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Abstract

Workflow Systems provide means and techniques for modelling, designing, perform-

ing and controlling repetitive (business) processes. The quality of commercial workflow

systems is usually determined to a large extent by their versatility and multi-purpose

application. One of the current trends in improving workflow systems lies in enriching

modelling methods and techniques in order to enlarge design alternatives.

The need for such advanced methods is particularly apparent in those fields in which

the process duration can be determined only vaguely, but whose completion schedules are

at the same time strictly enforced by a highly competitive market by means of fines and

penalties. The risk of an overrun has to be weighed against the expected costs and bene-

fits of certain measures reducing turnaround time and their combinations. Because they

can help to avoid such penalties — or, at least, keep any potential losses low by identify-

ing critical subprocesses and evaluate appropriate measures — modelling and evaluation

techniques are becoming essential features of workflow systems.

Methodologically, we use Stochastic Branch-and-Bound as a technique for finding “op-

timal” bundles of measures. A numerical study shows the benefits of this meta-approach
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by means of five stepwise-developed decision scenarios requiring rich modelling. Petri nets

as a modelling tool and Stochastic Branch-and-Bound as an optimization technique de-

termine for multi-mode resource constrained workflows of varying complexity an optimal

workforce strategy with respect to the number of workers and their qualification.

Keywords: discrete optimization, Stochastic Branch-and-Bound, simulation, workflow opti-

mization, Petri nets, stochastic timing, resource constrained modelling

1 Introduction

Following the notation of the Workflow Management Coalition [25], “workflow” is defined as

the facilitation and automation of business processes, i. e., procedures for exchange of tasks,

documents, or information among collaborating entities (humans or agents), by information

and communication technology. Workflow Management systems provide tools and methods

in order to support the modelling (so called build-time functions) and execution (or run-time

functions) of workflows. In this work, we are focusing on the first aspect, namely the modelling

of workflows.

To use a Workflow Management system, enterprise-relevant knowledge and data needs to be

collected: What is done? How? By whom? Using what means? Workflow Management Systems

are the basis of business process management systems and are capable of delegating business

tasks to the right people at the right time using the right information resources (cf. Karagiannis

[12]). The business process management system paradigm defines central tasks which are

required to plan, design and optimize business processes involving the evaluation of alternative

restructuring measures by analytical methods and/or simulation. The ability to create and

evaluate ample what-if scenarios is a basic feature and a crucial quality-determining criterion

for high-standard commercial business process management systems. Both effectiveness (i. e.,

doing the right things) and efficiency (i. e., doing things right) can be increased by performing

workflow optimization which provides the basis for further decisions by generating correct and

useful data if the appropriate methods and tools are applied.

Modelling formalisms need to be able to represent both functional aspects of the workflow,

e. g., the precedence relations among activities, as well as quantitative aspects, e. g., duration of

tasks. A variety of modelling formalisms have been discussed in the literature (see e. g., Ferscha
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et al. [7] for a summarizing report), including information control nets [17], speech-act-based

models [4], or modelling frameworks such as ARIS (http://www.ids-scheer.de/) or ADONIS

(http://www.boc-eu.com/).

During the past decade, a wide body of literature has discussed and demonstrated the

suitability of Petri nets for workflow modelling [2, 3, 23, 24]. Petri nets have been successfully

applied to model the functional aspects of workflows (see e. g., Oberweis [18]), as well as time

aspects (see e. g., Dehnert et al. [5]).

The advantage of using time-enhanced Petri nets for modelling workflows lies in their high

degree of expressiveness allowing an arbitrarily detailed model of workflows. Whereas their

disadvantage lies in the limited practical usage on account of the high complexity involved in

solving the model using either analytic or simulation-based approaches. Research has focused

on parallelization techniques to assure that such complex models can be solved by simulation

(see e. g., Ferscha [6]).

In this paper, we advocate an alternative approach that combines the modelling power of

time-enhanced Petri nets with an optimization heuristic called Stochastic Branch-and-Bound

(SBB) [15, 16]. The basic idea behind this approach lies in “wrapping” the Petri net model

into an optimization framework, so that solving the time-enhanced Petri net model in any node

in the search space is reduced to “playing the token game” in a Petri net with deterministic

timing, for which simulation is both fast and straightforward. Instead of explicitly modelling

and simulating all possible what-if scenarios, our approach allows the analyst to specify the set

of options and measures that can be applied in the workflow under study and the set of quality

criteria in an objective function. SBB will evaluate possible, promising measure combinations

in order to come up with a solution that is “good” according to the chosen objective function.

Our models and solution techniques are based on previously published work [8, 9]. In

Gutjahr et al. [8] simulated annealing was combined with Importance Sampling, a rare event

simulation technique, to solve a stochastic discrete time-cost problem (SDTCP) with binary

alternatives. In Gutjahr et al. [9] SBB was applied to a variety of instances of SDTCPs using a

heuristic instead of an exact method to solve the deterministic subproblem. This paper seeks to

enrich the aforementioned model with some common problem features in the context of work-

flow systems. The enrichments of the basic application model are as follows: (1) constrained

resources are introduced in place of unlimited resources (2) supplementary criteria (in addition
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to project duration) are added to the objective function, and (3) some of the binary decisions

are substituted by integer ones. When dealing with resource constraints, we evaluate decisions

on the number of resources assigned to activities. Currently, we assume a first-come-first-serve

strategy for assigning resources to activities in the numerical case studies as scheduling aspects

are not the focus of this paper. With this approach, we introduce SBB in order to generate re-

liable results for stochastic workflows by controlling the sampling process, which helps to make

expensive scenario techniques affordable in terms of computational effort. At the same time,

we show that Petri nets serve as adequate tools for modelling resource constrained workflows.

