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Abstract: The paper gives an overview on the status of the theoretical analysis of Ant Colony
Optimization (ACO) algorithms, with a special focus on the analytical investigation of the runtime
required to find an optimal solution to a given combinatorial optimization problem. First, a general
framework for studying questions of this type is presented, and three important ACO variants are
recalled within this framework. Secondly, two classes of formal techniques for runtime investigations
of the considered type are outlined. Finally, some available runtime complexity results for ACO
variants, referring to elementary test problems that have been introduced in the theoretical literature
on evolutionary algorithms, are cited and discussed.

1 Introduction

A metaheuristic that belongs now to the most prominent and most frequently applied techniques
for search and heuristic optimization started its development fifteen years ago out of the seminal
work by Dorigo, Maniezzo and Colorni [11], [12]: the ant-based approach to the solution of
combinatorial optimization problems. Originally motivated by the attempt to solve the well-
known Travelling Salesperson Problem (TSP), the inventors of the approach recognized soon
that their technique is applicable to a much larger range of problems. In an explicit form, this
insight was established by the creation of the Ant Colony Optimization (ACO) metaheuristic
by Dorigo and Di Caro in [9]. In the meantime, there exist several hundreds of publications
reporting on successful applications of ACO in a large variety of areas. For a recent survey, we
refer the reader to the profound and comprehensive textbook by Dorigo and Stützle [13].

Notwithstanding the mentioned fact that there are already numerous experimental investi-
gations on ACO, much less has been done in the field of ACO theory. It was not before the
year 2000 that the first convergence proofs for ACO algorithms appeared (see [17], [30], [18]).
At present, convergence results are already available for several ACO variants. Even if an ACO
algorithm is ensured to converge to an optimal solution, there remains the practically relevant
question of how much time it takes (e.g., in the average) until such a solution is found. Contrary
to the situation in the Genetic Algorithms (GA) field, results concerning this last question are
still scarce in the ACO area.

As soon as one passes from the question of convergence of a metaheuristic algorithm to that
of the speed of convergence, one cannot expect anymore to obtain very general (positive) results.
This is a consequence of the so-called “no-free-lunch theorems” which basically state that for
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each algorithm that performs well on some optimization problems, there must necessarily be
other problems where it fails to be efficient. As a consequence, runtime analysis of a meta-
heuristic algorithm has to be done on a more detailed level by investigating various specific test
problems. These test problems may seem unrealistically simple from the viewpoint of applied
research, but studying them can provide helpful information in so far as each of these problems
incorporates some typical feature (or several features) of real problems. Hence, their separate
analysis helps us to understand why and when certain algorithmic variants or parametrizations
work resp. do not work in real-life applications.

Although the analytical investigation of the runtime of ACO algorithms is still a very new
issue at the moment, there are already some first results available, and they promise that a
large amount of knowledge on this issue can be won within the next years. Some of the existing
results already allow a comparison of specific ACO algorithms with counterparts from the field
of Evolutionary Algorithms, in particular with the so-called (1+1)-EA (see [14]).

The aim of the present survey article is to describe a general, well-defined formal framework
based on which results of the outlined type can be derived in a mathematically sound way, to
present already available results, to give an introduction into the techniques by which these
results have been obtained, to outline their scope of application, and to discuss topics for future
research.

The paper is organized as follows: Section 2 presents some important ACO variants within
a general framework, that of the construction graph in the sense of [17], [18], which lends
itself very well for theoretical investigations on ACO. Section 3 deals with the following ques-
tions: Under which conditions and in which sense can convergence to optimal solutions be
ensured? Section 4 presents general-purpose techniques for analytical investigations of ACO
algorithms. In section 5, available results concerning two important ACO variants (Ant System
and MMAS) are outlined and discussed. Section 6 gives concluding remarks.

2 A Short Recapitulation of Some ACO Variants

2.1 Construction Graphs

Before specifying some particular ACO algorithms, we start with the definition of a unifying
ACO framework procedure based on the construction graph concept in the form as developed
in [17], [18].1 Consider a combinatorial optimization problem of the form

f(x) → max, x ∈ S. (1)

Therein, x is a solution to the combinatorial optimization problem, S is a finite set of feasible
solutions (the so-called feasible set), and f is the objective function, also called fitness function.
To have a natural interpretation of “fitness”, we formulate all problems as maximization prob-
lems. The combinatorial optimization problem can be constrained or unconstrained; for (1),

1The construction graph definition used here is different from that given in [13], [8], the main difference being
that we identify solution components with the edges of the graph, whereas in [13], [8], solution components are
identified with its nodes. Both types of construction graphs have their respective advantages. We choose here
the type described in [17], [18] because it allows very natural representations, giving visual intuition, for the
standard problems treated by ACO. E.g., in the case of a TSP, our construction graph has the same structure
as the underlying transportation graph, the n nodes representing the n cities (cf. Fig. 1).
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this distinction is not relevant, provided that S is considered as the set of solutions satisfying
all given constraints.

Let an instance of a combinatorial optimization problem of the form (1) be given. By a
construction graph for this instance, we understand a directed graph C = (V ,A) with node set
V and edge set A, together with a solution decoding function Φ, with the following properties:

(1) In C, a unique node is marked as the so-called start node.

(2) Let W be the set of directed paths w in C, called feasible paths, satisfying the following
conditions:

(a) w starts at the start node of C;

(b) w contains each node of C at most once;

(c) w is maximal in W , that is, it cannot be prolonged (by appending edges and nodes)
to a longer feasible path in W .

The function Φ maps the set W of feasible paths onto the set of feasible solutions S of
the given problem instance: To each feasible path w ∈ W , there corresponds a feasible
solution x = Φ(w) ∈ S, and to each feasible solution x ∈ S, there corresponds at least
one feasible path in W such that Φ(w) = x.

Example 1. The graph in Fig. 1 is the natural construction graph for an asymmetric TSP
with n = 5 cities. Node 1 is the start node. Here, C is a complete graph, and a feasible path is
simply a path starting in node 1 and containing each node (“city”) exactly once. The decoding
function Φ takes such a feasible path w and assigns to it a feasible solution (i.e., a closed tour)
of the TSP by adding an additional move from the last node of w back to the start node,
such that the tour becomes closed.—If one prefers to leave the choice of the first node of the
tour open, as it is done in many ACO applications to the TSP, one may use an alternative
construction graph obtained by adding an artificial start node 0 and directed edges leading
from this node to each of the nodes 1, . . . , n.

