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Abstract

The paper investigates a stochastic model where two agents (persons,
companies, institutions, states, software agents or other) learn interactive
behavior in a series of alternating moves. Each agent is assumed to perform
“stimulus-response-consequence” learning, as studied in psychology. In the
presented model, the response of one agent to the other agent’s move is both
the stimulus for the other agent’s next move and part of the consequence
for the other agent’s previous move. After deriving general properties of the
model, especially concerning convergence to limit cycles, we concentrate on
an asymptotic case where the learning rate tends to zero (“slow learning”).
In this case, the dynamics can be described by a system of deterministic
differential equations. For reward structures derived from [2 x 2] bimatrix
games, fixed points are determined, and for the special case of the prisoner’s
dilemma, the dynamics is analyzed in more detail on the assumptions that
both agents start with the same or with different reaction probabilities.

Key words: Dynamic systems, interaction dynamics, multiagent systems,
prisoner’s dilemma, reinforcement learning

1 Introduction

Learning has been studied in psychology, economic theory, cognitive sci-
ence and artificial intelligence for a long time. Most of these investigations
consider the learning process as an interaction between a single learning
agent and an environment that is not learning itself. In the last decade,
however, both in the “Learning in Games” approaches in game theory (see,
e.g., Roth and Erev [27], Wedekind and Milinsky [33], Posch [25], Fudenberg
and Levine [13], Hofbauer and Sigmund [17], Posch, Pichler and Sigmund
[26], Greenwald, Friedman and Shenker [14], Laslier, Topol and Walliser
[20], Hopkins [18]) and in multiagent reinforcement learning (MARL) theo-
ries (see, e.g., Littman [21], Sandholm and Crites [29], Claus and Boutilier
[8], Hu and Wellman [19], Banerjee, Mukherjee and Sen [1]), the perspective
has changed to a consideration of the dynamics of a system of “co-learning”
agents, each of them being part of the environment of the other agent(s).



Such a framework shows more complex interaction patterns than one where
the environment is assumed as stationary.

Our investigation in this paper differs both from the mainstream of the
“Learning in Games” articles and from those in the literature on MARL.
Whereas the “Learning in Games” publications are focused on iterated
games, we study a series of interactions between two agents that cannot
be conceived anymore as a sequence of separate “stage games”, since the
payoffs of the agents resulting from their moves are inter-linked in a cer-
tain way. Moreover, we assume alternating moves instead of simultaneous
action decisions. In a game-theoretical description, this results in a single,
non-decomposable extensive-form game.

Iterated-game models are often easier to analyze than alternating-moves
models, but their application range has limitations. In an iterated-game
model, in each stage, decisions have to be made simultaneously and inde-
pendently from the decision(s) of the other agent(s). In many or even most
real-life situations, however, there is no “synchronization clock” providing
a structure of repeated mutually independent decisions. Rather than to be
bound to make a decision simultaneously with another person, in everyday
life, a person A can typically observe what the last action of a partner or
competitor B has been, and reacts to it only after that. Then, person B
is able to observe the (re)action of A before being forced to make the next
own move. In total, this leads to an overlapping chain of actions/reactions.

Let us give a few examples of situations where the alternating-moves
perspective, which fits to the dialogue character of human communication,
is more appropriate than a simultaneous-moves point of view.

1. Negotiations. Wherever negotiations between two persons or or-
ganizations take place, they typically follow an interactive pattern with
alternating-move structure. This is true for simple bargaining in street mar-
kets or bazars as well as for complex negotiation processes between firms or
political institutions. Also the classical game-theoretical bargaining models
(e.g., the Rubinstein Model [28]) mimic this sequential, alternating struc-
ture.

2. Couple interactions. In marital therapy, interactions between couples
and possible change by learning effects have been thoroughly studied (see,
e.g., [30]). Usually, couple interactions are described in the form of alter-
nating actions, irrespectively of whether the level of behavior under con-
sideration is verbal or non-verbal. The psychological literature addresses
also the difficulties and conflicts arising from the fact that “punctuations”
of interactions, i.e., ways of grouping them to action-reaction sequences,
are not unique (cf. [4]). In our terms, this issue is a consequence of the
non-decomposability of the overall interaction game into stage games.

8. International conflicts. Situations of bilateral international conflicts
follow a path of escalation or de-escalation characterized by diplomatic, eco-
nomic, legislative, military or other actions of both countries which coincide
in time only in exceptional cases; the process can better be represented by
an alternating sequence of measures. In the literature on conflict research,



game-theoretical models for, e.g., the process of arms race are available (see
[32] as an example), but usually they resort to the simpler assumption of
an iterated game.

4. Project cooperation. If two partners or partner institutions collaborate
in a joint project, the development of long-term cooperation or defection can
be modelled by traditional game-theoretic approaches. Also in this context,
however, one can hardly imagine a mechanism that synchronizes the project
collaboration in such a way that the partners have to make (or even are
able to make) their decisions always simultaneously and independently from
each other. Rather than that, there will be an alternating sequence of
actions each of which, after having been interpreted as cooperative or non-
cooperative, influences the other partner’s next decision.

Alternating-moves models have been investigated in the literature, par-
ticularly in the special context of the prisoner’s dilemma (see, e.g., Nowak
and Sigmund [24] or Neill [23]), but usually they have been developed within
a replicator dynamics framework, i.e., in the perspective of the genetic evo-
lution of a population, rather than in a context of learning. In contrast
to that, the present article addresses the dynamics of alternating moves
governed by a (mutual) reinforcement learning process. Moreover, in [24],
the payoff for a move is assumed to be independent of previous moves. As
mentioned, in our model, the payoffs can be inter-linked.

Now let us consider the difference of our own approach to the MARL
approaches. It concerns another point: The MARL publications are moti-
vated by the development of efficient learning algorithms for software agents
in multiagent systems, e.g., in an internet environment. Sophisticated algo-
rithms of this type, mainly based on the Q-learning concept from Markov
decision processes, have been presented, tested experimentally and analyzed
theoretically (for examples, see [8] or [19]). Nevertheless, because of their
mathematical complexity, it is unlikely that humans apply such learning
algorithms in their economic or social behavior. In order to be able to de-
velop a theory that is not only applicable to software agents but also to
the analysis of interactions between humans, we have decided to study a
simple, basic learning mechanism that is closely related to the concepts of
psychological learning theories. A similar, slightly less general model has
been presented in Eder, Gutjahr and Neuwirth [10] and Gutjahr and Eder
[15]; some additional observations are provided in Eder and Gutjahr [11].
In the present paper, a modified, extended version of the mentioned model
is analyzed in much more depth, mainly on the “slow learning” assumption
described further below.

The key idea of the model is that the basic stimulus-response-consequence
(S-R-C) scheme of discriminant learning is applied to a dyadic situation of
two learning agents. Each of them learns according to the S-R-C scheme:
The stimulus is given by the last action of the other agent, the response is
the own action of the considered agent, and the consequence results from
the relation of the next action of the other agent to stimulus and response.
Learning takes place via a memory matriz (called “transition probability



matrix” in [10]) containing the probabilities of reacting to a certain stim-
ulus by a certain response. A favorable consequence increases the proba-
bility of the previous stimulus-reaction sequence, a process that is usually
called reinforcement. On the other hand, the probability of a not reinforced
stimulus-reaction sequence decreases.

The amount of reinforcement is governed by a learning rate A. Contrary
to the cited literature on MARL, we keep A fixed over time. A high value
of A introduces a large amount of randomness into the development of the
system. To get a clearer picture of the system dynamics, it is convenient
to consider low values of A (“slow learners”). We do this in this paper
by studying an asymptotic case where A — 0, compensated by a suitable
scaling of the time axis. In this way, deterministic differential equations for
the elements of the memory matrix are obtained. In its flavor, this approach
is related to the deterministic approximation of stochastic games by Borgers
and Sarin [5] or by Benaim and Weibull [2], but differs from these articles
insofar as the iterated game structure used there is replaced by the S-R-C
structure explained above.