Our numerical study includes a workflow in an R&D environment and is based on real world

data from an electronic module development project. This model, presented by Moder et al.

in [13], is frequently used in workflow and project management as a reference or benchmark

example and will allow for a comparison of our results. The most basic setting sketches out a

decision that is to be made on an operational level: alternative qualifications of the workforce

will reduce (the risk of) delays on selected activities in the workflow at some cost (e. g., training

costs). The qualifications can be interpreted as measures to avoid a delay of the project and —

as a consequence — to avoid penalties; the underlying problem can be modelled as a SDTCP

that selects those measures which minimize the expected overall costs.

The remainder of the paper is organized as follows: Section 2 presents the SDTCP as a

general case of the deterministic discrete time-cost problem (DDTCP) and provides a descrip-

tion of both a basic model and the enriched model. Section 3 discusses our approach to model

workflow with time-enhanced Petri nets and presents SBB as a solution technique for workflow

optimization problems. To illustrate the approach, SBB is applied to a set of examples in a

numerical study (Section 4). Our paper concludes with a summary of results and an outlook

on future work in Section 5.

2 The Basic Optimization Problem

The basic problem structure that a workflow manager faces often takes the form of a time–cost

tradeoff: On the one hand, meeting due dates necessitates a sufficiently large and qualified

workforce (cf. e. g., [21, 26]). On the other hand, additional employees and workforce training

increase the costs associated with the workflow. As very often the durations of tasks are not
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known in detail in advance, but they follow some probability distributions, it cannot be predicted

with certainty, whether certain due dates can be met or not; one can only estimate a probability

for the total completion time of a workflow.

Activity planning methods dealing with time–cost problems (e. g., the well-established CPM-

or PERT-based approaches) very often assume that resource/duration alternatives for activities

can be expressed as a continuous time–cost function. However, this assumption is unrealistic

because of the discrete nature of most resources in workflows (see e. g., Hindelang and Muth

[11] or Panagiotakopoulos [19]). In many situations, workflow managers need to make zero/one

decisions (e. g., provide training) and/or decide upon the assignment of an (integer) number

of resources (e. g., workers). Determining an efficient workforce size and selecting adequate

skills involves two intertwined problems: (1) estimating workflow completion time, taking into

account the stochastic durations of tasks, and (2) solving a hard combinatorial optimization

problem by determining the efficient training measures.

Therefore, we make the following assumptions on the workflow model:

First, it is assumed that there is a finite number of well-defined performance criteria C1,...,Ck

of the workflow system. These may represent such quantities as process runtimes, queue lengths,

idle times of resources, etc. To each performance criterion Ci, a performance cost function pi

has to be assigned, indicating the loss incurred with respect to this performance criterion. For

example, the cost function assigned to the process runtime indicates the loss caused by violation

of termination dates.

The overall performance of the system can be measured by an overall performance cost

function p which we assume to depend linearly on the single performance cost functions pi, i. e.,

the overall performance cost is given as a weighted average with known weights wi:

p = w1 ∗ p1 + . . . + wk ∗ pk.

Secondly, it is assumed that there is a finite number of measures M1, . . . , Mm that may

improve the performance of the workflow system. For example, the measure “recruit additional

personnel” may reduce the process runtime and by doing so improve the value of the perfor-

mance cost function assigned to this performance criterion. Each measure Mj is connected

with certain measure costs cj. The decision maker has to choose a subset of measures which he

wants to apply. Such a subset is specified by a binary vector x = (x1, . . . , xm), where xj = 1,

if measure Mj is chosen, and xj = 0 else. Furthermore, we denote a subset of chosen measures
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(specified by a particular x) as a measure combination. For a fixed chosen measure combina-

tion, the total costs result as the sum of the overall performance costs and the measure costs

of the selected measures.

Besides the chosen measures, the performance of the workflow system may depend on ran-

dom influences. We represent these random influences formally by using the symbol ω. This

aspect of the model reflects the fact that, in practice, the performance parameters of a workflow

system often can not be predicted with certainty. Moreover, different executions of one and the

same process will usually lead to different values for the performance parameters. The classical

statistical paradigm can be used for a formal representation of uncertainty on a specific exe-

cution of the process being considered. Following this paradigm, it is assumed that ω obeys a

well–defined (probability) distribution.

In total, each performance cost function pi (and therefore also the overall performance cost

function p) has two arguments:

• the vector x, representing the chosen measure combination, and

• the random influence ω.

Using the notation above, we may represent the total costs as follows:

f(x, ω) = p(x, ω) +
m∑

j=1

cjxj,

where p(x, ω) represents the overall performance costs, also called indirect costs, and
∑m

j=1 cjxj

represents the costs of the selected measures (the direct costs).

