
Competence-Driven Project Portfolio

Selection, Scheduling and Staff Assignment

Walter J. Gutjahr(1)∗, Stefan Katzensteiner(1), Peter Reiter(1),
Christian Stummer(2), Michaela Denk(3)

(1) Department of Statistics and Decision Support Systems,
University of Vienna, Universitaetsstr. 5/9, 1010 Vienna, Austria
(2) Department of Business Administration, University of Vienna,

Bruenner Str. 72, 1210 Vienna, Austria
(3) E-Commerce Competence Center,

Donau-City Str. 1, 1220 Vienna, Austria

Abstract: This paper presents a new model for project portfolio selection, pay-

ing specific attention to competence development. The model seeks to maximize

a weighted average of economic gains from projects and strategic gains from the

increment of desirable competencies. As a sub-problem, scheduling and staff as-

signment for a candidate set of selected projects must also be optimized. We

provide a nonlinear mixed-integer program formulation for the overall problem,

and then propose heuristic solution techniques composed of (i) a greedy heuristic

for the scheduling and staff assignment part, and (ii) two (alternative) metaheuris-

tics for the project selection part. The paper outlines experimental results on a

real-world application provided by the E-Commerce Competence Center Austria

and, for a slightly simplified instance, presents comparisons with the exact solution

computed by CPLEX.

1 Introduction

Project portfolio planning (i. e., the selection, prioritization and scheduling
of project proposals, as well as the proper staff assignment) is a challenging
decision making problem in various management fields and more often than
not is of high practical relevance, as it must ensure an effective and efficient
use of substantial resources. Research and development (R&D) investment
planning may serve as an illustrative application in which huge amounts of
resources are at stake, as evidenced in the fact that in 2005 (the most recent
year for which the relevant data is available) governments and industries in
the EU-25 countries spent 1.77 % of the gross domestic product on R&D
and, thus, employed researchers to an extent of more than 1.2 million of

∗Corresponding author

1

full-time equivalents (FTEs), while even in a comparatively small country
like Austria R&D activities totalled more than e 5.8 billion and involved
more than 28,000 researcher FTEs [19].

From a resource-based point of view, superior firm performance is linked
to the resources and capabilities “possessed” by a particular firm [21]. Even
though conceptualizing and/or measuring these capabilities is not straight-
forward (for a discussion cf. [7]), an in-depth analysis of employees’ compe-
tences and their development is inevitable because they form a key source
for competitive advantage in enterprises [11]. This holds particularly true
for industrial branches facing so-called “hypercompetition” [4], which de-
notes a competitive situation where the key success factor is the ability to
constantly develop new products, processes or services providing the cus-
tomer with increased functionality and performance. Institutions relying
on the competencies of their employees therefore are not first and foremost
concerned with the money to be distributed amongst a set of (R&D) project
opportunities, but rather with the allocation of human capital. The reason
for this lies in the fact that for these cases, available expertise (i. e., compe-
tence) mainly decides whether a research or innovation endeavor may turn
into something like a success or if it is doomed to fail because of a (not
appropriately anticipated) lack of critical intellectual capabilities of some
sort. However, due to its dual nature, human capital is both a resource in-
dispensable for conducting research and innovation as well as the eventual
result of these activities.

From an economic modeling point of view, allocating available resources
amongst a set of project opportunities poses a decision making problem
of intriguing complexity. The question to be answered involves addressing
how the goals of generating (innovation) value and strengthening “inno-
vation capacity” can best be accomplished. In a sense, these goals are
partially conflicting, because output orientation stresses the shorter term,
whereas capacity building focuses on assuring the longer-term existence of
the institution and thus reflects strategic objectives rather than immedi-
ate performance under varying environmental demands. Hence, a need to
steer allocation procedures arises, as the complexity of the decision prob-
lem already defies “intuitive” decision making for moderately-sized project
portfolios.