The organization of the paper is the following: In Section 2, the model
is presented in formal terms, and a general result on the limiting behavior
of the system is derived. Section 3 contains the basic results on “slow
learners”, and Section 4 applies these results to the special case of learning
processes derived from [2 x 2] bimatrix games. In particular, fixed points of
the dynamics are determined, and the process in the case of identical and
of different initial memory matrices for both agents is investigated. Section
5 contains concluding remarks.

2 The Model and its Basic Properties

2.1 Formal Description

Two agents, denoted by 1 and 2, are considered. To each agent k (k = 1,2),
a finite action set is assigned. We can identify the possible actions of an
agent with their indices in the action set, i.e., {1,..., N1} is the action set
of agent 1, and {1,..., No} is the action set of agent 2, where Ny and N
are positive integers.

The two agents choose their actions in alternating moves. In round 0,
agent 1 starts by choosing action ig. Agent 2 observes ig and chooses then
its action jo. Round 0 is finished.! In round 1, agent 1, which has observed
action jo, chooses action ;. After observing i1, agent 2 chooses its action
j1- Round 1 is finished. Etc.

To agent 1 and 2, reward arrays A resp. B are assigned. A and B are

1We start counting the rounds with index 0 instead of 1, since the initial round 0
forms an exception in the sense that no learning takes place in it yet, as will be explained
below.



3-dimensional arrays with nonnegative elements

-/

a(j,i,5) (G'=1,...,Ny;i=1,...,Ny;j=1,...,Ns)

resp.
b(i,j,i') (i=1,...,N1;j=1,...,Nop; i =1,...,Nq).

The number a(j', 4, j) denotes the reward agent 1 obtains as a consequence
of its action 7 in the current round, if the action of agent 2 in the previous
round has been j’, and the action of agent 2 in the current round (following
agent 1’s action) is j. The number b(i,7,7’) denotes the reward agent 2
obtains as a consequence of its action j in the current round, if the action
of agent 1 in the current round has been i, and the action of agent 1 in the
next round is i’. Schematically, this is shown in Table 1.

round agent 1 agent 2 reward for 1 reward for 2

n—1 Z'nfl b(in727jn727in71)
Jn-1  a(Jn—2:%n—1,Jn—1)

n in b(inflajnflvin)
jn a(jnflyin7jn)

n+1 Z.TLJrl b(inajn7in+1)
jn+1 a(jnain+17jn+1)

Table 1. A sequence of moves and rewards.

The reward arrays A resp. B can also be represented by the following
Ny resp. Ny matrices

A(] ) — (a(jl7Z.7j))i:1,..,,N1;j:l,‘..,Ng (]/ = ]-7 e 7N2)7

BW = (b(i,5,i))j=1,. Npsir=1,..n; (i =1,...,Ny). (1)

The purpose of the described reward determination rule is to mimic the
S-R-C scheme (see Section 1) for each agent: For agent 1 in round n, the
previous action j,_1 of agent 2 has been the stimulus (S), and its own
action 7 is the response (R) to that stimulus. The consequence (C) basically
depends on the subsequent action j, of agent 2, however (as we shall see
below), the model gains flexibility if the consequence is also allowed to
depend on i,, and even j,—1. (In the model of [10], dependence on j,,—1 is not
allowed.) For agent 2 in round n, the roles are interchanged: The previous
action i, of agent 1 is the stimulus, j, is the response, and the consequence
depends on agent 1’s next action 4,1, but can also be influenced by j,, and
in-

In round 0, for the first action ¢y of agent 1, no previous action of the
other agent exists, so in cases where a(j’,1,7) actually depends on j', we



make the reward rule well-defined by deciding that action ¢y gets no reward:
Setting j_1 = 0 (the ”zero action”), let a(0,14g,jo) = 0. This modification
is not necessary in cases where a(j’, 1, j) is actually independent of j'.

The model above can be extended to a game by defining total payoffs
for the two agents. Of course, adding the rewards would yield infinite sums
in general. As usual in iterated games, however, we can consider discounted
rewards as the total payoffs. An alternative way to define total payoffs is
to restrict the strategy sets of both agents to classes of (mixed) strategies
guaranteeing that the action sequence converges to a steady state, and to
take the average rewards in this steady state as the total payoff.

As stated in the Introduction, we assume that both agents adapt their
response behavior in a learning process: Agents 1 and 2 use memory matrices

X, and Y, respectively, where, for round n = 0,1,..., memory matrix
X, contains elements z,(j,i) (j = 1,...,Na; i = 1,...,Np), and memory
matrix Y,, contains elements y,,(¢,5) (i =1,...,N1;j =1,..., Na). Element

2Zn(J,1) denotes the probability that agent 1 reacts in round n to action
(stimulus) j of agent 2 (chosen in round n — 1) by action (response) i.
Element y,,(,j) denotes the probability that agent 2 reacts in round n on
action (stimulus) i of agent 1 by action (response) j. We always assume
Zn(4,4) > 0 and y,(i,7) > 0 for all ¢, j,n, and

N, N»
Za:nu,z‘):l(j:l,...,NQ), Zyn(z’,ﬁ:l(i:l,...,Nl) (2)

for all n. As the subscript n indicates, the memory matrices depend on the
current round. The initial matrices Xy and Yy are arbitrary, provided that
conditions above are satisfied. The update is performed according to the
following reinforcement rules:

Tn1(Un—1,1n) = Tn(Jn-1,1n) + Aa(fn-1,1n,Jn) (1 = Zn(Jn-1,in)), (3)
Tn+1(fn-1,7) = Tn(in-1,7) (L = Aa(jn-1,7n,Jn)) (I Fin),  (4)
Tnt1(5,8) = 2n(j,9) (J # Jn—r1, i=1,...,N1), (5)
Yn+1(in, Jn) = Ynl(in, Jn) + Ab(in, n, int1) (1 = Ynlin, jn)), (6)
Yn+1(in;7) = Yn(in,J) (1 = Ab(in, fn,int1))  (J # dn); (7)
Ynt+1(1,3) = yn(i,J) (i #in, J=1,...,Na). (8)

Therein, A > 0 is the learning rate. We always choose A\ smaller than all
reciprocals 1/a(j’,i,7) and 1/b(4,j,i') of nonzero elements in the reward
arrays.

Let us give some historical remarks concerning the formulas above. Ba-
sically, the applied model goes back to the well-known Bush-Mosteller lin-
ear reinforcement scheme (Bush and Mosteller [7]), the oldest and simplest
model for reinforcement learning. However, we use a more recent modi-
fication of this scheme which has been developed during the last decades



in several steps. In their model, Bush and Mosteller do not distinguish
between different amounts of reward; they only consider the two possible
cases of success and failure. Cross [9] extended the Bush-Mosteller scheme
to the case where rewards can be of a different size, effecting reinforcements
of different strengths. As well as in [7], also in [9], the reinforcement process
is not described in a game-theoretical setting, but in a context where a sin-
gle decision maker is faced with a stochastic, but stationary environment.
Borgers and Sarin [5] take a game-theoretic viewpoint by investigating co-
learning of two agents in an iterated stage game, each of the agents being
equipped with a reinforcement mechanism defined by the Cross scheme. As
the older cited models, the Borgers-Sarin model has the property that re-
inforcement is based exclusively on the results of the last round; rewards
of previous rounds do not enter into the reinforcement computation. This
is contrary to melioration models (see Herrnstein and Prelec [16]) which
take the average reward in a fixed number of rounds preceding the current
round as the basis for the computation of the reinforcement. In [6], Brenner
compares the Bush-Mosteller type models with the melioration models and
shows that both types tend to equivalent behavior as time goes to infinity.
Therefore, we do not use the melioration approach here.