Example 2. The graph in Fig. 2 (called chain in [20]) shows a possible construction graph
for a subset selection problem, the feasible solutions of which are the subsets of a set {1, . . . , n}
of items. To describe a solution, we let component xi of the solution vector x take the value
1 if item i is to be included in the subset, and the value 0 otherwise. The fitness function
f : {0, 1}n → R can be an arbitrary function. The chain construction graph encodes the choice
xi = 1 as an up-move from node i− 1 to node i, and the choice xi = 0 as a down-move from
node i− 1 to node −i (i = 1, . . . , n). The moves from a node i or −i to their successor node i
are deterministic and do not play a role for the decision process. Node 0 is the start node. As
soon as node n is reached, the walk terminates. As in the TSP construction graph of Fig. 1,
there are also here no special restrictions on feasible continuations except those implicitly given
by the graph structure, such that the set W of feasible paths is just the set of directed paths
of length 2n in the chain graph.

Example 3. Another possible construction graph (called drum in [20]) for a subset selection
problem is depicted in Fig. 3. It encodes the solutions in a more redundant way. Node 0 is the
start node. Again, the construction graph contains for each item i two different nodes i and
−i, but they are now completely interlinked, with the exception of links between nodes i and
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−i and from node i or −i to node 0. For each item, the decision on whether to set xi = 1 or
xi = 0 is represented by the decision whether node i or node −i, respectively, is visited by the
path. Obviously, in this encoding, the same solution x is represented by several different paths.
E.g., path (0,−2, 4, 3, 1) and path (0, 4,−2, 1, 3) are decoded as the same solution (1, 0, 1, 1).
Evidently, we have here to impose an additional restriction on paths to make them encodings
of feasible solutions: Whenever a node i or −i has been visited, neither i nor −i are allowed
to be visited in a future move. The set W of feasible paths is the set of all directed paths of
maximum length in the drum graph respecting this constraint. The different consequences of
different construction graph choices for the same problem instance will become clear after the
presentation of the ACO algorithm in the following subsection.

4
 3


2


1


5


Fig. 1. Construction graph for an asymmetric TSP with n = 5 cities.
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Fig. 2. “Chain” construction graph for a subset selection problem with n = 4.
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Fig. 3. “Drum” construction graph for a subset selection problem with n = 4. Undirected
edges represent pairs of directed edges with opposite orientation.

The objective function value (fitness value) assigned to a feasible path w is always that of
Φ(w), that is, that of the corresponding feasible solution x.

By a partial path in C, we understand a path u that satisfies properties (2a) – (2b) in the
construction graph definition, but not necessarily property (2c). A continuation of a partial
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path u with node i as its last node is an edge (i, j) ∈ A. A continuation (i, j) of u is called
feasible if a feasible path w ∈ W starting with u and traversing then edge (i, j) exists, otherwise
it is called infeasible. E.g., the continuation (3, 4) of u = (0,−2, 3) in the drum graph of Fig. 3
is feasible, whereas the continuation (3, 2) of u is infeasible, because once node −2 has been
visited, node 2 is forbidden in all subsequent moves by our additional restriction indicated
above.

Let us give a few explanations to the elements of the construction graph definition above,
indicating that they are all necessary to obtain meaningful results: Condition (1) together
with condition (2a) is required to define where the solution construction (in our framework
represented by the traversal of a path) starts. Condition (2b) avoids cycling of the procedure.
Moreover, it turns out to be an indispensable precondition for the validity of certain convergence
results. Condition (2c) ensures that yet incomplete partial paths can be clearly distinguished
from complete paths. This is necessary in order that the algorithm “knows” when to start the
decoding of a path to a solution by applying function Φ.

2.2 Framework Algorithm

Based on our construction graph definition, a general framework algorithm encompassing dif-
ferent well-known versions of ACO is given by the procedure described below.

Procedure ACO
Initialize pheromone trails τij on the edges (i, j) of C;
for iteration m = 1, 2, . . . do

for agent s = 1, . . . , S do
set i, the current position of the agent, equal to the start node of C;
set u, the current partial path of the agent, equal to the empty list;
while a feasible continuation (i, j) of the path u of the agent exists do

select successor node j with probability pij, where
pij = 0, if continuation (i, j) is infeasible, and
pij = g(τij, ηij(u)) / (

∑
(i,r) g(τir, ηir(u)),

where the sum is over all feasible continuations (i, r), otherwise;
continue the current path u of the agent by adding edge (i, j) to u

and setting i = j;
end while
update the pheromone trails τij;

end for
end for

Explanations

• The pheromone trails are nonnegative real values assigned to the edges of the construction
graph. They serve as the “memory” of the procedure, storing information on how good
the single solution components (corresponding to the edges of the construction graph)
have turned out in previous iterations. Most ACO variants initialize the pheromone trails
by giving them an equal value on all edges.
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• The values ηij(u) are called heuristic information values in the literature. They are ob-
tained by means of some problem-specific heuristic for the combinatorial optimization
problem under consideration. It is also possible to work without using heuristic infor-
mation values. (We shall do that in the next sections.) Contrary to τij, the quantities
ηij(u) are allowed to depend on the entire partial path u traversed, as indicated by the
argument u.

• The function g combines pheromone trail and heuristic information. The most popular
choice is

g(τ, η) = τα · ηβ (2)

with parameters α > 0 (often chosen as α = 1) and β > 0.

• The diverse ACO variants mainly differ by the way the update of the pheromone trails is
performed. This issue is addressed in the following subsection.

2.3 Some Important ACO Variants

We specify now three of the best-known and most frequently applied ACO algorithms within
the framework of the last subsection. It has to be mentioned that these specifications only
represent the “ant-based” cores of the respective algorithms and do not include additional
features such as local post-optimization. Although such extensions, often referred as “daemon
actions”, are extremely valuable to increase performance in applications, a theoretical runtime
analysis has to start with the pure algorithmic variants, where additional procedures are not
yet applied.

Ant System (AS). This is the first ACO algorithm that has been proposed in the literature
(see Dorigo, Maniezzo and Colorni [11], [12]). It is characterized by the following pheromone
update rule:

τij := (1− ρ) · τij +
ρ

S
·

S∑

s=1

∆τ s
ij, (3)

where ρ ∈ [0, 1] is the so-called evaporation rate, and, denoting by ws the path of agent s,

∆τ s
ij =

{
C · f(ws), if (i, j) ∈ ws,
0, otherwise,

(4)

with a constant C > 0. 2 We see that in Ant System, all agents contribute to the pheromone
increment, the increment itself being chosen as fitness-proportional.

MAX −MIN Ant System (MMAS). This approach has been developed by Stützle and
Hoos in [31], [32]. It is characterized mainly by two innovations compared to Ant System:
First, instead of allowing all agents to deposit pheromone on their paths, only paths that have

2In the original publications on AS, the factor ρ/S before the summand in (3) does not appear; in more
recent presentations, ρ appears (which makes sense as the reward in the second term of (3) must in some way
compensate the loss proportional to ρ in the first term), but not 1/S. Extracting in (3) not only ρ, but also 1/S
from the proportionality factor between pheromone increment and fitness makes no essential difference in the
definition above (one can imagine that C is multiplied by S for compensation), but will turn out to be useful
in subsection 4.2.