The objective we adopt is to minimize the expected total costs: Denoting the mathematical

expectation by E (note that E “acts” on the parameter ω), we aim to solve the problem

Minimize E(f(x, ω))

subject to x ∈ X , (1)

where X can be

• either the set {0, 1}m of all possible measure combinations x, or

• a proper subset of {0, 1}m, i. e., some measures cannot be combined with certain other

measures. A typical situation leading to a restricted set X can be discerned in the
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following: There are pools of resources R1, . . . , Rs, and each measure requires resources

from pool Ri to an extent of ai. Now, if the available resources in each pool Ri are limited

by some bi, measure combinations x with required resources that exceed some pool Ri

have to be excluded from the set X .

From the viewpoint of optimization theory, (1) is a so-called stochastic optimization problem.

In Gutjahr et al. ([9], p. 126) it is shown that the described problem is a stochastic discrete

time-cost problem (SDTCP) and that it reduces to the deterministic discrete time–cost problem

(DDTCP), which in turn reduces to a knapsack problem (as to knapsack problems, see [20]).

Moreover, each knapsack problem instance can be represented as a special case of the DDTCP.

Therefore, since the knapsack problem is known to be an NP-hard problem ([20], pp. 374-375),

the DDTCP is also NP-hard (cf. [8], pp. 69).

For the application of our approach, the following additional conditions must be satisfied:

• It must be possible to obtain estimates of the performance cost function values to each

fixed given measure combination x by means of (Monte Carlo) simulation: Doing N

simulation runs, one must be able to produce values

pi(x, ω1), . . . , pi(x, ωN)

for i = 1, . . . , k, where ω1, . . . , ωN are sampled according to the given probability distri-

bution.

• Suppose that the first r components x1, . . . , xr of the vector x have already be fixed (i. e.,

values 0 or 1 have been assigned to these components), while the remaining components

are still unspecified. Let X ∗ denote the subset of X containing all those vectors x for

which the first r components have the indicated values. Then it must be possible to solve,

for any fixed ω, the deterministic optimization problem

Minimize f(x, ω)

subject to x ∈ X ∗, (2)

in an acceptable computation time.

In principle, this can be done in one of two ways:
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– In some cases, the problem structure is of a type where (2) can be solved by a partic-

ular combinatorial optimization technique (integer programming, ordinary branch-

and-bound, dynamic programming, or a problem-specific optimization algorithm).

Using such a technique as a subcomponent may improve the runtime of our overall

optimization system considerably.

– In all other cases, complete enumeration must be applied: For this purpose, a proce-

dure to generate all feasible elements x of X ∗ is needed. Evaluating the cost function

f(x, ω) for each of these x, the best obtained x may be returned as the solution of

(2).

In this paper we follow the second approach; details on solving the deterministic subproblem

are given in Section 3.3.

3 Modelling Formalism and Solution Techniques

3.1 Workflow Modelling Using Generalised Stochastic Petri Nets

Petri nets provide a well-known formalism for modelling dynamic systems (see [14] for a survey

and formal definitions). A Petri net (PN) is usually denoted by a tuple (P, T, F, W, µ(0)) where

P is the set of places (p1, p2, . . . , p|P |), T is the set of transitions (t1, t2, . . . , t|T |), and F ⊆

(P × T ) ∪ (T × P ) defines an input/output relation to and from transitions. µ(0) is a marking

vector which gives for every place p the number of tokens µ(0)(p) initially assigned to it. A

transition t is said to be “enabled”, if all its input places contain a sufficient number of tokens

as given by W . An enabled transition can “fire” by removing a certain number of tokens from

its input places and adding tokens to its output places.

This formalism can be used to model the flow of work, where activities or tasks are modelled

as transitions and places denote the states or conditions before/after the execution of a task.

Tokens can model both the flow of control as well as the flow of work. They can also be used

to model the availability or the need for resources for an activity (see e. g., Ferscha [6] or van

der Aalst [22] for the seminal work on using PNs as workflow models).

While structural properties of the Petri net can be used to derive qualitative workflow

performance indicators (e. g., deadlocks in the flow of work), quantitative indicators can also be
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derived by using a time enhanced PN model, e. g., generalized stochastic Petri nets as defined

in Ajmone Marsan et al. [1]. In such a net, exponentially distributed or deterministic timings

are added to transitions, representing the firing time of a transition or, in the workflow context,

the duration of a task.

In this paper, we consider semi-structured workflows, i. e., systems where the specific tasks

and their relationships are either fully known or where alternatives can be modelled explicitly.

The duration of tasks, as well as the probabilities for choosing alternative paths in the workflow,

are given as random variables with known distribution. In the following sections, we refer to

this class of Petri nets as time-enhanced PNs. Resource places can be connected to activities

(transitions) and the number of tokens in this resource place corresponds to the number of

available resources. Resources can be either consumable, which are deleted after the completion

of the activity, or persistent, i. e., the resource token is put back into the resource place after

completion of the activity (after the transition has fired).

For convenience of modelling, we also assume the existence of a single transition that only

fires once (this can be assured by connecting this transition with an input place containing only

one consumable resource) to start a workflow process, as well as a defined end place, where the

arrival of a token models the completion of this workflow. Note that the approach is formally

not restricted to Petri nets following this specific structure, but the definition of performance

characteristics, as well as the stopping criterion, in simulating an instance of the Petri net need

to be adapted for other structures.