The main difference of our reinforcement scheme egs. (3) — (8) to that in
[5] or [6] is that by applying the S-R-C discriminant learning model, instead
of the probability x, (i) of choosing action ¢, the probability z,(j,4) of re-
acting to action j by action ¢ is stored and updated. This also necessitates
the addition of formulas (5) and (7) which state that for actions that did not
occur in the previous round, response probabilities remain unchanged. A
further extension is that in our model, the reward is allowed to depend not
only on the events in the current round, but, again following the three-step
S-R-C scheme, also (partially) on the previous round.?

Let us add a short comment on the application of discriminant learning.
If x,(7) would be used instead of x,(j,7), such that the probability of an
action ¢ were not allowed to depend on the previous action j of the other
agent, it would be impossible to correctly represent some frequently occur-
ring situations of real life. This holds already in a context where persons are
confronted with the environment instead of other persons. Humans are able
to learn a quite different behavior for the case where the traffic light has
just switched to red than for the case where it has just switched to green.
Representing the currently learned tendency of crossing a certain street by
only one probability value would not be appropriate; the dependency of the
behavior on the stimulus has to be taken into account. Similarly, in order
not to over-simplify interpersonal learning effects, modelling the ability of
making one’s reaction dependent on the previous action of the other per-
son seems indispensable. To give a trivial example, for most people, being
complimented and being criticized certainly triggers different reactions.

In game-theoretic terms, the use of the probabilities x,,(j,7) and y,, (4, )

2In [10], [15] and [11], a different, but for A — 0 asymptotically equivalent reinforce-
ment scheme has been used, although with less flexibility in the definition of the reward.



(reflecting discriminant learning) amounts to the introduction of conditional
strategies which are behavioral rules that take at least the actions in the
previous round, perhaps also those in former rounds, into consideration.
Such strategies have already been studied in the literature, especially in the
context of the prisoner’s dilemma; examples are [24] or [23]. What distin-
guishes our model from these publications is (i) the reinforcement learning
approach which replaces the replicator dynamics approach chosen there,
and (ii) the fact that we do not only allow strategic dependencies between
successive rounds by considering x,(j,7) and y,(7,7), but also three-step
reward dependencies by considering a(jn—1,n, jn) and b(in, jn,ins1). The
motivation for the last-mentioned extension is that it allows us to general-
ize the alternating-moves consideration in a natural way from special forms
of the prisoner’s dilemma to bimatrix games with arbitrary structure (see
Subsection 2.2 below).

We are interested in the following stochastic dynamic process: In round
nn=12...),

e agent 1 chooses action 7,, randomly according to the probability vector
(mn(jn—lv 1)’ s 7xn(jn—17 Nl))v

e based on i,_1, jn—1 and i,, agent 2 updates Y,,_; to Y;,, using (6)—(8),

e agent 2 chooses action j,, randomly according to the probability vector

(yn(inv 1)7 ce 7yn(ina NZ))v

e based on j,—_1, i, and j,, agent 1 updates X,, to X, 11, using (3)—(5).

The initial round 0 needs a specific protocol (in particular, learning does
not yet take place in this round):

e Agent 1 selects a random line j of matrix Xy, where each j = 1,..., Ny
has the same probability, and chooses action iy according to the prob-
ability vector

(xO(ja 1)7 s 7x0(j, Nl))
(note that j,—_1 is not specified for n = 0, therefore it is chosen ran-
domly),

e agent 2 chooses action jg randomly according to the probability vector
(yo(i07 1)7 oo 7y0(i03 NQ))

Throughout the paper, we restrict ourselves to nonnegative rewards
a(j',i,7) and b(4, j,i'). In principle, the model equations could be extended
to possibly negative rewards. This extension is not considered here. Readers
interested in models for possibly negative rewards are referred to Bereby-
Meyer and Erev [3]. For the effect of adding a constant to all rewards,
cf. Erev, Bereby-Meyer and Roth [12].



As already stated in Section 1, the game underlying our model does not
fit into the framework of iterated games: subsequent rounds (stages) are
not independent from each other. However, let us remark without proof
that the considered game (with discounted payoffs) can be represented as
a special case within the broader framework of Markov games (see [21] or
[19]), a generalization of Markov decision processes to more than one agent,
where states can be used to propagate information between rounds.

Example 2.1. Two firms 1 and 2 decide between cooperative (action 1)
and competing (action 2) behavior. If firm 1 has cooperated, it judges a
cooperative response of firm 2 as a fortunate event (accepted offer), and a
competing response of firm 2 as a very unfortunate event (exploitation of
good-will). If firm 1 has competed, it judges a cooperative response of firm 2
as a very fortunate event (positive surprise), and a competing response of
firm 2 as unfortunate only to a slighter degree (expected reciprocal com-
petition). Analogously for firm 2. This yields the following reward arrays
(formulated by the matrices of eq. (1)):

W _g@_pgo_pga_ (20

A A B B ( 3 1 ) (9)
Note that in this case, a(j’,4,j) is actually independent of the previous
action j' of the other agent, and also b(i, j,4') is independent of 7. Let us
set A = 0.1, and assume that both firms start with equal probabilities for
cooperation and competition:

05 05
XO_YO_(O.5 0.5)' (10)

In round 0, firm 1 chooses action iy with equal probabilities from the set
{1,2}. Say the result is igp = 2 (competition). Next, firm 2 chooses action jgy
with equal probabilities from {1, 2}, which yields, say, jo = 1 (cooperation).
At the beginning of round 1, the memory matrices are still unchanged, so
firm 1 chooses a random action from {1,2}, again with equal probabili-
ties. Suppose this yields i; = 1 (cooperation). Now, firm 2 gets a reward
b(2,1,1) = b (1,1) = 2 which reinforces the reaction to stimulus 2 by
response 1: According to (6)—(8),

¥1(2,1) =0540.1-2-05=0.6, (2,2)=05-(1—0.1-2) =04,

whereas y1(1,1) = y0(1,1) = 0.5 and 31(1,2) = yo(1,2) = 0.5. Firm 2
has “learned” to react rather cooperatively to competition, but reacts to
cooperation still with the initial probabilities, so its next action j; (the
response to action 4; = 1) is chosen with equal probabilities from {1,2}.
Say the result is j; = 1 (cooperation). This yields a reward of a(1,1,1) =
a™M(1,1) = 2 for firm 1, such that, analogously as before, z5(1,1) = 0.6 and
x2(1,2) = 0.4, whereas z2(2,1) = 23(2,2) remain equal to 0.5. Firm 1 has
“learned” to respond to cooperation rather by cooperation. Therefore, in
round 2, firm 1 chooses action 1 with the increased probability xz5(1,1) =
0.6, etc.



2.2 Derivation of reward arrays from payoff bimatrices

For mainly psychologically determined situations, values in the reward ar-
rays can often be guessed directly by estimating emotional reactions of the
two involved persons or parties (cf. Example 2.1). For economic applica-
tions, however, where rationality plays a more important (though usually
not exclusive) role, it is convenient to derive reward arrays from the well-
established game-theoretical modelling concept of payoff (bi-)matrices. Re-
ward arrays derived from payoff matrices, however, are only a special case
of general reward arrays.