6



turned out as particularly good are reinforced. Two selection rules are used either alternatively
or in a combined way. The first is best-so-far (BS), where the best path found up to now
(no matter in which iteration it occurred) is reinforced, the other is iteration-best (IB), where
the best path found in the current iteration is reinforced. Secondly, to compensate for the
more unbalanced pheromone trail aggregation caused by the restriction to reinforcement only
on “outstanding” paths, MMAS applies lower and upper bounds for the pheromone trails.
(There are two additional modifications compared to AS suggested in [31] – [32], concerning a
special way of pheromone initialization and possible re-initialization of pheromone trails when
stagnation occurs. Since these two points seem to be less central for MMAS, they will be
omitted here.)

For a fixed considered iteration m, let ŵ denote the best path found in one of the iterations,
and let w̃ denote the best path found in iteration m itself (1, . . . ,m). The best-so-far path ŵ
is updated each time a strictly better path than the current ŵ is found. Then the pheromone
update rule of MMAS is given by

τij :=
[
(1− ρ) · τij + ρ ·∆τ best

ij

]τmax

τmin

, (5)

where τmin and τmax with 0 ≤ τmin < τmax are the lower resp. upper pheromone bound, τ 7→ [τ ]ba
denotes the function

[τ ]ba =





a, if τ < a,
τ, if a ≤ τ ≤ b,
b, if τ > b,

(6)

and ∆τ best
ij is given by

∆τ best
ij =

{
C · f(wbest), if (i, j) ∈ wbest,
0, otherwise,

(7)

with wbest = ŵ and wbest = w̃ in the case of best-so-far selection and in the case of iteration-
best selection, respectively. We shall refer to the two cases by the abbreviations MMASbs

resp. MMASib. In this paper, we will not deal with the combined case.
For allowing the theoretical investigations to start with a still simpler situation, we will

also consider the case where the reward for the edges on the reinforced paths is not chosen
fitness-proportional, but constant, such that formula (7) is replaced by

∆τ best
ij =

{
C, if (i, j) ∈ wbest,
0, otherwise.

(8)

The corresponding variants will be denoted by MMASbs,co resp. MMASib,co.

Rank-Based Ant System (ASrank). This variant has been developed by Bullnheimer et
al. [6]. It is characterized by the idea that agents are sorted in each iteration according to the
fitness rank of the paths generated by them. The R− 1 best agents are allowed then to deposit
pheromone on their paths in a scheme with decreasing weights from rank 1 to rank R − 1.
(Additionally, ASrank proposes also to reinforce the best-so-far solution; again, we omit this
feature in order to concentrate on the “pure” version of the algorithmic variant.) This gives
the following pheromone update rule:

τij := (1− ρ) · τij + ρ ·
R−1∑

r=1

(R− r) ∆τ
[r]
ij , (9)
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where w[r] is the rth-best path found in the current iteration (ties are solved randomly), and

∆τ
[r]
ij is defined analogously as in (4). Obviously, for R = 2, ASrank becomes identical to

MMASib with τmin = 0 and τmax = ∞.

We do not claim that all successful ACO variants fit into the framework of subsection 2.2;
for example, Ant Colony System (ACS) [10] cannot be expressed within this framework.

3 Convergence

The question on which conditions and in which sense convergence to optimal solutions takes
place is not within the focus of the present survey, but can evidently not be ignored whenever
the further-reaching question of convergence speed arises. Several notions of convergence of a
probabilistic heuristic can be distinguished. Below, we define three different notions of con-
vergence of an ACO algorithm, borrowing terminology from [13]. In the definitions, we use
τ(m) = (τij(m))(i,j)∈A to denote the vector of pheromone trails in iteration m. The expression
ŵ(m) denotes the best-so-far path in iteration m. By w(τ), we denote the (random) path of
an agent given that in the current iteration the pheromone trails are described by pheromone
vector τ = (τij)(i,j)∈A. By W∗, we denote the set of optimal paths with respect to the given
fitness function f . The optimal (i.e., maximal) fitness value will be written as f ∗. Finally, the
probability of an event A will be denoted by Pr(A).

We start by formal definitions of some convergence notions for ACO.

• Convergence in solution holds, if

Pr{w(τ(m)) ∈ W∗} → 1 (m →∞). (10)

This property is satisfied if the pheromone vector evolves in such a way that it tends
more and more to support (only) the generation of an optimal solution. In other words,
convergence in solution means that the agents learn to produce the optimal solution. This
is the strongest notion of convergence we investigate here.

• ε-convergence in solution for some value ε ∈]0, 1[ holds, if there exists an iteration number
M(ε) such that

Pr{w(τ(m)) ∈ W∗} ≥ 1− ε for all m ≥ M(ε). (11)

ε-convergence in solution is a weaker form of convergence in solution which does not
require that the probabilities of producing an optimal solution tend to one, but only that
their distance to one becomes smaller than some pre-defined threshold value ε. A certain
parametrization of an ACO variant can, for example, possess ε-convergence in solution
for ε = 0.001, but not for ε = 0.0001. If, for some fixed parametrization of the algorithm,
the threshold value ε can be chosen arbitrarily and for each choice, (11) is satisfied for
sufficiently large M(ε), we have the stronger property of convergence in solution.

• Convergence in value holds, if

Pr{f(ŵ(m)) = f ∗} → 1 (m →∞). (12)

Essentially, this means that with probability one, there will be some time when some
agent will produce an optimal solution. This is the weakest of the three convergence
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notions: Already ε-convergence in solution implies convergence in value, since if (11) is
valid for some ε > 0, the agents perform independent trials to hit an optimal solution with
a success probability that is bounded from below by a positive constant after iteration
M(ε), which implies success in some iteration with probability one.

Now we are able to cite available results, which can be demonstrated for arbitrary problems
on arbitrary construction graphs. In Gutjahr [17], it has been shown that an ACO algorithm
called GBAS has the property of ε-convergence in solution. The threshold ε > 0 can be chosen
arbitrarily, but the parametrization of the algorithm has to be adapted to ε. GBAS can be
described as MMASbs with τmin = 0, τmax = ∞ and pheromone update only in iterations
where ŵ improves.

Stützle and Dorigo show in [30] that MMASbs and MMASit possess the property of
convergence in value. This is a very general result. From their derivations, it also follows
that the investigated MMAS algorithms (with some constant τmin > 0) have the property of
ε-convergence in solution, although ε cannot be chosen arbitrarily here, but depends on the
setting of τmin and is usually large. Convergence in solution is not possible in this context.