For time-enhanced Petri nets, we can derive for example the following basic performance

characteristics (additional criteria can be derived, e. g., calculation of average values based on

probability distributions) relevant for the analysis of workflows: (1) the total turn-around time

defined as the time between firing the first transition in the net and the arrival of a token

in the end place, (2) the time needed to execute subprocesses in the workflow, given by the

time between the firing of two transitions, (3) the number and frequency of firing a transition,

indicating how many times a certain activity was performed, and (4) the usage of resources

given by the distribution of tokens in resource places.

In other approaches using time-enhanced Petri nets as their modelling formalism, these

values can be obtained either by analytical techniques or by simulation, both being computa-

tionally intensive due to the stochastic nature of the net.
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3.2 Stochastic Branch-and-Bound

We apply Stochastic Branch-and-Bound as the numerical optimization technique of our ap-

proach. This subsection gives a short description of SBB, which is a technique applicable to

arbitrary combinatorial stochastic optimization problems (see e. g., Gutjahr et al. [10]). In

the following subsection, we shall provide necessary details for the application of SBB to our

concrete optimization problem (1).

A general combinatorial stochastic optimization problem can be formulated as follows:

Minimize F (x) = E(f(x, ω)) for x ∈ X , (3)

where X is a finite set of possible decisions or actions and ω ∈ Ω denotes the influence of

randomness, formally described by a probability space (Ω, Σ, P ). The stochastic branch-and-

bound method for solving (3), as developed in Norkin et al. [15], consists in

• partitioning the feasible set X into smaller subsets, and

• estimating lower and upper bounds of the objective function F (x) within the subsets.

A key idea is to apply the well-known lowest-bound rule from deterministic branch-and-

bound: At each step of the algorithm, the subset with minimum estimated lower bound is

selected for a further partition into smaller subsets. By following this approach, “promising”

subsets are investigated in more detail. Contrary to deterministic branch-and-bound, there is

no definite step when the algorithm terminates with the exact solution. Instead, the compu-

tation can be aborted according to some stopping criterion selected by the user, yielding an

approximate solution for (3).

For a more explicit description, let us denote by X p (p = 1, 2, . . .) the current subsets into

which the original set X has been divided. In total, the sets X p form a partition P of X .

Correspondingly, the original problem (3) is divided into subproblems

Minimize F (x) = E(f(x, ω)) for x ∈ X p,

where X p ∈ P. Let us set F ∗(X p) = minx∈X p F (x).

The following assumptions are made:

1. There is a lower bound function L and an upper bound function U , both of them mapping

the set of subsets of X into the set IR of real numbers, such that for all X p ∈ P,

L(X p) ≤ F ∗(X p) ≤ U(X p)
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with U(X p) = F (x′) for some x′ ∈ X p, and

L(X p) = F ∗(X p) = U(X p)

if X p is a singleton set.

2. There exist sequences ξl(X p), l = 1, 2, . . ., and ηm(X p), m = 1, 2, . . . , of random estimates

of L(X p) resp. U(X p), such that

ξl(X p) → L(X p) with probability one as l → ∞, and

ηm(X p) → U(X p) with probability one as m → ∞.

Note that ξl(X p) and ηm(X p) are random variables, while L(X p) and U(X p) are deter-

ministic quantities.

Suppose that for each set X p, subsequences (lr(X
p)) and (mr(X

p)) of the index sequence

1, 2, . . . are defined. We shall add some explanations later. With these assumptions and nota-

tions, we are now in the position to formulate the SBB algorithm:

Stochastic Branch-and-Bound:

P0 := {X}; ξ0(X ) := ξl0(X )(X ); η0(X ) := ηm0(X )(X );

for r = 0, 1, . . . until stopping criterion satisfied

{ select a set Yr ∈ Pr that minimizes the lower bound estimate ξr(X
p) (X p ∈ Pr);

if (a current approximate solution is desired) select an arbitrary element xr ∈ X r, where

X r is a set from Pr that minimizes the upper bound estimate ηr(X
p) (X p ∈ Pr);

if (Yr is a singleton) set Pr+1 := Pr;

else { construct a partition P ′
r(Y

r) of Yr consisting of the nr disjoint sets

Yr
i ⊆ Yr (i = 1, . . . , nr) };

construct the new full partition:

Pr+1 = (Pr \ {Y
r}) ∪ P ′

r(Y
r),

where the symbol “\” denotes the setminus operation; }

/∗ elements of Pr+1 will be denoted by X p again ∗/

for all subsets X p ∈ Pr+1

determine estimates ξr(X
p) = ξlr(X p)(X p) and ηr(X

p) = ηmr(X p)(X p);

}
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As in the common branch-and-bound, the solution process can be visualized by the ex-

pansion of a tree, where in our case subsets correspond to nodes and partitioning a subset

corresponds to appending successor nodes to a given node.

The algorithm requires for its full specification the description of a bound step (how to

compute the lower and upper bound estimates ξ(l)(X p) resp. η(m)(X p)), and that of a branch

step (how to construct a partition P ′
r(Y

r) of Yr).