Let us consider a bimatrix game with payoff matrix (p(*)(i, 7)) (i =
1,...,Ny; j = 1,...,Np) for agent k (k = 1,2). The game is played in
alternating moves: in round n, agent 1 chooses a line 4,, then agent 2
chooses a column j, (n =0,1,...). At each time, the current state of the
interaction process depends on the last decisions of the two agents: During
the first part of round n (before agent 2 has acted) this state is (in, jn—1);
during the second part, after agent 2 has updated its decision to j,, the
state is (in, jn)-

Now, let us assume that while being in a certain state, both agents obtain
per time unit the payoffs associated with this state, i.e., agent k gets a payoff
of pk) (4n, jn—1) per time unit in the first part of round n and a payoff of
p®) (i, jn) in the second part of round n (k = 1,2). In the simplest case,
we can assume that the two parts of round n take the same time, such that
the payoffs p*) (i,,, j,,_1) and p*¥) (i, j,) have equal weights; however, it is
also possible to model situations where the durations are different or even
depend on the chosen decisions (e.g., an agent may decide to react quickly
or by an action with a preceding delay). In the case of equal weights —
say: one unit for each of the two parts of the round —, the total reward
agent 1 obtains after its action 4,, in round n and before its next action 4,1
in round n + 1 is

a(jnfly Zn7.7n) = p(l)(inajnfl) + p(l)(inajn)a (11)

and the total reward agent 2 obtains after its action j, in round n and
before its next action j,4+1 in round n + 1 is

b(in, s int1) = PP (in, jn) + 2P (int1, jin)- (12)

Example 2.2. Consider a prisoner’s dilemma with payoff bimatrix

P= 26 = (5o 19 ). (13)
where agent 1 is the line player, agent 2 is the column player, the first action
is “cooperate” and the second action is “defect”. Suppose the sequence of
actions ig =1, jo =1, i1 =2, j1 =2, ia = 1, jo = 2,... has been chosen.
In round 0, state (1,1) (both agents cooperate) is established. In round 1,
agent 1 changes this state by its action ¢; = 2 to (2,1) (agent 1 now defects,



but agent 2 still cooperates), which gives agent 1 a reward of 5 units during
the first part of round 1. However, agent 2 then decides to react by defecting
(j1 = 2), thus shifting the state to (2,2) (both agents defect), such that in
the second part of round 1, agent 1 only obtains a reward of 1 unit. So,
the overall reward of agent 1 following its decision in round 1 (preceding its
next decision in round 2) is a(1,2,2) =5+ 1 = 6. Similarly for agent 2: its
overall reward following its decision in round 1 (preceding its next decision
in round 2) is (2,2,1) = 145 = 6, etc. In total, using (11) and the matrix
representation (1), we obtain the reward array for agent 1 as

A _(10 6)’ A _<6 2 )

and B = AW B®) = A®) because of symmetry. The main difference
to Example 2.1 is that now A # A®) ie.. the reward depends on the
previous action of the other agent: if it has cooperated before, the reward
is higher.

2.3 Basic Properties of the Process

For the slightly different learning model treated in [10], [15] and [11], it has
been observed in the last-mentioned article that the corresponding stochas-
tic dynamical process can be interpreted in a Markov process framework,
and that on certain additional assumptions, it always converges to some
limit cycle. Here, we show that these observations are also valid for the
model considered in this paper.

Proposition 2.1. The two stochastic processes with the quadruples
(jn—lanain»Yn) resp. (in—h}/n—lyjn—laXn)
as states are Markov processes in discrete time. (Proof: see Appendix.)

Now let us turn to the limiting behavior of the process as n — oo, which
is characterized by a steady-state distribution of the first or second Markov
process described above. In view of Proposition 2.1, such a steady-state
distribution can be of two types:

Type (a): In the steady-state situation, X, and Y, have point mass
distributions, i.e., z,(j,4) and y,(i,J) are, for each pair (i, j), fixed values
independent of n.

Type (b): The distribution of X,, or that of ¥;, (or both) is not a point
mass.

In computational experiments, only steady-state distributions of type (a)
have been observed.? For this type, the following assertion can be made:

Proposition 2.2. Let a(j’,¢,7) > 0 and b(i, j,4') > 0 for all indices j’, i, j,
i’. Then a steady-state distribution of type (a) has the property that there

3We conjecture that only type (a) steady-state distributions exist, but cannot prove
this at the moment.



are index sets I C {1,..., N1} and J C {1,..., Na} and bijective functions
p1:J — I and @9 : I — J, such that agent 1 resp. 2 chooses actions from
I resp. J only, ¢1(j) is the fixed response (chosen with probability 1) of
agent 1 to action j € J of agent 2, and 2 () is the fixed response (chosen
with probability 1) of agent 2 to action ¢ € I of agent 1. (Proof: see
Appendix.)

Given its conditions are satisfied, Proposition 2.2. predicts a determin-
istic limit cycle

as the finally resulting interaction sequence: After some time, the agents run
through the same loop of alternating moves again and again. Interestingly,
stochasticity has vanished in the limiting behavior. Note, however, that this
does not mean that the probabilities x,,(j,¢) and y, (i, j) need to degenerate
to values 0 or 1 for all index pairs (j,7) resp. (i,7). Only those that are
actually “played” in the limiting case must degenerate.

3 Slow Learning: General Properties

As our computer experiments in [10], [11] and [11] with a closely related
model show, the outcome of learning at a medium-sized rate A is qualita-
tively not very different from that of slow learning (small A), but simply
biased by random noise. So it seems most interesting to study the asymp-
totic case where A\ tends to zero, compensated by a growing frequency of
interactions per time unit. (For a similar consideration, see [5].) As we shall
see, randomness disappears in this asymptotic case in some sense: The dy-
namical process of the matrices X,, and Y;, (albeit not including the actions
i, and j,) approaches a deterministic process that only depends on X, and
Yy and, of course, on the reward arrays.

Now let us outline the indicated asymptotics in detail. We shall define a
second, related process obtained from the original process by four successive
approximation steps, each of which is justified by the mentioned asymptotic
consideration. First, we compose each sequence of M rounds to a period:
Period 1 contains rounds 0 to M — 1, period 2 rounds M to 2M —1, etc. Let
A = ¢/M, where ¢ < 1. Then, the sum of probability changes z,1(j,7) —
xn(4,4) according to (3) is of order O(M - A) = O(e), hence small compared
with unity (the sum of the probabilities x,(j,4) in a line j of the memory
matrix). Therefore, in a first-order approximation, x,+1(j,7) ~ x,(j,1)
during the period, i.e., the memory matrix X,, does not essentially change.
The same holds for Y,,. In approximation step 1, we consider a process where
X, and Y, are held ezactly constant for the M rounds (p—1)M, ..., pM—1 of
period p by resetting X, 11 = X,, after the increment AX,, = X,,;1—X, has
been computed from egs. (3) — (5), and analogously for Y,,. The increments
AX, and AY,, are cumulated and added to X,, resp. Y,, only after period
p is over.



Next, the time axis is scaled in such a way that a period is assumed to
take € time, i.e., K = 1/e = 1/(M\) periods are executed during one time
unit. If we prefer to consider the number K of periods per time unit as the
control parameter and to derive from it the learning rate \, we can also say
that A is set to the value 1/(MK). Thus, the more rounds are performed
during a time unit, the lower has the learning rate A to be chosen in order
to keep the overall change during one time unit always of an “observable”
size. Obviously, also the parameter M can be chosen arbitrarily large in this
consideration, larger values of M leading to even smaller values of \. Let
x(4,1)(¢t) and y(4, j)(t) denote the values of the variables x, (j, i) resp. yn (4, j)
in the period corresponding to time ¢ in the time scaling described above.
For the sake of brevity, we shall simply write z(j,¢) resp. y(¢,7) in the
sequel. The numbers x(j,7) and y(i, ) represent the transition probabilities
of action j of agent 2 to action i of agent 1, resp. of of action i of agent 1
to action j of agent 2, in the period corresponding to time ¢.