The strongest convergence property, convergence in solution, has been demonstrated in Gut-
jahr [18] for two variants of MMASbs,co, called GBAS/tdev and GBAS/tdlb. The first variant,
GBAS/tdev, differs from MMASbs,co by using time-dependent evaporation rates, that is, ρ is
replaced by ρm, where the values ρm are decreasing in m according to a suitable scheme. The
second variant, GBAS/tdlb, differs from MMASbs,co by using time-dependent lower bounds,
that is, τmin is replaced by τmin(m), where the values τmin(m) are decreasing in m, again
according to a suitable scheme.3

Sebastiani and Torrisi [29] prove an important extension of the results in [18] by applying
time-dependent evaporation rates and time-dependent lower bounds to MMASbs instead of
MMASbs,co.

4 Mathematical Techniques for the Runtime Analysis

In this section, we outline two general techniques that can be helpful for obtaining runtime
results on ACO variants. The first technique, level-reaching estimations, aims at a direct
investigation of the process by which an ACO variant gradually approaches the optimal solu-
tion. The method is borrowed from the literature on the analysis of evolutionary algorithms.
Despite its simplicity, it turns out to be successful in a surprisingly large number of special
situations. Its range of applicability, however, is restricted in the ACO field to variants using
exclusively the best-so-far type of reinforcement (e.g., MMASbs or MMASbs,co). For being
able to cope with ACO variants with other reinforcement mechanisms, we resort to a second
group of techniques that approximate the pheromone evolution process of a considered ACO
variant by mathematically more transparent processes. Of course, such approximations have
to be justified by asymptotic convergence results in order to allow conclusions on the behavior
of the ACO variant under consideration itself.

For the sake of easier presentation, we will identify “paths” and “solutions” in the sequel
and write sometimes also x instead of w.

3Contrary to GBAS, pheromone update is done in GBAS/tdev and GBAS/tdlb also in iterations where ŵ
does not improve, as usual in the MMAS class of algorithms.
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4.1 Level-Reaching Estimations

Level-reaching estimations, which we shall describe here in a generic context, have been devel-
oped and successfully used in diverse publications on the analysis of evolutionary algorithms.
For an excellent example, we refer to Droste et al. [14]. The following introduction of the
basic idea builds on the discussion in Borisovsky and Eremeev [5]. There, the authors argue
that a straightforward way to the runtime analysis of evolutionary algorithms would be the
application of Markov chain theory. However, the explosion of the solution space in the case
of growing instance size makes this approach usually infeasible. Therefore, it is necessary to
group solutions into classes, a suitable criterion for the classification being the fitness of the
solutions: Let f1, . . . , fd denote the possible different values the fitness function f can assume
on the finite set S, where we suppose that these values are sorted such that f1 < . . . < fd. We
call Aj = {x ∈ S | f(x) = fj} the jth level set. On certain conditions, the search behavior of
an evolutionary metaheuristic is in some aspects invariant with respect to the choice of specific
elements from a level set Aj. In particular, there may be bounds for the expected staying time
in some level set that do not depend on the specific solution(s) visited (first) in this level set,
but only on the level number j. This can then be exploited for runtime analysis purposes.

In our ACO framework, we can apply this idea as follows. Consider an ACO variant with
BS pheromone update, such as, for example, MMASbs or MMASbs,co. Similarly as before, we
denote the best-so-far solution (path) by x̂. Assume x̂ ∈ Aj. By definition, x̂ does not change
as long as the agents do not produce a better solution than x̂. During all this time, only the
edges on x̂ are reinforced. Now suppose that a lower bound λj for the probability can be found
that on these premises, one of the agents finds a solution better than x̂, that is, a solution with
some fitness value fk where k > j. As soon as this happens, the process jumps from level j up
to level k. Provided that λj only depends on the current level number j, the expected runtime
until the process jumps from level j to a higher level has upper bound 1/λj. In other words,
the expected staying time in level j is then bounded from above by 1/λj.

By definition of x̂, after x̂ has left a level set Aj, it can never return to Aj again, so
each level set is visited at most once. In the worst case, x̂ visits all suboptimal level sets
Aj (j = 1, . . . , d − 1) before reaching the optimal level set Ad. Thus, 1/λ1 + . . . + 1/λd−1 is
an upper bound for the overall runtime of the algorithm until reaching the optimum.4 In its
application to special cases, this general approach may still need some extensions, which we
shall not discuss here, since they do not contribute to the main idea.

An obvious condition for the applicability of the outlined level-reaching estimation technique
is that the process never returns from a current level set Aj to a lower level set A` with ` < k.
Contrary to the best-so-far solution x̂, the fitness of the iteration-best solution x̃ can also
decrease from one iteration to the next. Therefore, the analysis of variants using the IB instead
of the BS reinforcement rule is not amenable to the described technique.

4.2 Approximation Techniques

To overcome the just-mentioned difficulties in the analysis of ACO variants that do not possess
anymore the monotonicity properties present in a BS reinforcement context, a quite different
analytical approach will be outlined in this subsection. Its origins lie in the stimulating work

4Although this observation seems intuitively evident and has indeed been used in several publications, a
rigorous formal proof is surprisingly intricate. Such a proof is given in [22].
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by Merkle and Middendorf [25] on the ACO Model.

4.2.1 ACO Model and Associated Discrete Deterministic Process

The ACO model was introduced in [25] within the context of a specific permutation problem
(the linear assigment problem), applying a special ACO variant using IB reinforcement. More
recently [20], a similar approach has been used for the analysis of Ant System under the name
Associated Discrete Deterministic Process (ADDP). Making use of the presentation of AS in
section 2, it is easier to start here with the explanation of the ADDP. We describe the concept
on a quite general level, using again the construction graph framework of section 2. The key
idea of the ADDP, borrowed from the ACO model, is the following: ACO is a stochastic
procedure, since in each iteration, agents perform random walks on the construction graph. As
a consequence, also the pheromone vectors occurring in iteration 1, 2, etc., are random variables.
However, if we consider the case of a growing number S of agents, the effect of their collective
behavior on the pheromone increment becomes less and less stochastic because of statistical
laws. For AS, let us assume for simplicity that the constant C in (4) is chosen as 1. By the Law
of Large Numbers (considering that the random paths of the agents are selected independently
of each other), in the limit S → ∞, the actual pheromone increment (ρ/S) ·∑S

s=1 ∆τ s
ij in (3)

becomes

ρ · 1

S

S∑

s=1

I { (i, j) ∈ ws} · f(ws) ∼ ρ · E [ I {(i, j) ∈ ws)} · f(ws)] , (13)

where I is the indicator function defined by I(A) = 1 if statement A holds and I(A) = 0
otherwise, and E denotes the mathematical expectation. The expression

Fij(τ) = E [ I {(i, j) ∈ w(τ)} · f(w(τ))] (14)

where w(τ) is (as in section 3) the random walk of an agent based on current pheromone vector
τ , has been called expected passage fitness of edge (i, j) in [20]. Eq. (13) suggests to approximate
the random pheromone increment for edge (i, j) in AS by the deterministic quantity ρ · Fij(τ).
If this is done in each iteration, we obtain the process called ADDP in [20], formally defined
by the pheromone update rule

τij := (1− ρ) · τij + ρ · Fij(τ). (15)

The article [25] on the ACO Model by Merkle and Middendorf was the first to introduce
the idea of approximating the pheromone increment by its expected value. The ACO model
concept as developed in [25] is very similar to that of the ADDP described above, with the
exception that the pheromone update in the ACO model uses an iteration-best rule instead of
the update rule of AS, which leads to slightly different formulas.