1. Bound Step

As proposed in [15], we used the following lower bound:

L(X p) = E(min
x∈X p

f(x, ω)) ≤ min
x∈X p

E(f(x, ω)) = min
x∈X p

F (x) = F ∗(X p).

It is immediately seen that in the case where X p is a singleton, the formula above is

satisfied with equality, as required. For the random estimates ξ l(X p), we take sample

averages obtained by simulation over l random scenarios ω1, . . . , ωl:

ξl(X p) =
1

l

l∑

ν=1

min
x∈X p

f(x, ων) → L(X p) (l → ∞). (4)

(Notation has been abbreviated, since in fact the random scenarios ων also depend on

l and on X p, i.e., ων = ων(l,X
p)). For general remarks on the sample function values

f(x, ων) in the case of our problem and on strategies for doing the required (deterministic)

minimization in (4), we refer the reader to Section 2 above.

The upper bound U(X p) is obtained by selecting an element x′ = φ(X p) ∈ X p (according

to an arbitrary rule φ) and by setting U(X p) = F (x′) = F (φ(X p)). The random estimates

ηm(X p) are computed as sample averages with sample size m:

ηm(X p) =
1

m

m∑

ν=1

f(φ(X p), ων). (5)

As mentioned, (lr(X
p)) and (mr(X

p)) can be arbitrary subsequences of 1, 2, . . .. The

simplest choice for these subsequences is lr(X
p) = mr(X

p) = r + 1 (r = 0, 1, . . .). In

this case the sample size for the sample estimator in iteration r is just r + 1. In fact,

this was the sampling scheme we implemented for our experiments. However, the general

formulation of the algorithm admits also more evolved schemes for the growth of the

sample size, possibly also schemes depending on the current subset X p.
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2. Branch Step

In our special case, the solution space is the set of possible measure combinations

X = {0, 1}m = {x = (x1, . . . , xm) | xi ∈ {0, 1}}.

In our partitioning strategy, each subset Yr is of the form

Yr = {x = (x1, . . . , xk, xk+1, . . . , xm) | xi ∈ {0, 1} (i = k + 1, . . . , m)} (6)

with some fixed prefix string (x1, . . . , xk) ∈ {0, 1}k (k ∈ {0, . . . , m}). We choose nr = 2

for all r. The set Yr, as given by (6), is partitioned into two subsets Y r
1 and Yr

1 as follows:

Yr
1 = {x = (x1, . . . , xk, 0, xk+2, . . . , xm) | xi ∈ {0, 1} (i = k + 2, . . . , m)},

Yr
2 = {x = (x1, . . . , xk, 1, xk+2, . . . , xm) | xi ∈ {0, 1} (i = k + 2, . . . , m)}.

The solution xr is the currently proposed overall solution in iteration r. In Norkin et al. [15],

conditions for convergence of xr (r → ∞) to an optimal solution are given. In this convergence

result, the set X r is shown to contract to a singleton, so that finally there remains no ambiguity

on which xr to select from X r. Of course, for a practical application of the algorithm, it suffices

to compute xr only in the last iteration. For the numerical results reported in the following

section of this paper, the stopping criterion was defined as follows: (i) At least one leaf node

of the search tree has been reached, and (ii) at least 30 iterations of the algorithm have been

performed. This seemed to be adequate for finding good solutions within reasonable time. It is

clear that due to the stochastic nature of the estimator, there is no guarantee that the found

solution must be an exact optimizer, nor that the next iteration needs to produce a solution

xr+1 identical to xr.

3.3 Simulation Techniques for Solving the Deterministic Subprob-

lem

In each iteration of the SBB it is necessary to solve the Petri net, which models the workflow

to obtain the lower bounds for the objective function. A set of samples is selected for each

node v in the tree (corresponding to a specific choice of measures). A sample is an instance of

the deterministic subproblem (i. e., a deterministic Petri net). In order to compute the desired
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performance indicators as needed in the objective function (token distribution in places, time

between firing of transitions, and number of firings of a transition), all random variables are

evaluated and the resulting deterministic Petri net is simply executed by playing the token

game. The stochastic nature of the workflow is handled by the SBB procedure.

The following algorithm describes the “simulation” of a deterministic Petri net. Note that

for all “decisions” the appropriate values of the random variables have already been defined.

repeat

determine all enabled transitions

select transition to fire

update marking

advance virtual simulation time

update performance indicators

until (simulation end time) or (final marking)

Following a standard Petri net convention, we select the transition with the shortest execu-

tion time if multiple transitions are simultaneously enabled for firing. In the event that multiple

transitions are enabled with identical execution times, one is selected at random. This is just

a choice of implementation; other strategies could be implemented as well.

Note that there are two options for determining the end of the simulation: either a bound

can be given for the virtual time up to which simulation should progress or a marking can

be defined. In the following numerical examples we have chosen the latter option, as there

exists a place which corresponds to a system state in which all the activities in the workflow

have been completed; we define the arrival of one token in this place as the end of simulation.

The structure of the nets in the examples guarantees that this is a reachable marking. If this

condition cannot be guaranteed, then it is advisable to additionally specify a maximum value

for virtual simulation time to guarantee the termination of the algorithm.