In the following, we let M — oo. This has two consequences: One
the one hand, the actions ¢,, and j,, which form a homogeneous Markov
chain during period p by approximation step 1, are performed sufficiently
often such that the Markov chain not only reaches its steady state*, but
even remains in this steady state (or, more precisely, in a distribution close
to the steady state) for “almost all” time of period p. Therefore, it is
justified to consider a second (additional) approximation step consisting in
the assumption that in each period p, the distribution of the actions ¢, and
Jn is exactly their steady-state distribution throughout the entire period.

The other consequence of assuming M as a large number is that the
contributions of the increments AX,, and AY,,, which are independent dur-
ing period p by approximation step 1, follow the Law of Large Numbers.
Therefore, in our third approximation step, we can assume that what is
added to X, resp. Y,, after period p (representing the cumulative effect of
the considered increments) is the ezpected value of the sum of the incre-
ments AX,, and AY,, instead of the sum itself. Approximation steps 1 to 3
transform the original process into a discrete deterministic process.

Finally, in the fourth approximation step, we let K — oo, such that the
duration dt = € of a period tends to zero, which approximates the mentioned
discrete deterministic process by its continuous counterpart. The resulting
process will be called the counterpart process to the original process. It
can be interpreted as a deterministic, time-continuous approximation to
the original stochastic process for the case of many rounds per time unit
and low learning rate in each round.

The expressions

dx(j,4)
dt ’

dy(i, 7)
dt

(i) = y(i,5) =

denote the differential quotients of the variables z(j,¢) resp. y(i,j) of the

4Existence and uniqueness of the steady state are not trivial here, but require some
additional technical arguments, see the proof of Proposition 3.1 in the Appendix.



counterpart process with respect to time ¢. Furthermore, let us introduce

N2

a(j',i) = Yy, ) ali'si, ) (14)

j=1
denoting the expected reward achieved by agent 1 for reaction 4 to j’, and

Ny

BG,5) =Y (5,i) b, 4,7) (15)

/=1

denoting the expected reward achieved by agent 2 for reaction j to i. It
should be observed that the values «f(-,-) and f3(-,) implicitly contain the
probabilities y(-, ) resp. z(-, ).

Proposition 3.1. For nonzero starting probabilities z¢(j,7) and yo(4, j),
the counterpart process is characterized by the following system of ordinary
differential equations:

i N,
#(j,1) = p(7) x(j,0) |l i) = Y @(j,m) alj, m)] ; (16)

1

m

N2

where ¢ = 1,...,Ny, j = 1,...,Na, m(i) resp. p(j) are the steady-state
probabilities of action ¢ by agent 1 resp. action j by agent 2 under given
transition probabilities x(j,7) and y(¢,J), and «(j,4) resp. 3(i,j) are the
expected rewards (14) resp. (15) for the reactions of the two agents under
given z(j,7) and y(¢,j). (Proof: see Appendix.)

The steady-state probabilities 7 (i) and p(j) can be expressed as func-
tions of the variables x(j,4) and y(i, j) by solving a system of linear equa-
tions: In steady state, for an action i of agent 1, the balance equation

p(1) - 2(1,) + -+ p(Na) - 2(Nayi) = 7(0) (i =1,...,N1)  (18)
must hold. Similarly, for an action j of agent 2, the balance equation

(1) - y(1,5) + ... +7(N1) - y(N1,j) = p(j) (G=1...,N2) (19)

must hold. These N7+ Ny equations are not linearly independent. Summing
up all equations in (18), we get 1 = 1, and the same for (19). So we can
omit both the last equation of (18) and that of (19), and set

Ni—1 Nao—1

a(N)=1= " w(i), p(Na)=1- Y p(j).

i=1 j=1



This yields the following linear system of N1 4+ Ny — 2 equations in the same
number of variables p(1),...,p(Ny — 1), w(1),...,m(Ny — 1):

[w(Na, i) —(1,0)]p(1)+ . .+[w(Nay i) —2(Na—1,8)]p(Na = 1)+7(i) = 2(Na, i)

[y(N1, 5)=y(1, DHm(D)+. . . +y(N1, 5)—y(N1—1, j)n (N1 —1)+p(j) = y(N(l,j))

20
fori=1,...,Ny —1resp. for j=1,..., Ny — 1. For given numbers N; and
Ny, the desired functional representation of 7(i) and p(j) in the variables
x(j,7) and y(i,7) can be computed from (20) by Cramer’s rule. (This will
be done in Section 4 for the case of N; = Ny = 2.) By using Cramer’s rule,
it can also be shown that the velocity vector (...,#(4,),...,9(i,7),...)" of
the process is always proportional to a vector of polynomials in the variables
.13(', ) and y(" )

It should be emphasized that also in the asymptotic case A — 0, the
order in which the two agents make their moves is important, such that
the alternating-moves dynamics considered here essentially differs from the
well-investigated iterated-game dynamics.

We do not make an assertion on the convergence of the trajectories of
the learning process defined in Subsection 2.1 to that of the counterpart
process as A — 0, neither do we assert that the steady-state properties
of Proposition 2.2 converge. Indeed, the last is not true in general, see
the Remark at the end of Subsection 4.2. Possibly, trajectory convergence
can be shown, at least under certain definitions of stochastic convergence
(cf. the convergence result for an iterated-game model in [5], or the notion
of “asymptotic trajectories of a semiflow” introduced in [20]), but a mathe-
matical investigation of this question would exceed the scope of this paper.
We restrict us here to the statement that “closeness” of the trajectories of
the original learning process for small A\ to that of the counterpart process
could be observed in all of our experiments.

4 Slow Learning: The Two-Actions Case

In this section, the special case N; = Ny = 2 of two possible actions for each
agent is investigated in more detail. Throughout the whole section, we use
subscripts (e.g., ;) instead of arguments (e.g., z(j,7)) to make notation
more concise.

4.1 Structure of the Process in the Two-Actions Case
For N1 = N» = 2, the system (20) of equations takes the special form

m + (o1 —zn)p1 = o, (21)
(Y21 —y11)m  + P = Y2,

with solution

zo1y11 + (1 — z21)y2

= y212011 + (1 — ya1)w21
A )

1 - (22

and p; =



where
A=1—(z21 —211) (Y21 — y11)- (23)

Furthermore, one finds

_ I—znyn — (1 —211)y21 _l—ynrn — (1 —y11)za1

A ) P2 A (24)

2
Straightforward estimations show that 0 < A < 2. The special case x1; =
y11 = 0 and 297 = yo1 = 1, implying A = 0, has to be excluded from
consideration. In all other cases, m; and p; (and therefore also 7o and po
are valid probabilities satisfying 0 < m; <1,0<p; < 1.

Let us now compute the expected rewards o ; resp. 3;; defined by (14)
resp. (15). Since z12 = 1 — x11 and y12 = 1 — y11, we obtain

aji = (a1 — aji2) Yir + ajiz and By = (bij1 — bij2) 51 + bij2
for j =1,2 resp. i = 1,2. Let us define
‘Aj(ylh y21) = Q1 — Q2 = (aju _aj12) Y11+ (%‘22 - ajzl) Y21 + (aj12 —ajzz)

(25)
and

Bi(z11,%21) = Bi1—PBi2 = (bin1—bir2) 11+ (bisa—bio1) x21+(bina—bioz) (26)

for j = 1,2resp. ¢ = 1,2. This enables a specific representation of the system
(16)—(17) for the two-actions case given in the following proposition. The
reader should notice that equations for &1, and 712 are redundant, since
T2 =1—m11, y12 = 1 —y11.

Proposition 4.1. For N; = N, = 2, the counterpart process is character-
ized by the system

T11 (w21y11 + (1 — 221)y21) w11 (1 — 211) A1 (Y11, 921)
o1 | _ 1| (T =wnyin — (1 —211)y21) 221 (1 — 221) Ao (Y11, y21)
Y11 A (y21l’11 + (1 - y21)$21) Y1 (1 - y11) 31(1’11,5521)
Y21 (1 — Y1 — (1 - 911)3321) Y21 (1 - y21) 32(%1,3021)
(27)

of differential equations, where A, Ay, Ay, By and By are given by (23),
(25) and (26). (Proof: see Appendix.)