The approximation performed in the ADDP can be justified by an asymptotic convergence
result: Theorem 2.1 in [20] shows that during each period containing a fixed number of itera-
tions, with a probability of at least 1 − ε for some arbitrary ε > 0, the pheromone vectors of
the ADDP deviate from those of AS in each iteration only by less than some arbitrary δ > 0
(where deviation is measured by the Euclidean distance), provided that (a) the number S of
agents is chosen sufficiently high in dependence of ε, δ and the period length, and (b) some
technical conditions concerning the fitness function are satisfied.
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4.2.2 Associated Continuous Deterministic Process and Theory of Slow Learning

The concepts of the ACO model and of the ADDP already facilitate the investigation of certain
aspects of ACO algorithms. However, the picture they provide may still be too complex to
enable a mathematical runtime analysis. To give a clearer view on the fundamental dynamics
of the considered processes, the asymptotic case of an evaporation rate ρ near zero can be
studied. This asymptotic case is motivated by the fact that in the results reported in section 3,
decreasing ρ values were shown to be advantageous for convergence to the optimal solution. It
is obvious that if ρ is reduced, such that pheromone changes in each iteration become small, a
comparably larger number of iterations must be executed to get substantial changes. Therefore,
in order to be able to plot the asymptotic behavior, it seems convenient to re-scale the time
axis in such a way that the product of ρ and the number M of iterations per time unit remains
constant. Without loss of generality, we can assume that the product is one, that is, we assume
that ρ = 1/M . In this scaling, an iteration takes dt = 1/M = ρ time units.

Based on this consideration, the Associated Continuous Deterministic Process (ACDP) has
been defined in [20] as the limit of the (re-scaled) ADDP as dt → 0: With τ̃(t) = (τ̃ij(t))
denoting the pheromone vector at time t, eq. (15) can now be written as

τ̃ij(t + dt) = τ̃ij(t) + dt · {−τ̃ij(t) + Fij(τ̃(t))}.

Letting dt → 0, we obtain that the ACDP is given by the system

dτ̃ij

dt
= Fij(τ̃)− τ̃ij ((i, j) ∈ A) (16)

of ordinary differential equations, where Fij(τ̃) is the expected passage fitness of edge (i, j)
under τ̃ . The difference on the right hand side plays already an important role in [25] as it
describes the drift toward the fixed point in the analysis of the ACO model when using one ant
only.
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Fig. 4. Theoretical prediction (left plot) and real run (right plot) of AS on a OneMax problem
with n = 50, S = 50 and ρ = 0.01. From top to bottom, the curves represent average relative
fitness, pheromone trail for up-moves and pheromone trail for down-moves.
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Also for the ACDP, the question of whether the approximation can be justified by a strict
asymptotic convergence result is of interest. It turns out that the theorem cited at the end
of subsection 4.2.1 cannot immediately be extended to the ACDP case. The reason is that
after re-scaling the time axis, a given period containing a fixed number of iterations (i.e., the
period for which the mentioned theorem ensures uniform asymptotic convergence) shrinks on
the re-scaled axis with decreasing ρ values. Thus, in the ACDP framework, the theorem only
provides a local convergence behavior, which is not sufficient for obtaining statements on the
overall runtime until hitting an optimal solution.

Fortunately, it is nevertheless possible to derive asymptotic convergence results ensuring
“closeness’ of the trajectories of the ACDP to those of AS. The mathematical key to such proofs
is provided by a rather old theorem by Normans [28], originally developed for investigations
in mathematical psychology. Norman investigated the properties of systems where learning
takes place. In particular, he considered the asymptotic case (called the case of slow learning)
where the learning rate is comparably low, but the number of learning events is high. Now,
the learning rate in this theory corresponds exactly to the evaporation rate ρ in ACO, such
that the approximation assumptions of the ACDP (low ρ and large number of iterations) are
identical to those in the theory of slow learning.

Because of space limitations, we do not reproduce here Norman’s [28] fundamental theorem
on slow learning, but refer the reader to [21] for a presentation within an ACO context and an
exemplary application to the runtime analysis of AS on OneMax. Fig. 4 illustrates the good
coincidence between predictions based on the ACDP approximation and the real behavior of
AS.

5 Some Available Runtime Results

Almost all available runtime results in the field of evolutionary algorithms (EA) refer to the
optimization of pseudo-boolean fitness functions. A pseudo-boolean function is a function f
mapping the set S = {0, 1}n of binary vectors of length n into the set of real numbers. As
shown in Example 2 in section 2, subset selection problems have a natural interpretation as
problems with pseudo-boolean fitness functions. In order to be able to compare the performance
of ACO algorithms to that of diverse evolutionary algorithms, the runtime analysis of ACO
variants should start with an investigation of fitness functions of this type. This aim has also
been formulated as the “Open Problem 1” of ACO theory in Dorigo and Blum [8]. Only very
simple test functions have been fully analyzed up to now. In particular, let us consider the
following problems, taken from the EA literature (e.g., [24], [14]):

• Needle in a Haystack (NH) problem:

f(x) = I{x = x∗} → max, x ∈ {0, 1}n, (17)

where x∗ ∈ {0, 1}n is a fixed solution, and I denotes again the indicator function.

• k-Needles in a Haystack (k-NH) problem:

f(x) = I{x = x∗1 or . . . or x = x∗k} → max, x ∈ {0, 1}n, (18)

where x∗1, . . . , x
∗
k ∈ {0, 1}n are k different fixed solutions.
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• Generalized OneMax problem.

f(x) = n + c− d(x, x∗) → max, x ∈ {0, 1}n, (19)

where x∗ ∈ {0, 1}n is a fixed solution, d denotes the Hamming distance and c is a
nonnegative constant. For x∗ = (1, . . . , 1) and c = 0, this gives the (ordinary) OneMax
function f(x) =

∑n
i=1 xi.