In order to obtain the performance characteristics defined in the previous sections, the de-

terministic simulator basically generates an event log file, in which each event in the simulation

(i. e., a change in the marking caused by the firing of a transition) is recorded with the virtual

time stamp. This log file contains all the information needed to derive the desired basic perfor-

mance characteristics. The deterministic simulator provides an interface that can be accessed
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by the SBB algorithm in order to obtain the corresponding values. For example, the token

distribution can be obtained by the function prob(n, pk), which will return the percentage of

time during which there were n tokens in place pk.

The execution time for solving one instance of a deterministic Petri net on a Pentium IV

with 2.4 GHz is in the range of milliseconds and grows linearly with the number of transition

firings in the Net.

4 From Simple to Enriched Application Modelling —

A Numerical Study

Starting with a real world example from literature, we provide a stepwise development of five

different decision scenarios (see Table 1) and the relevant stochastic problem instances by mod-

ifying the resource constraints and objective functions. We conclude with a problem instance

considering multiple workflows to be executed in parallel. The decision complexity increases as

new restrictions and varying workforce conditions are sketched out. A basic workflow structure

together with a set of measures given in the well-known PERT syntax gives an overview of the

complexity of the precedence structure. Setting a measure will reduce the duration of activities

corresponding, for example, to effective training of (human) resources. In this first introduc-

tory case, the resources are assumed to be unconstrained and some predefined activities may

be executed with or without a speed up measure, a process which is also called “crashing”. Our

first approach supports the selection of the appropriate mix of crashing measures.

The first enrichment introduces resource limitations on one single type of renewable re-

source and we consider the decision on the number of resources to be assigned to the workflow

process in addition to qualification measures. In order to model a balanced utilization of the

workforce, we introduce an additional cost factor arising from boundaries that avoid idle times,

but also support personal allowances. The decision scenarios are two numerical stochastic in-

stances where the size of the workforce (i. e., the number of employees) that should be assigned

to the stochastic workflow has to be determined and the selection of desirable qualifications

(crashing measures) for a homogeneously-skilled workforce has to be supported. Formally,

one loss function describes the penalties that occur if due dates are not met and another loss

function imposes minimum busy times expected from management and the minimum personal
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Case Resources Resource Type Workflow Type

Section 4.1 (see Fig.1) unconstrained n.a. single

Section 4.2.1 (see Fig.3) constrained homogeneous single

Section 4.2.2 (see Fig.5) mixed mode homogeneous single

Section 4.3 (see Fig.7) constrained heterogeneous single

Section 4.4 (see Fig.9) constrained heterogeneous multiple

Table 1: Survey of Workflow Examples

allowances imposed, for example, by labor unions. In addition to the binary variables modelling

the choice of crashing measures, we introduce integer variables to model the assignment of a

certain number of workers.

A further enhanced scenario assumes a heterogeneous workforce consisting of two types of

employees at different fixed costs; our approach suggests a selection of efficient qualification

measures on the basis of a stochastic workflow, due dates and busy times.

Finally, our stochastic branch-and-bound approach is applied to three parallel stochastic

workflows, each of which requires two types of skilled staff. The decision regarding the size of

a workforce that can be assigned globally is supported by our proposed approach.

The tests described were performed on a Pentium IV with 2.4 GHz.

4.1 A Simple Workflow

Gutjahr et al. [8] introduce a rare event simulation technique combined with Simulated Anneal-

ing by means of a real world example involving an electronic module development project. The

application to that SDTCP instance required some additional information (e. g., loss function,

cost of measures, effects of measures), which was added into the basic structure given by the

activities, their precedence relations and beta-distributed durations described in Moder et al.

([13], p. 294). The resources in this basic core workflow are assumed to be unconstrained; some

selected activities may be executed in two different modes, depending if a crashing measure is

set or not. The decision being considered involves the selection of crashing measures, which in

an application could consist of assigning an additional worker to some process or replacing a

worker by an advanced one to speed up one or several of the selected processes.

As network planning techniques are well-known tools used mainly in project management for
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Figure 1: A PERT modelling a simple flow of work

planning and monitoring the fulfillment of (task) deadlines within a project, we apply PERT to

graphically represent the workflow under consideration. PERT is a network planning technique

in which an event is represented by a node in a graph and arcs correspond to the activities

in the project. For each activity, the optimistic, pessimistic, and the most likely duration are

given. In the context of workflow modelling, the arcs represent the tasks in the flow of work

and the order of events defines the precedence relation among tasks.

Figure 1 depicts the workflow structure and the data of the example investigated. The graph

is an activity-on-arc network and shows the precedence structure of the processes described

in Moder et al. ([13], p. 294). The values on the arcs in brackets give the beta-distributed

duration of an activity by the optimistic, the most likely and the pessimistic value. Rectangles

are positioned at some processes and indicate a measure Mi that may reduce the duration or

the variance of the process it acts on. It contains an identifier of the measure, new distribution

values in the sequence optimistic value, most likely value and pessimistic value, as well as the

cost of the measure given in monetary units after the comma.

The cost factors consist of the penalty applied for the late termination of the workflow,

which is an estimated value, and the costs for the measures, which are deterministic values.