In some cases of application, the reward a,;; depends on j’ only in an
additive way:

Qjrij = Yy -+ Qjj (28)

with arbitrary numbers v;/ (j' = 1,2). In these cases, we obtain A; = Aj.

Similarly, if b;;; depends on ¢ only in an additive way, B = B, follows.

Example 4.1 (Prisoner’s Dilemma). Let us take the data of Example 2.2.
Since in this example, (28) is satisfied, e.g., with (a;;) = A®) | 4 =4 and



~v2 = 0 (the other agent’s previous cooperation simply increases the reward
by 4), A; = Ao must hold. Indeed, we find

Ai(yi1,y21) = Aa(yi1,¥21) = 4y — dya1 — 2.

Because of the symmetry of the game,

Bi(z11,221) = Ba(z11,221) = 4211 — 420 — 2.

4.2 Fixed Points

An obvious question is to which fixed points the dynamics (27) can pos-
sibly converge: we are looking for quadruples (11,221, Y11, y21) for which
the assigned velocity vector (Z11, 21,911, ¥21)" is 0 = (0,...,0)". There are
several reasons why a component on the r.h.s. of (27) can vanish; we may
distinguish reward-specific reasons (A, Az, By or By vanish), or reward-
independent reasons (one of the other factors vanishes). Because they are
of general interest, irrespectively of the specific reward array under consid-
eration, let us start with the determination of those fixed points that are
caused exclusively by reward-independent reasons.

The simplest of these reward-independent causes for a component of
the velocity vector getting zero is that a variable x;; or y;; degenerates,
i.e., takes one of its boundary values 0 or 1. To make z1; vanish, e.g.,
it suffices that either x1; = 0 or xy; = 1. However, #1; also vanishes if
221 Y11 + (1 — Z21) y21 = 0, which is the case if and only if

(yn :0/\y21 = 0) \/(yn = 0/\.1321 = 1) V (y21 :0/\3321 ZO) (29)

In total, this gives four logical conditions (say, I to IV), which are sufficient
for the quadruple to be a fixed-point if they are satisfied simultaneously.
By a straightforward examination, we obtain the following classification of
the possible reward-independent fixed points into different types. We write
a fixed point as a vector (z11,%21,%11,Y21); & symbol * as a component
denotes an arbitrary non-degenerated value, i.e., a value from the interval
10, 1[. For later reference, the types will be labelled by symbols Al etc.

Case 1. Exactly two degenerated components.
Al (0,%,%,1)  A2: (1,%,1,%) A3: (%,0,%,0) Ad: (%,1,0,%)

Case 2. Exactly three degenerated components.

Bl: (%,0,0,0) B5: (0,%,0,1) B9 (0,0,%0) B13: (0,1,0,%)
B2: (%,0,1,0) B6: (0,%,1,1) BI0: (1,0,0) Bld: (1,1,0,%)
B3: (x1,0,0) B7: (1,%1,0) BIll: (0,0,1) BI15: (1,0,1,%)
B4: (x,1,0,1) BS: (1,%1,1) B12: (0,1,%1) BI6: (1,1,1,%)

Case 3. All four components are degenerated. In this case, every possible
vector

(@11, @21, Y11, Y21) with j; € {0,1}, y;; € {0,1}



is a fixed point, which yields types C1 to C16 (indexed according to lexico-
graphic order of the quadruples).

In case 1, only limit cycles of length 2 result. E.g., type Al always leads
to the limit cycle (2,1) (agent 1 chooses action 2, agent 2 chooses action 1 in
every round). In cases 2 and 3, also longer limit cycles are possible, e.g., the
fixed point (0, 1,1,0) (type C7) effects the limit cycle (2,2, 1, 1), where both
agents do the same in each round, but with alternating actions in successive
rounds.

Reward-specific fixed points can occur by a replacement of any of the
conditions I to IV explained above (possibly even more than one) by the
corresponding condition A;(y11,¥21) = 0 (§j = 1,2) resp. Bi(z11,221) =0
(1 = 1,2) from (27). Let us subsume reward-specific fixed points that are
not yet covered by one of the types A1-C16 under “type D”.

Example 4.1 (continued). The reward-independent fixed points in the set-
ting of the prisoner’s dilemma example given above are those of the general
case. As the reward-specific fixed points are concerned, we distinguish three
cases:

(i) 4217 — 491 — 2 =0, but 4y11 — 4y21 — 2 # 0. Short reflection shows
that this leaves the possibilities (%, 0, *,0), which is already covered by type
A3, and (1, 3,1, %), which is already covered by type A2.

(11) 4y11 — 4y21 -2 = 07 but 41311 — 41321 -2 7£ 0. This leaves the
possibilities (x, 0, %, 0), which is already covered by type A3, and (1, %, 1, %),
which is already covered by type A2.

(iii) Both 4217 — 4291 — 2 = 0 and 4y11 — 4y21 — 2 = 0. This yields a set
(with two degrees of freedom) of type-D fixed points. They do not possess
stable, deterministic limit cycles.

Remark. The properties of the type-D fixed points in Example 4.1 may
seem to contradict Proposition 2.2, since they do not result in determinis-
tic limiting behavior. The reader should be aware, however, that there is
no analogue to Proposition 2.2 for the counterpart process. In the original
learning process, type-D fixed points of the counterpart process admit fluc-
tuations of the probabilities x1; etc. that obstruct the invariance equation
(34) in the proof of Proposition 2.2. Nevertheless, these fluctuations get
infinitesimal as A\ — 0, therefore the process stays in the neighborhood of
such a point for a long time, such that in the intermediate term, also the
original process behaves around this point in a similar way as around a fixed
point. Related observations have also been made for other approximations
of stochastic reinforcement learning dynamics by underlying deterministic
dynamics, see, e.g., Skyrms and Pemantle [31].

4.3 Dynamics for Identical Start Points

Of course, it is also interesting along which trajectories the fixed points
identified in Subsection 4.2 are reached and how their attraction domains



look like. For given reward arrays, trajectories can be computed numerically.
Let us restrict ourselves to symmetric rewards for both agents, i.e., A =
BW and A® = B@_ Furthermore, let us assume in this subsection that the
initial values of the memory matrices are identical for both agents: Xy = Yj.
In other words, both agents start with their reaction probabilities located at
the same point (z11,221) = (Y11, y21) of the unit square [0, 1]2. This models
a situation where there is no initial difference between the “characters” of
the two agents. In this case, the third resp. fourth component in (27) get
copies of the first resp. second component, since A; = By, A = Bs, and
the initial equalities x17 = y11 and x2; = Y21 continue to hold during the
process because of the identity of the respective differential equations. This
yields the following dynamics:

< T3 > _ 1 ( (z21711 + (1 — 221)721) 211 (1 — 211) A1 (211, 221) )
T21 A\ (1—2% — (1 —z11)z21) T21 (1 — 221) A2 (211, 21)

B r11 A1($11,SC21)
= K(z11,221) - < (1 —x21) Ag(z11, 221) ) .
with

1
K(z11,201) = A T2 (1 —211) (x11 — 221 + 1).

In particular, for points (11, 2z21) where K(x11,221) # 0 and also the
product z11 A(z11,221) is # 0, the slope of the function x91 = x91(211)
obtained from the trajectory (z11(t), z21(¢)) by elimination of the parameter
t is given by

dxoy _ dﬁl _ T21 _ (1 —221) A2(x11, 221) (31)
dryp 4 gy z1i1 Ar(T11,%21)

Let us call the straight lines where A;(211,x21) = 0 resp. Aa(x11,221) =0
the first resp. second characteristic line of the dynamics (30). The character-
istic lines are crossed by the trajectory either vertically (first characteristic
line) or horizontally (second characteristic line).