While portfolio selection already constitutes a challenging problem, the
problem at hand comes with two additional aspects that add considerably
to its complexity, namely, (i) the need to develop schedules for the selected
projects with (financial, as well as competence-related) resource constraints,
and (ii) the concurrent staff assignment that particularly influences the
scheduling in the short run and the competence development in the long
run. As even “simple” scheduling problems are usually addressed by means
of heuristic procedures (cf. [14, 20] for general applications and [3, 13, 23]
for R&D-related ones), it is obvious that (meta-) heuristic procedures ought
also to be used when combining portfolio selection, project scheduling and
staff assignment.

2

The remainder of this paper therefore proceeds as follows: Section 2
provides the formulation of the mathematical model, as well as a discussion
of an asymptotic approximation and two special cases. In section 3, we
outline a heuristic procedure for the scheduling and the staff assignment
and provide a detailed description of both an Ant Colony Optimization
procedure and a Genetic Algorithm procedure for the portfolio selection
problem. Section 4 is dedicated to our case study and also provides results
from numerical experiments. Finally, the paper concludes in section 5 with
a summary and an outlook on further research.

2 The Model

2.1 Mathematical Formulation

In the following, the Project Selection, Scheduling and Staffing with Learning
problem (“PSSSL problem”) will be described in formal terms.

First of all, let us consider a set of candidate projects, indexed by i =
1, . . . , n, from which a subset has to be selected, a so-called project portfolio.
We represent the decision which candidate project is selected by decision
variables yi (i = 1, . . . , n), where yi = 1 if project i is to be included in the
portfolio, and yi = 0 otherwise.

The planning horizon is given by a time interval consisting of T periods,
indexed by t = 1, . . . , T . (In our case study, the length of a period is one
month.) Period t starts at time t − 1 and ends at time t. The decision on
project selection, scheduling and staff assignment has to be made at time
t = 0, which is the start time of period 1, and is conceived as the solution
of a static optimization problem; of course, this does not exclude that later
re-scheduling in a rolling-horizon fashion might be undertaken. However,
the last aspect is not subject of this investigation.

To each project i, a real number wi > 0 denoting the (economic) benefit
the company draws from project i is assigned (i = 1, . . . , n). The value wi

can refer to profit, turnover, market share or to any other economic measure
of gain, or to a combination of several measures.

Each project consists of one or several tasks, indexed by k = 1, . . . , K.
The assignment of tasks to projects is given by binary constants cik, where,
for each project i and task k, the value of cik is 1 if project i contains task k,
and 0 otherwise. It is always supposed that

∑n
i=1 cik = 1 for all k, i.e., that

each task belongs to exactly one project. Moreover, for each task k, the
following information is given: (i) its ready time ρk ∈ {1, . . . , T}, and (ii)
its due date δk ∈ {1, . . . , T}. Ready time and due date refer to periods with
periods ρk and δk being the first and the last period, respectively, where
work in task k is possible. (In other words: Work on task k can begin at
time point ρk − 1 and must end at time point δk.)

Furthermore, we consider a set of employees, indexed by j = 1, . . . ,m,
which form the staff, which is assumed to be fixed during the entire plan-

3

ning horizon. We neither take new hires nor employment terminations into
account. Moreover, the outsourcing of work is not taken into consideration
as well.

Employees are assumed to possess different knowledge, education, skills,
abilities, etc. in different fields. We refer to these fields by the term com-
petencies and index competencies by r = 1, . . . , R. In classical terms of
the project scheduling literature, competencies can also be conceived as
(human) resources. Not all competencies are of the same value for the com-
pany; it is assumed that based on long-term strategic considerations, the
management can assign a weight vr to each competency r that quantifies
the relative importance of competency r in comparison to the other compe-
tencies. We further assume that the weights vr are scaled in a specific way
(to be explained below) in relation to the economic benefits wi.