Minimize F (x) = E(f(x, ω)) +
m∑

j=1

cj · xj for xj ∈ {0, 1}, j = 1, .., m

where f is a loss function non-decreasing in x for each fixed ω, which models the penalty in case

of an overrun. The cost function maps a penalty of 500 monetary units if the work turnaround
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solution proposed by SBB achieved rank 5 in a ranking order according to the brute force

simulation results.

Since also the brute force simulation results are subject to random errors (in spite of the

high sample size), we performed a statistical significance test for the differences in the mean

cost values of the single solutions. We obtained the following results: (a) The solution on rank

1 (all measures except M2) is highly significantly (α = 0.001) better than all other solutions.

(b) Whereas the solutions on ranks 2 and 3 and those on ranks 4 and 5 show no significant

differences, rank 3 is highly significantly better than rank 4, and rank 5 (our SBB solution)

is highly significantly better than rank 6 (α = 0.001 in both cases). Note that the eight best

solutions lie very closely in an interval of only 7% above the optimum; this relativizes the

proposal of the fifth best solution.

4.2 Enriched Workflow: Homogeneous Resources

The first major enrichment introduces resource constraints: in this first step, we assume one

single type of renewable resources that can be interpreted as a homogenous workforce, in which

all employees have identical skills. Initially, we consider the assignment of resources to each

process in the workflow, whereas a slightly modified example posits that only a predefined

subset of tasks requires the limited resources. Such conditions can be found, for example, in

manufacturing environments, where some of the tasks are performed by workers while others

are performed by machines.

4.2.1 Assignment of Constrained Resources to Each Task

The initial scenario assumes a multi-skilled workforce in which everyone has the qualification

to perform any process and a decision must be made with regard to what (if any) additional,

process-specific know-how should be acquired. Given upper and lower bounds for an average

degree of busy times, decision support is provided to the manager upon both the number of

employees that should be assigned to the workflow and the specific extra qualification these

employees should provide. Due to the structure of the workflow (see Figure 1), which shows

a maximum of 5 processes in parallel, we analyze workforce sizes between 1 and 5 worker(s).

For this type of decision, additional information about costs per worker and a loss function for

violating the bounds for average busy times is added to the aforementioned core workflow: we
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Figure 3: A Petri net modelling the workflow with limited resource for the entire set of tasks

assume that the costs for each worker are 240 monetary units and the costs for utilizing the

workforce on average less than 75% causes costs of 1000 monetary units. The same costs apply

if the average minimum personal allowance of 15% (equals an average utilization of 85%) is

violated.

The outlined scenario is a NP-hard problem with 2m ·
∏R

r=1 kr possibilities with m binary

measures and R different resources each in multiplicity kr. The cost function consists of four

terms: the expected costs of a late termination of the whole process (E(f(x, ω))), a penalty if

workforce utilisation u is outside certain boundaries (p(1−I(0.75 < u(x) < 0.85))), the training

cost (setting binary measures xj) and costs of the workforce (
∑R

r=1 cr · xr). This leads to the

following mathematical formulation of the problem.

Minimize F (x) = E(f(x, ω)) + p(1 − I(0.75 < u(x) < 0.85)) +
m∑

j=1

cj · xj +
R∑

r=1

cr · xr

for xj ∈ {0, 1}, j = 1, .., m; and xr ∈ {1, .., kr}, r = 1, .., R

Figure 3 shows the basic stochastic workflow using Petri net syntax. The resource place

in the upper center is connected with edges to each process and holds the varying numbers of

resource tokens which represent 1, 2, 3, 4, or 5 worker(s).

Figure 4 shows the results for all possible combinations of measures as obtained from a

brute force search (using 10,000 simulation runs for each measure combination and listing the
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Figure 4: Solution space for all possible measure combinations in a resource constrained net

average over those runs as F (x)). The measure combinations are denoted by N.D, where N

stands for the number of workers assigned to activities and D is the decimal representation of

the binary vector of the six crashing activities being set (xj = 1) or not set (xj = 0).

The optimum value for expected costs is obtained at 1550.20 monetary units by chosing a

workforce size of three workers and chosing training measure M6 (value 3.01 on the x-axis in

Figure 4). Although the 20 global best solutions lie very closely in a narrow deviation range of

only 10%, SBB proposes the second best solution of 1565.60 monetary units which deviates only

1% from this optimum solution. The SBB solution determines also three workers and suggests

to acquire qualification measures M5 and M6 (measure combination 3.03). The execution time

of SBB is in a range of only a few minutes, compared to 6 hours 40 minutes of execution time

for a brute force search.

4.2.2 Assignment of Constrained and Unconstrained Resources to Subsets of

Tasks

In a modified scenario, a distinction is made between those activities that are resource con-

strained and those which are resource unconstrained. Only a subset of the stochastic tasks

in the workflow consumes a scarce resource. Figure 5 depicts a Petri net modelling the basic

workflow structure with one limited resource type which is required only from those processes

for which measures can be chosen. The number of resources is varied from 1 to 4 worker(s)

(at most four of the activities with measures can be performed in parallel as can be seen in
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Figure 5: A Petri net modelling the workflow with limited resources for a subset of tasks
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Figure 6: Solution space for all possible measure combinations in a net with resource constrained

and unconstrained activities

Fig. 1). The cost function is the same as in Section 4.2.1. This model can represent a scenario,

where tasks with measures are performed by workers that can reach better performance levels

by means of training measures, while other tasks are performed without consuming any critical

resource (e. g., transportation on conveyor belts in a manufacturing workflow).