The reward-independent fixed points of (30) according to the classifica-
tion of Subsection 4.2 are those of type C1, C6, C11 and C16 (corners of the
unit square in (x11, x21)-plane), of type A2 (right boundary of the square)
and of type A3 (bottom of the square).

For given A; and Aj, the differential equation (31) can be solved, which
yields a parametrized set xo; = xa1(x11, ¢) of curves. Each trajectory follows
one of these curves. The orientation of the movement along the curve is
given by the signs of the two components in (30). Since K(z11,2z21) >
0, x11 > 0 and 1 — w93 > 0 for all (z11,721) € [0,1]2, these signs are
determined by the signs of A; (211, 221) and As(x11, 221), i.e., they change
at the characteristic lines.

The analysis gets particularly simple in the case where A; = As, which
is guaranteed, e.g., by (28). In this case, the two characteristic lines coincide



to a line containing fixed points of type D. Eq. (31) simplifies to

d$21 1-— 21

= 32
dz1y T11 ( )

Solving this differential equation, we obtain as the general solution
T21 — 1-— c/xn (33)

with constant ¢ as parameter.

Example 4.1 (continued). In our prisoner’s dilemma context with the
numbers of Example 2.2, we have

Ai(z11,221) = Ao(211, x21) = 411 — 49 — 2,

so the characteristic line (containing type-D fixed points) is the straight
line from (%,0) to (1, %) Fig. 1 shows the resulting dynamics. It can be
observed that there are three attraction domains I, IT and III:

(i) If the agents start at a point in domain I, a point (1,z91) with
x91 € [0, %] is finally reached, which corresponds to a type-A2 fixed point
(1,%,1,%). At this point, both agents cooperate forever (choose only ac-
tion 1), and obtain a constant reward of 8 units each.

(ii) If the agents start at a point in domain II, a point (z11, 211 — %) with
r11 € [3, 3] on the lower part of the characteristic line is finally reached
(straight line between (1,0) and (2,3) in Fig. 1.) In this case, the final
behavior is not a limit cycle, but remains stochastic. The average reward
for each agent is between 2 and 8, depending on the exact location of the
attractor point. As discussed in the Remark after Example 4.1, the trajecto-
ries of the original learning process cannot have attractors on the indicated
characteristic line, but they can fluctuate around it for a long time in the
intermediate term of the process.

(iii) If the agents start at a point in domain III, except those where z1; =
1, a point (z11,0) with 1, € [0, 1] is finally reached, which corresponds to
a type-A3 fixed point (%, 0, %,0). At such a point, both agents defect forever
(choose only action 2), and obtain a constant reward of 2 units each.

We see that the learning dynamics may lead to the Pareto-efficient coop-
erative solution of the prisoner’s dilemma as well as to the non-cooperative
equilibrum in dominant strategies, depending on the initial values: For ini-
tial reaction probabilities in a certain area around the “Tit-for-Tat” corner
(1,0) (see below), the process tends to final mutual cooperation; for initial
reaction probabilities in the left or upper part of the unit square, on the
other hand, it tends to final mutual defection. There is also a rather small
area of initial points for which the process tends to a stochastic mix between
cooperative and non-cooperative behavior.

The dynamics in Fig. 1 has some similarity to that observed by Hofbauer
and Sigmund [17] (Subsection 9.3) for an evolutionary dynamic model of the
iterated prisoner’s dilemma, although the differential equations are basically
different.
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Fig. 1. Dynamics in the prisoner’s dilemma situation of Example 2.2 with
identical start points of the two agents. The domains of attraction are
marked: I and III unshaded, II shaded by horizontal lines.

In Fig. 1, we have labelled the point (1,0) by “TFT” (Tit-for-Tat), be-
cause 17 = 0 and x9; = 1 prescribe that cooperation is responded by coop-
eration and defection is responded by defection. To indicate their intuitive
meaning, the other corner points of the unit square have been labelled as
follows: (0,0) is “non-cooperative” (always defect), (1,1) is “cooperative”
(always cooperate), and (0,1) is “counter-reacting” (respond cooperation
by defection and vice versa). A somewhat disquieting observation is that
even two “good-natured” agents starting near point (1,1) end up near the
disastrous point (0,0) as a consequence of their co-learning.
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Fig. 2. Dynamics in the prisoner’s dilemma situation with changed payoff.



The concrete numbers of Example 2.2 have the property that each agent
gets a certain reward (2 units) by defecting and gives the other agent a
certain reward (4 units) by cooperating. This property makes (28) satisfied
(with the consequence that the two characteristic lines coincide), but it is
not the general case of a prisoner’s dilemma. Let us change the values in

(13) to
_( (4,4) (0,6)
P< (6,0) (1,1) )

The we obtain the reward matrices

1y _ 8 4 @_(4 0
= r) a=(73)

such that .A1 (.2311, afgl) = 433‘11 —53721 —3 and Ag(l‘n, .1321) = 43311 —51‘21 —2.
Now A; # As. The characteristic lines are parallel.’ The dynamics is
outlined in Fig. 2: The arrays show the orientation of the trajectories.
They cut the first (lower) characteristic line vertically, the second (upper)
characteristic line horizontally. The result is similar to that depicted in
Fig. 1: Only when starting in a certain area around the TFT corner (1,0),
the process tends to stable cooperative behavior. Contrary to area II in
Fig. 1, there is no domain leading to stochastic limiting behavior in this
case.

4.4 Dynamics for Not Identical Start Points

Identical initial probabilities leading to identical trajectories for both players
may be seen as a very unlikely situation. Numerical results show that
typically, the trajectories do not change too much if the starting point for
one of the two players is slightly disturbed, as long as the basin of attraction
remains the same. However, if the starting points are chosen in a larger
distance from each other, qualitatively new phenomena may occur. In Fig. 3,
we have plotted the prisoners’s dilemma trajectories for the six combinations
of starting points near the four corners of the strategy square where the two
agents start in the neighborhood of different corners. All these six trajectory
pairs end with mutual non-cooperation, which indicates that for a “happy
ending” in the prisoner’s dilemma case, it is necessary that both agents start
with a behavior not too far from the tit-for-tat pole. Furthermore, it can
be observed that some of these trajectories show sharp turns. For example,
in the case of the starting point combination where agent 1 starts near the
tit-for-tat corner and agent 2 starts near the cooperative corner (second
picture of third row in Fig. 3), there are two such turns in the trajectory
of agent 1: After a phase where she moves rather straight away towards
the non-cooperative corner, increasingly exploiting agent 2, she abruptly
changes her path towards a more friendly behavior, presumably caused by

51In fact, it can be shown that this is true for all reward arrays derived from symmetric
[2 x 2] bimatrix games.



the fact that agent 2 has begun to play tit-for-tat in the meantime, but after
a while she makes a second abrupt turn towards non-cooperation which is
presumably due to the increasingly non-cooperative behavior of agent 2.

Fig. 3. Trajectories in the prisoner’'s dilemma situation for start-
ing points ((0.1,0.1), (0.1,0.9)) and ((0.1,0.1), (0.9,0.1)) (first row),
((0.1,0.1), (0.9,0.9)) and ((0.1,0.9), (0.9,0.1)) (second row), and
((0.1,0.9), (0.9,0.9)) and ((0.9,0.1), (0.9,0.9)) (third row). Trajectory of
agent 1: solid, trajectory of agent 2: dotted.