In some sense, NH and OneMax represent in an idealized way opposite possible character-
istics of a more complex fitness function: OneMax stands for the case where a fitness function
gives good “guidance” to the search process, whereas NH represents the case where such guid-
ance is completely lacking. In order to have also an example in between, we will additionally
consider a combination of NH and OneMax defined as follows:

• NH-OneMax problem: Let integers n and k ≤ n be given.

f(x) =

(
k∏

i=1

xi

)
·



n∑

i=k+1

xi + 1


 → max, x ∈ {0, 1}n. (20)

This function consists of a NH part (connected with the first k bits of the solution x) for
which the correct solution has to be found without guidance, that is, by trial-and-error.
Only provided that the NH part is solved, the fitness becomes positive. The second part
(connected with the remaining n− k bits) consists in the solution of a OneMax problem.

5.1 Ant System

For AS, two types of investigations have been started. The first is a comparison of the perfor-
mance of AS on different possible construction graphs, with the aim of obtaining information
on the most suitable choice by analytical means. The second is an investigation of the runtime
complexity, that is, a study of the influence of the problem size n on the (order of the) runtime
needed for finding the optimal solution.

5.1.1 Comparison of Construction Graphs

In [20], the runtime performance of AS on the chain construction graph, the drum construction
graph (both explained in section 2) and a third construction graph called disk is compared by
means of the ACDP approach outlined in subsection 4.2.2. The disk (which lets the agents ran-
domly gather 1-bits and leave the construction graph at some time) proves as not competitive—
and even seriously inefficient—in the case of the NH problem. Intuitively speaking, the reason
is that whereas chain and drum have “built-in” stopping criteria, agents on the disk have to
“learn when to stop”, which is susceptible to pre-mature convergence. For generalized OneMax,
chain and drum are equally good in their runtime behavior. An advantage of the drum over the
chain can be verified analytically as soon as fitness functions with more than one local optimum
are considered, which is the case for 2-NH.
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5.1.2 Runtime Complexity on Generalized OneMax

In [19], [21], the runtime of AS in dependence of the problem size n using the chain construction
graph has been investigated for the generalized OneMax problem (19). For the analysis, the
ACDP approach has been applied. In the considered context, it turns out that the asymp-
totic equivalence of AS and ACDP can be justified by a strict mathematical proof. For the
corresponding ACDP, it can be shown that for each ε > 0, the required amount of (re-scaled)
time t until the expected relative fitness5 of the current solution x reaches a value of 1 − ε,
is bounded from above by 2(n + c) log((1 − ε)/ε) and from below by (n/2) log((1 − ε)/ε). By
choosing ε = ε0/n for a small constant ε0, we see that the expected runtime of the ACDP until
achieving an absolute deviation from the maximum fitness value n of OneMax by less than ε0 is
of order Θ(n log n), where Θ refers to an upper and lower bound. This order is the same as in
the well-known results on the runtime complexity of the (1+1)-Evolutionary Algorithm (short:
(1+1)-EA) on OneMax (see [14]).

Two remarks on this result are in place: First, it must be emphasized that the result
holds for an approximation to AS instead of AS itself. Despite the mentioned mathematical
convergence result, there remains a difference between the two processes unless we would let
ρ = ρ(n) tend to 0 with increasing instance size n, which, however, would increase the runtime
complexity because ρ is also used as a scaling factor between AS and ACDP. In this respect,
the situation is similar to that in classical statistical test theory, where tests are derived from
asymptotic approximations to test statistics distributions: Making the applied formulas exact
would require to let the sample size and hence the experimental effort go to infinity. This
cannot be done in practice, so the mentioned statistical results are, in a strict mathematical
sense, not “valid” for the situations to which they are applied. Nevertheless, their usefulness is
not doubted.

Secondly, it should be noted that compared to the (1+1)-EA results in the literature, the
result on AS in [21] refers to the stronger notion of convergence in solution (see eq. (10)): Given
that AS is suitably approximated by the ACDP, the agents are not only able to hit the solution
(by chance) for the first time within O(n log n) time, but even to learn the solution by storing
its characteristics in the pheromone vector within this time.

5.2 MMAS

Let us now consider MMAS variants instead of AS, in particular MMASbs,co and MMASbs.

5.2.1 Generalized OneMax

The work [19], [21] contains also an analysis of the runtime complexity of MMASbs,co working
on the chain construction graph for Generalized OneMax. The main result is the following:
Again expressed by the expected number of function evaluations until reaching the optimal
solution, the expected runtime of MMASbs,co with ρ = 1− a/n, τmin = a/n2 (a > 0 constant),
C = 1/n and τ0 = 1/(2n), applied to (19), is bounded from above by (2e2a/a) ·nHn for n ≥ 2a,
where Hn =

∑n
j=1 j−1 is the nth harmonic number. This bound is of order O(n log n). The proof

of the result consists in a rather straightforward application of the level-reaching estimation
technique described in subsection 4.1.

5The relative fitness of x is defined as (f(x)− fmin)/(fmax − fmin), where fmin = minx∈S f(x) and fmax =
maxx∈S f(x).
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5.2.2 Low and High Evaporation Rates

There is a special interesting point in the result cited in subsection 5.2.1: Contrary to what
convergence results (section 3) may indicate as favorable, and contrary to the asymptotic sit-
uation considered in the analysis of AS (subsection 5.1), the result cited above holds for high
evaporation rate values ρ, even values that tend to the maximum value 1 as the problem size
n increases. This can make us suspect that for MMAS variants of ACO, the evaporation rate
should be chosen not close to zero, but rather close to one.

A similar conclusion is suggested by the results provided by Neumann and Witt in [26]. The
authors consider a variant derived from GBAS [17], [18] they call 1-ANT. The used construction
graph is the chain. Compared with [18], not only lower pheromone bounds, but also upper
pheromone bounds are used, and pheromone is re-normalized explicitly after each update to a
sum of 1 over all edges of the construction graph, the re-normalized values being stored as the
new pheromone values.6 To be more specific, the authors use the pheromone update formula

τ̄ij :=

[
(1− ρ̄) · τ̄ij + ρ̄ · I{(i, j) ∈ ŵ}

1− ρ̄ + 2nρ̄

]τ̄max

τ̄min

, (21)

where τ̄min = 1/(2n2) and τ̄max = (n − 1)/(2n2). We write ρ̄ and τ̄ here instead of ρ and τ ,
respectively, in order to be able to show the connections to MMAS below. In 1-ANT, the
best-so-far solution ŵ is updated not only if a better new solution is found, but it is replaced
also by an equally good new solution, contrary to the usual procedure in MMAS (see, e.g.,
[30], cf. also [18]). Only one single agent is used (i.e., S = 1).

The authors show that there is a large range of evaporation rate values for which the behavior
of 1-ANT is identical to that of (1+1)-EA on all problems with pseudo-boolean fitness functions.
More precisely, this equivalence holds for all values ρ̄ ≥ (n− 2)/(3n− 2).