Figure 6 visualizes the solution space generated by a brute force approach (N = 10, 000).

The optimum value for expected costs is obtained at some 1740.00 monetary units by the

assignment of one worker to the workflow under consideration and setting no measures on

any activity (1.00). SBB proposes this optimum solution within a few minutes of CPU time,

compared to nearly 5 hours of execution time for a brute force search.
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Figure 7: A Petri net modelling the workflow with heterogeneous constrained resource types

4.3 Enriched Workflow: Heterogeneous Resources

A second major step of enrichment introduces different types of constrained, renewable re-

sources: one resource type may be assigned exclusively to those processes that have an option

to speed up selected, predefined processes, while the second type can only be assigned to all

other processes. This approach can be used to represent, for example, a pool of standby work-

ers. Again, a decision support is provided upon the choice of qualifications the employees of

the first resource type should acquire at some determined cost. The objective function, as

well as the reference instance, is kept the same. This decision scenario assumes four workforce

settings, with one or two employees being considered for each resource type. Therefore it is

necessary to provide additional data about personnel cost: the workers of the resource category

which may obtain extra skills result in fixed costs of 240 monetary units per worker, whereas

the remaining category incur only costs of 200 monetary units per worker. In Figure 7 the two

resource places hold one or two resource tokens; the resource place representing the resource

with higher costs is connected with edges to those processes where qualification measures may

be selected, the resource place representing the resource with lower costs controls the resources

for all remaining processes.

Figure 8 shows the results for all possible combinations of measures as obtained from a brute

force search (using 10,000 simulation runs for each measure combination and listing the average

over those runs as F (x)). We use a similar notation for measures, MN.D, where M denotes the
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Figure 8: Solution space for all possible measure combinations in a net with heterogeneous

resources

number of standby resources (to be assigned to activities without qualification measures), N

the number of qualified resources (to be assigned to activities where crashing can be applied),

and D being the decimal representation of the binary vector of the six crashing activities being

set (xm = 1) or not set (xm = 0).

The optimum value for costs is obtained at 2545.80 monetary units by using a pool of

two standby workers and one worker assigned to those tasks where qualification measures may

reduce the processing time. The optimal solution further suggests setting no measures on any

activity (21.00). The SBB approach finds this optimum solution within few minutes, compared

to more than five hours of execution time for a brute force search.

4.4 An Enriched Integrated Workflow Approach

The last major step of enrichment involves the integration of three single workflows in parallel

into one major workflow. For the sake of simplicity, we assume a triple workflow of the process

structure used so far; we assume that each subworkflow involves the assignment of one employee

of the resource type with higher cost, i. e., 240 monetary units (cf. Section 4.2.2) and that the

number of standbys at some costs of 200 monetary units per worker for the triple of the

workflows must be optimized. Again, the cost functions used so far remain unchanged.

Figure 9 shows a Petri net representation of the triple workflow with two different resource
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Figure 9: A Petri net modelling a large enriched integrated workflow
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Figure 10: Solution space for all possible measure combinations in a large resource constrained

net

types, whereas the standbys may vary from 1 to 15 employee(s). As only one worker is assigned

to one process, it can be concluded from the structure of each single workflow that no more

than 5 standbys are busy at the same time and as a consequence a maximum of 15 workers is

considered for the intergrated workflow.

Figure 10 shows graphically the solution space and the optimal solution with two standbys

for the whole integrated workflow that is proposed by the SBB approach within 8 minutes of

CPU time.

5 Conclusions

The contribution presents an advanced approach supporting the modelling and optimization

process of complex real world workflows where the duration of the tasks may vary and the

resources are constrained. While it proposes Petri nets as a general design syntax for the

modelling of discrete, stochastic optimization problems, our approach furthermore applies a

novel method, Stochastic Branch-and-Bound, for the optimization part to evaluate workflow

scenarios and to support decisions upon alternative resource assignments. The complexity

of the described problem class is given by two interconnected problems: (1) providing an

unbiased estimation of the completion time of a stochastic workflow and (2) solving an NP-hard

combinatorial optimization problem to select an adequate workforce size and an efficient bundle
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of measures (e. g., acquiring specific qualification). Therefore, the formal method developed

for rich models intertwines simulation and combinatorial optimization. The benefits of the

advanced approach are shown by means of five stepwise developed scenarios that are based on

real world data. Constrained resources of one type are introduced in a first step, subsequently

multi-mode resources are optimized in a more fully developed scenario. Finally, the workforce

size of two resource types is determined for a large triple workflow.

Some further extensions may be analyzed with regard to the modelling issues: In order

to refine control of workload on subgroups of the workforce, a disaggregation of resources is

desirable (in the extreme case, on the basis of a single worker). Petri nets with “colored

tokens” appear to be appropriate for modelling such systems. A second field to experiment in

the modelling part includes testing various priority rules as alternative scheduling mechanisms

within the simulation process.

Finally, future methodological work will include experiments with SBB variants that use

a local search or meta-heuristic instead of the complete enumeration technique to solve the

deterministic subproblem within the SBB. It may lead to even shorter run times and make it

possible to solve even larger, more complex workflows.
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