® € Xj}‘ onx) BT, —xy
k=j+1n=1t'=1 s=1

E

o0

- Zt/ Zl §p<{Xt =Ty € Xk} tﬁl{Xs S X]}| Xo—x)

t'=1 k=j+1n=1

k=j+1n=1t'=1

M—-1 o oo t’'—1
+ > >3 > p ({Xt =1z, € X} ﬂ {X* ¢ Xj}| XY = x) E[T,, —xy

t'—1
= Zt' Z D {Xt € Xk} ﬂ{XSE X} X' =2
t'=1 k=j+1
M-1 oo

+ Z Zp(x - xn,k) E[Tﬂfn,kﬂ/\’M] .

k=j+1n=1
Therefore, we have

t—1

ET, .x,] = B.+ th (X' e xu} N{X*e XX =2)
t=1 s=1

oo t'—1

< Nt Zp {XtEXk}ﬂ{XSEXj} X' =2
t'=1 k=j+1
M-1 oo

+ Z Z p(x - In,k) E[Txn,k"XAM]
k=j+1n=1

00 t—1

+ dotp({X' e xu} N{X° € X} X' =x)

t=1 s=1

= Zt p({xt ¢ X}thse X}|X°—az)

=1
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M-1 oo

+ D Yopl@ = wn) BTy, ]

k=j+1n=1
M-1 oo

= + Z ZP T = Tk E[Tmn,k"-){k{]'
k=j+1n=1

Proof of Lemma 3.2

By the result used in the proof of Lemma 3.1, the considered quantity E[T)] can be expressed
as

S

-1

Zp Q§W|X0 =T, € Xj)p(XO =Z,; € &))

NE
]

E[Ty] =

t=1 j=1 n=1

M—-1 oo o)

= Yop(X0 =mn € X)) D tp(Qy|X° =z, € &)
j=1 n=1 t=1
M—-1 oo

- ZP<XO = Tn,j € Xj)E[TIn,j"X]M] .
j=1 n=1

By Lemma 3.1, we have
E[TfC‘VYM] < E + Z Z E T, k— XM p(l’ - xm,k‘)?

k=j+1m=1
with v € X}, oy € Xy and 7 =1,..., M — 1. Now, by induction, we can show that
M—1
B[Tomiy] < Y- sup{E[T, 5]},

k=j Y€

forz € X; and 1 < j < M — 1. In fact, for x € &Xj;_1, it holds

E[Tx—VfM] = E[TLL’—VEM,l] S sup {E[ y—Xnr_ 1]}

YyEXM—1

Let us assume now that for x € &}, and j > j' it holds

Then, for z € &}/ the recursion above implies that

M-1 oo
E[Tiﬂé\fM] < sup {E[ y—X; /]} + Z E[Txm,k‘)XM] p(l’ - xm,k)
yex;s k=j'+1m=1
-1 oo M-1
< sup {E[ y—>X /]} + Z Z Sup{E[Ty—»XS]} p(a: - xm,k)
YEX; k=j'+1m=1 s=k YEXs



- oo M-1

< sup {E[T, %]} + Z >, > sup {E[T, .z ]} p(z = 2m)

k=j'+1m=1s=j'+1YEXs

M-1
< sup{E[ T, %1} + > sup{E[T, %]} Z Z p(z — T )
YyeEX s ]l+1y€Xs k=j'+1m=1
M-1 ~
= sup{E[ Tz, )b+ Y supl{E[T, x]}p(r — &)
yE _]/+1y€Xs
M-1
< Z sup{E[T, %]}
/yGX

Therefore, the result is also true for j = j’. Hence, the result is proved for all 1 < 7 < M — 1.
By using this result in the third expression of the block at the beginning of the proof, we

obtain

Ellu] = | Y (X =, € X)ET,, —x,]

M—-1

p(X" =0, € &) > sup{E[T, 4]}

1 k=j Y€Xk

= Z_: sup{E[T, x|} Zp =Z,; € &))

i=1 k=j Y€Xk

IA
gk

= ) , Sup {E[T, 2z ]}p(X° € X))
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(]
n
==
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=
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!
=
f—;
(]
>
m
e

Lemma 6.1. Let us consider a temporal sequence of independent Bernoulli events &;, t =
1,2,... with p, = p(§& = 1) > p > 0. Let T be the first time such that & = 1 along the time
sequence t = 1,2, .... Then, it follows

t—1 00
tht [[a—p) <> tp(1—p)~t=1/p.

i=1 t=1
Proof. It is well-known that for two random variables X; > 0 and X, > 0 with existing
expected values and distribution functions F; and Fj, respectively, the stochastic dominance
property Fi(t) > Fy(t) Vt implies E[X;] < E[X5]. Now, let & be as defined, and let & be
a sequence of independent Bernoulli events with p(€/ = 1) = p V¢t. Then the corresponding
distribution functions for the first success times 7" of (&) and 7" of (&]) are

t

Ft)=p(T <t)=1-1[0~-p)

=1
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o Fy(t) = p(T" <) =1~ (1—p)! < Fi(1).

which shows E[T] < E[T'] = 1/p.
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