5 Conclusions

We have investigated the dynamics of an interactive system of two economic,
social or artificial agents performing “stimulus-response—consequence” learn-
ing in a way where the response of one agent is the stimulus for the other
agent’s next action and essentially contributes to the consequence for the
other agent’s previous action, and vice versa. The “alternating moves”
point of view adopted in this article differs from the “simultaneous moves”
consideration in the majority of investigations on learning in games, but it
seems more appropriate for many situations of real life where people rather
act at different times, observing the prior behavior of others, instead of



performing a series of simultaneous decisions, as it is modelled by the clas-
sical iterated-games paradigm. Most part of our investigation deals with
the limiting case of a learning rate near zero, i.e., the case of slow learning.
This limiting case, which forms also the “backbone” of the process in the
more stochastic case of a higher learning rate, is governed by a system of
deterministic differential equations that can be solved either analytically or
numerically.

Some specific insights into the interactive process for situations of partic-
ular interest in economic theory have been outlined, especially situations of
prisoner’s dilemma type. In the last-mentioned special case, it has turned
out that in our interactive “stimulus-response—consequence” model, even
two initially almost perfectly cooperative agents can be driven by the sys-
tems dynamics to final mutual defection through a long gradual process of
growing distrust and increasing frequency of non-cooperative actions. For
initially different “characters” of the two agents, it can been observed that
stable final cooperation is only to be expected if both agents start with
an adaptive, “tit-for-tat”-like behavior (perhaps with eventual toleration of
defection and/or eventual own turn to defection). However, these results
should be translated into predictions on social dynamics only with some
caution, because our model is restricted to reinforcement learning and does
not include other learning mechanisms such as imitation learning, nor does
it take human emotions into account.

A lot of questions remain open. Of course, the effect of a higher learning
rate should be examined in detail. Alternative reinforcement schemes might
be studied, e.g., the propensity-based scheme by Roth and Erev [27] as well
as discounted and exponential variants of it (see Nagel and Tang [22]).
Moreover, in the concrete examples we referred only to the special case
of two possible actions for each agent. For several areas of application,
it would be worthwhile to investigate a larger variety of actions. Another
relevant question is how the interaction process is influenced by possible
misinterpretations (modelled by random noise) of the other agent’s actions,
as they are frequent in human life.

Finally, for computer science applications, e.g., in multiagent systems
technology or e-business, the co-behavior of more elaborate learning strate-
gies than that considered here should be investigated.
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APPENDIX

Proof of Proposition 2.1. We have to show that the distribution of the (n+1)th
state (Jn, Xn+1,in+1, Ynt1) of the first stochastic process is determined by its
nth state (jn—1, Xn,in, Yn). The integer j, is chosen randomly according to the
probabilities contained in line i, of Y;. As soon as j, is fixed, X,+1 results
deterministically from X, and the reward a(jn—1,in,jn). The integer in41 is
chosen randomly according to the probabilities contained in line j, of X1, and
Y41 results deterministically from Y, and b(in, jn, int+1). So everything is shown
for the first process. The proof for the second process is similar. O



Proof of Proposition 2.2. By definition, in a type (a) steady-state distribution,
the values x,(j,7) and yn(%,j) do not change anymore over time. Let us denote
them by zoo(4,7) resp. yoo(i,7). By (3), we obtain

Too(§',1) = oo (57, 1) + Aa(’, 4, 5) (1 — oo (57, 9)) (34)

-/

for each triple (j',4,7) that is eventually played, i.e., for which (jn—1,%n,Jn) =
(4',1, 7) with a nonzero probability in the steady-state distribution. Hence oo (j', %)
1, which implies zoo(§',7) = 0 for all 7 # i. We set ©1(j') = 3. Analogously, one
obtains Y. (4, j) = 1 for each triple (7, j,1’) that is eventually played, which implies
Yoo (4,7) = 0 for all j # j. We set @2(i) = j.

Let I be the set of all start indices i in a triple (4, j,4') that is eventually played,
and let J be the set of all start indices j' in a triple (5,4, ) that is eventually
played. Then the functions ¢1 : J — I and @2 : I — J are well-defined. Because
©1(J) = I (since only an action ¢ that occurs in a pair (j',7) with p1(j') = 7 can
eventually be chosen) and @2(I) = J, both ¢1 and 2 must be bijective. This
completes the proof. a

Proof of Proposition 3.1. Within a period p of the process resulting from ap-
proximation step 1, the actions ..., %n, jn, in+1, jn+1,-.. of the two agents, chosen
based on the fixed matrices X(,_1yas and Y{,_1)ar, form a Markov chain. This
Markov chain is periodic (with period 2). However, we may compose the actions
to pairs by defining

§n = (in,Jn)  (n=n(p),...,n(p+1) —1).

Since the starting probabilities xo(j, ) and yo (7, j) are assumed to be different from
0, by the special properties of the applied reinforcement scheme, also all z,(j,1%)
and yn (4, ) remain different from 0. It is easy to see that as a consequence, the
stochastic process with states &, is an ergodic (i.e., aperiodic and irreducible)
homogeneous Markov chain during period p. Therefore, the Markov chain (&)
converges to a uniquely defined steady-state distribution. In the process obtained
by approximation step 2, the random pairs &, = (in,Jjn) of actions obey this
steady-state distribution during the entire period p.

Let 7(i,j) denote the steady-state probability of state & = (,5). Using the
indicator function I (statement) = 1 if statement is true and 0 otherwise, it is easily
seen that the increments AY,, resulting from egs. (6) - (8) can be represented as
follows:

Aya(inj) = Llin=1)- A L(n =) D Llingr =) b(i,j,1')

=1

No Ny
- Z I(jn =m) Zl(in+1 =14')b(i,m, i/)yn(i,j)} .
m=1 =1
Therein (since the values y, (7, j) are assumed as constant in period p in the coun-
terpart process), only the indicator functions are random variables. By approxi-
mation step 2, in the counterpart process, the expected value of I(in, =) I(jn =
m) I(iny1 =14') is m(i,m) zn(m,q’). (Note that the sum of transition probabilities
from state (i,m) to the states (i',1),..., (', N2) is just z,(m,i’)). Hence, in the



process obtained by approximation step 3, the increment of y, (%, j) in period p is

Ny Na Ny
M-X {w(i,j) > @i b5, ) = > wim) D walm, i) b(i,m, i) yn(i,j)}
ir=1 m=1 =1
(35)
Since a period takes dt = ¢ = M A time in our scaling, dividing the increment
(35) by M X and using (15) yields:

N2

9(i,5) = 7(i,5) G, 5) = y(i,5) > _ w(i,m) B(i,m). (36)

m=1
By a quite similar consideration, we can also compose the actions to pairs
M = (Jn-1,%n) (m=mnp)+1,...,n(p+1)).

Let p(j,7) denote the steady-state probability of state n = (j,4) in the Markov
chain (7,). Then an analogous derivation as above yields

#(j,1) = p(G i) a(j,i) — 2(3, 1) Y _ p(G,m) ald, m). (37)
With N N
n(i) = Y _7(i,5) and p(j) = D plji)

denoting the probabilities that in steady state during a fixed period, agent 1
chooses action i resp. agent 2 chooses action j, we must have

m(i,j) = 7(@)y(i,j) and  p(j,i) = p(j) 2(4,).
Using the last equations, (37) and (36) can still be slightly re-formulated to obtain

the assertion of the Proposition. a

Proof of Proposition 4.1. Using (25) — (26), the square brackets in (16)
resp. (17) can be re-written as follows:

2

agi = > @gmym = o —zpap — (L= z) agz = (1 —251) Aj (g1, y21),

m=1

2
Bij — Z YimBim = Bi1 — yi1Bin — (1 — yi1) Biz = (1 — ya1) Bi(z11, x21).
m=1

This gives the system (16)—(17) the following specific form:
i’jl = pjl‘ﬂ(l - iEjl)Aj(yu,yzl) (J = 172): (38)

Y1 = miyi1 (1 — yi1) Bi(z11,721) (1 =1,2). (39)
Inserting (22) and (24) proves the assertion. O