For values ρ̄ tending to zero with increasing n (for which the mentioned equivalence does
not hold), Neumann and Witt investigate the runtime explicitly for the case of OneMax. In
evaporation rate schemes for which the behavior of 1-ANT is different from (1+1)-EA, com-
petitiveness to (1+1)-EA could not be confirmed: For ρ̄ = Ω(n−1+ε) with some constant ε > 0,
it was shown that the optimization time of 1-ANT on OneMax is O(n2) with a probability

1− 2−Ω(nε/2). Evidently, the bound is worse than the expected runtime of (1+1)-EA. Moreover,
as long as this result is not combined with a suitable bound on the runtime in the exceptional
cases with probability 2−Ω(nε/2), it admits no conclusion on the expected runtime.7

For ρ̄ = O(n−1−ε) with some constant ε > 0, the runtime of 1-ANT on OneMax is 2Ω(nε/3)

with a probability 1 − 2−Ω(nε/3). This implies that the runtime for such a scheme of ρ̄ values
grows exponentially in the instance size.

In total, competitiveness of 1-ANT with (1+1)-EA on OneMax is only obtained in cases
where they collapse.

5.2.3 1-ANT and Standard MMAS

An interesting question is whether the behavior described above also holds for MMAS where
(as in most ACO variants) no explicit re-normalization of pheromone is done8, and where the

6This is in a similar vein as the re-normalization done in the ACO Hyper-Cube Framework [3].
7The symbol Ω(h(k)) refers to a lower bound of the form c · h(k).
8Recently, Birattari et al. [2] showed that the most frequently applied ACO variants, including AS and

MMAS, are in a certain sense scale-invariant, which implies that pheromone trail re-normalization is not
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best-so-far solution is only updated if a strictly better new solution is found. Furthermore, also
fitness-proportional reward might be investigated in addition to constant reward. In Gutjahr
and Sebastiani [22], the expected runtime of the two algorithms MMASbs,co and MMASbs is
analyzed for the test problems NH, (Generalized) OneMax, NH-OneMax and LeadingOnes. In
contrast to the investigation in [19] and [21], the MMAS variants are now also given an upper
pheromone bound. The used construction graph is the chain. Lower and upper pheromone
bounds are allowed to depend on instance size n, and the two bounds are chosen in a symmetric
fashion: τmax = 1 − τmin. Similarly as τmin, also the evaporation rate ρ is allowed to depend
on n, which spans a rich class of possible schemes combining the sequences (τmin(n)) and (ρ(n)).

Let us outline some of the obtained results. For small τmin, the considered MMAS variants
degenerate to (1+1)-EA only in a marginal domain of evaporation rate values close to one:9 This
degeneration takes place if ρ ≥ 1− τmin/τmax. In the Generalized OneMax case, an O(n log n)
expected runtime complexity is obtained for a large variety of (τmin(n), ρ(n)) schemes. For
example, for MMASbs,co, the scheme τmin = 1/n, ρ = const leads to O(n log n) expected
runtime, also if ρ is chosen very small. This observation is important in so far as it demonstrates
that we are not dependent on high ρ values to achieve a behavior of MMAS on OneMax that
is competitive with (1+1)-EA. Even the case τmin = 1/n and ρ = 1/n still leads to an expected
runtime of O(n2). Similar results are obtained for MMASbs.

Moreover, it turns out that working with small evaporation rates for MMAS has a con-
siderable advantage compared to large values. This becomes evident when test functions are
investigated that do not give suitable guidance for the search anymore (as given by OneMax).
The simplest example is NH. Here, both (1+1)-EA and MMAS parametrizations with high ρ
perform very poorly; decreasing ρ can considerably improve the runtime.10

It is especially instructive to look at the combination of “guiding” and “non-guiding” fea-
tures in the test function NH-OneMax (see eq. (20)). For k = log2 n, both (1+1)-EA and
MMAS with high ρ have in this case exponential expected runtime, whereas a scheme with
ρ(n) = n−3 shows polynomial expected runtime. This seems to give a definite hint that also
in the MMASbs framework, comparably low values for the evaporation rate ρ should be used,
and that the size of ρ should possibly even be decreased with increasing instance size.11

For the LeadingOnes test function (cf. [14]), the investigation in [22] shows an expected
runtime of order O(n2) as long as ρ is of order Ω((log n)/n).

Let us give a closer look at the differences between the algorithms 1-ANT and MMAS
analyzed in [26] and [22], respectively. First of all, notation should be made comparable. By

necessary, at least not for scaling reasons.
9For the sake of comparability with MMASbs, where a new solution is only accepted if it is better than the

currently best solution (and not just equally good), [22] considers an (1+1)-EA variant following the same rule.
Several publications on (1+1)-EA deal with a variant where also equally good solutions are accepted.

10Intuitively, in the case of very small ρ, pheromone remains nearly constant (identical to the initial values),
which leads to a pure random search behavior. In the case of high ρ, on the other hand, the current solution has
a considerable influence (and, as discussed in [22], for some problems a too large influence) on the next solution
to be constructed, since it determines whether the pheromone trail of a bit is at the upper or at the lower
limit. This leads to a kind of “aggressive search”, which is favorable for fitness functions providing guidance
and unfavorable for not-guiding or even deceptive fitness functions.

11It is important to keep in mind that this consideration only refers to best-so-far reinforcement schemes.
Empirical evidence seems to indicate that the recommendation to decrease ρ with increasing n is not valid for
the case of iteration-best reinforcement.
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the transformation

ρ =
2nρ̄

1− ρ̄ + 2nρ̄
, τij = 2nτ̄ij,

eq. (21) can be re-written as

τij := [(1− ρ) τij + ρ · I{(i, j) ∈ ŵ}]τmax

τmin
,

with τmin = 1/n and τmax = 1 − 1/n, which is the usual MMASbs,co dynamics investigated
also in [22]. Nevertheless, also using this transformation, the results in [26] and [22] are not
equivalent except for ρ ≥ τmin/τmax = 1−1/(n−1), which corresponds to ρ̄ ≥ (n−2)/(3n−2),
where both algorithms coincide with (1+1)-EA. For example,

• for constant ρ, where MMASbs,co has expected runtime O(n log n), the corresponding
value for ρ̄ is of the “threshold” order Θ(n−1) for which no statement on the behavior of
1-ANT is made in [26], and

• for ρ = n−1, where MMASbs,co has expected runtime O(n2), the corresponding value ρ̄
is of order Θ(n−2), that is, already in the area where 1-ANT has exponential expected
runtime.

The reason seems to lie in the different update rules for the best-so-far solution: exchanging x̂
also in cases of an equally good new solution, as it is done in 1-ANT, obviously deteriorates
the performance of the algorithm on OneMax.

For LeadingOnes, the situation appears to be quite similar as for OneMax: In a recent
technical report by Doerr et al. [7], an upper bound of order O(n2 · 29/(nρ̄)) for the expected
runtime of 1-ANT on LeadingOnes is derived; this bound is polynomial for ρ̄ = Ω(1/(n log n))
and only O(n2) for ρ̄ = Ω(1/n), and it is superpolynomially large for ρ̄ = o(1/(n log n)). The
scheme ρ = Ω((log n)/n), for which MMASbs,co has expected runtime O(n2) on LeadingOnes
according to [22], corresponds to ρ̄ = Ω((log n)/n2) with superpolynomial expected runtime for
1-ANT. Possibly, test functions giving few guidance might lead to the opposite effect; thus, it
would be interesting to have results for 1-ANT on NH and NH-OneMax.

In addition to the LeadingOnes results, [7] also contains a result on the BinVal function:
The authors derive a bound of order O(n2 · 2O((log2 n)/(nρ̄))) for the expected runtime of 1-ANT
for this test function.

5.2.4 Further results

Finally, a recent technical report by Neumann and Witt [27] might be mentioned where an ACO
variant is investigated which the authors call again 1-ANT, although both solution construction
and pheromone update are handled in a quite different way, compared to [26]. Two types
of construction graphs are used, based on two classical problem-specific algorithms for the
MST: the algorithm by Broder and that by Kruskal, respectively. In both cases, pheromone
is restricted to only two values ` and h. Between these two values, the algorithm switches
governed by problem-specific criteria which are not derived here from fitness, but rather from
graph structure and constraints. A version where only heuristic information is used (α = 0 and
β large enough) is shown to be able to mimic Kruskal’s algorithm.
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6 Conclusions

In this article, we have presented a unified framework for the theoretical runtime analysis of
ACO algorithms, described some formal techniques that may be helpful for investigations of
this type, and outlined first available results. In particular, we have recalled results for ACO
variants allowing a comparison with the evolutionary algorithm that has found most interest
in theoretical research, (1+1)-EA. Moreover, the results available now already give some hints
on the appropriate choice of an important parameter, the evaporation rate.

Nevertheless, the present state of the mathematical runtime analysis of ACO algorithms is
still characterized by the fact that there exist many more open problems than solved questions.
To give a few examples: Contrary to MMASbs, there seem to be no analytical results available
at the moment on the runtime behavior of MMASib and ACOrank. Possibly, the investigation
of these variants could start with MMASib without bounds, which coincides with ACOrank

with R = 2. Furthermore, applied to pseudo-boolean functions and using the chain, both
variants also coincide with PBIL (Popoulation-Based Incremental Learning, see [1]). Some first
analytical investigations relating to runtime results in the PBIL field have already appeared
(see, e.g., [15], [16]). Maybe there can be a cross-fertilization between the work in the PBIL
area and that in ACO.12 Also for ACO variants as ACS or HC-ACO, no analytical runtime
results are known up to now.

Of course, investigations should be extended to more complex test problems, including so-
called deceptive problems (see, e.g., [4]). An important further issue for future research is the
transfer of the mentioned analytical results on pseudo-boolean functions to routing, sequencing
or scheduling problems where “traditional” construction graphs (as that in Fig. 1) are applied.
Although there is no doubt that such investigations will be rather challenging, an analysis of
these problems should be manageable.
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[13] Dorigo, M., Stützle, T., Ant Colony Optimization, MIT Press, Cambridge, MA (2004).

[14] Droste, S., Jansen, T., Wegener, I., “On the analysis of the (1+1) evolutionary algorithm”,
Theoretical Computer Science 276, pp. 51–81 (2002).

[15] Gonzalez, C., Lozano, J.A., Larrañaga, P., “Analyzing the PBIL algorithm by means of discrete
dynamical systems”, Complex Systems 4, pp. 465–479 (2000).

[16] Gonzalez, C., Lozano, J.A., Larrañaga, P., “The convergence behavior of the PBIL algorithm: a
preliminary approach”, Proc. 5th Int. Conf. on Artificial Neural Networks and Genetic Algorithms
ICANNGA ’01, pp. 228–231, Springer: Berlin, Germany (2001).

[17] Gutjahr, W.J., “A graph–based ant system and its convergence”, Future Generation Computer
Systems 16, pp. 873–888 (2000).

[18] Gutjahr, W.J., “ACO algorithms with guaranteed convergence to the optimal solution”, Infor-
mation Processing Letters 82, pp. 145–153 (2002).

[19] Gutjahr, W.J., “Theory of ant colony optimization: status and perspectives”, MIC ’05 (6th
Metaheuristics International Conference), Proceedings CD-ROM (2005).

[20] Gutjahr, W.J., “On the finite-time dynamics of ant colony optimization”, Methodology and Com-
puting in Applied Probability 8, pp. 105–133 (2006).

[21] Gutjahr, W.J., “First steps to the runtime complexity analysis of ant colony optimization”,
Computers and Operations Research, in press (available online at Elsevier, 22nd Jan. 2007).

[22] Gutjahr, W.J., Sebastiani, G., “Runtime Analysis of Ant Colony Optimization”,
Technical Report, Consiglio Nazionale delle Ricerche, Rome (2007), available under:
http://www.mat.uniroma1.it/people/sebastiani/preprints.htm.

20



[23] Jones, T., Forrest, S., “Fitness distance correlation as a measure of problem difficulty for genetic
algorithms”, Proc. 6th Int. Conf. on Genetic Algorithms, pp. 184–192, Morgan Kaufmann: San
Mateo, CA (1995).

[24] Kallel, L., Naudts, B., Reeves, C.R., “Properites of fitness functions and search landscapes”, in:
Theoretical Aspects of Evolutionary Computing (eds.: Kallel, Naudts, Rogers), Springer: Berlin,
Germany, pp. 174–206 (1998).

[25] Merkle, D., Middendorf, M., “Modeling the dynamics of ant colony optimization”, Evolutionary
Computation 10, pp. 235–262 (2002).

[26] Neumann, F., Witt, C., “Runtime analysis of a simple ant colony optimization algorithm”,
Proc. ISAAC ’06, LNCS 4288, pp. 618–624, Springer: Berlin, Germany (2006).

[27] Neumann, F., Witt, C., “Ant colony optimization and the minimum spanning tree problem”,
Technical Report CI-220/06, University of Dortmund, SFB 531 (2006).

[28] Norman, F., Markov Processes and Learning Models, Academic Press, New York and London
(1972).

[29] Sebastiani, G., Torrisi, G.L., “An extended ant colony algorithm and its convergence analysis”,
Methodology and Computing in Applied Probability 7, pp. 249–263 (2005).
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