A basic assumption of our approach is that the degree to which an em-
ployee j possesses a certain competency r can be quantified in the form of a
real (not necessarily positive) value. We call this value the competence score
and denote it by zjrt. The third index t indicates that the competence score
of employee j in competency r can evolve over time: by learning effects, the
value zjrt increases if employee j works in a task requiring competency r;
on the other hand, the so-called knowledge depreciation effect reduces zjrt

in periods where employee j is not active in competency r. Initial values
zjr1 of the competency scores in period 1 are assumed as known. Based
on qualification information, on tests, on subjective estimates or on a com-
bination of these information sources, competence scores can be measured
by established methods of labor psychology in a way respecting classical
quality criteria, such as validity or reliability.

From the competency score zjrt, we derive an efficiency value γjrt of
employee j in competency r during period t by applying some (in general
nonlinear) monotonous transformation function ϕ. The function ϕ maps
the set of reals into the interval [0, 1]. By the efficiency of employee j in
competency r, one understands the share of work performed in one time unit
by employee r on a task requiring only competency r, if the entire task takes
one time unit for an employee with “perfect skills” in competency r (cf.,
e.g., [24]). The specification of an appropriate transformation function ϕ
is an empirical problem. It is convenient to restrict the consideration to
a parameterized class of functions of the desired type and to estimate the
parameters from empirical data. The class of logistic functions, which has
been frequently used for modeling organizational learning (see, e.g., [2, 18]),
represents a promising choice for this purpose. If this class is used, the
function ϕ is given by

ϕ(z) =
1

1 + a exp(−b z)
(1)

with real parameters a > 0 and b > 0.
We assume that task k requires an overall ideal effort of dkr in com-

petency r (k = 1, . . . ,K; r = 1, . . . , R). The ideal effort dkr is the time

4

needed by an employee with efficiency γjrt ≡ 1 for completing the part of
the task related to competency r. As the unit for working times, we always
take the overall maximum possible working time in one period. The real
numbers dkr are assumed to be both known and deterministic.

That part of a task k that requires a particular competency r will be
called the work package with index (k, r). Thus, dkr measures the effort
needed for work package (k, r).

In period t, employee j has a free capacity of ajt ∈ [0, 1] (j = 1, . . . ,m; t =
1, . . . , T), expressed in working time units; this free capacity is also assumed
as known.

We allow the formulation of constraints of the type that for each period,
the ideal effort invested in competency r of task k must not exceed a value
bkr (k = 1, . . . , K; r = 1, . . . R). For example, if it is required to distribute
the workload of task k related to competency r equally over the time window
between period ρk and period δk, this can be enforced by setting bkr =
dkr/(δk − ρk + 1).

In addition to the binary decision variables yi that describe the project
portfolio selection decision, we also require a second set of decision variables
specifying the decision both on (i) the scheduling of the selected projects
over time with respect to their required efforts, ready times and due dates,
as well as on (ii) the assignment of staff to the tasks of the selected projects
with special attention paid to the required competencies. The decisions
of types (i) and (ii) are captured simultaneously by real decision variables
xkjrt ∈ [0, 1], where xkjrt denotes the time employee j works within period
t in competence r of task k (k = 1, . . . , K; j = 1, . . . , m; r = 1, . . . R;
t = 1, . . . , T). As in the case of efforts and capacities, time is again measured
in multiples of the overall maximum possible working time in one period.

We assume that the competency score of an employee j in competency r
increases in each period where employee j has worked during an amount x of
time in competency r by an increment of size ηr ·x, where the proportionality
factor ηr is a constant that can depend on r. Similarly, we assume that
the competency score of an employee j in competency r is reduced by the
amount βr in each time period by knowledge depreciation. (This loss can
be over-compensated by the gain achieved by activity in competency r, as
described above.) The parameters ηr and βr will be called the learning rate
and the depreciation rate of competency r, respectively. We always assume
ηr > βr.

Given the notation above, we are now in the position to formulate our
optimization problem PSSSL as a nonlinear mixed-integer program in the
following way. We allow t to take also the value T + 1 in order to be able
to refer to the time point T (end of the planning horizon, i.e., beginning of
period T + 1).

n∑

i=1

wiyi +
R∑

r=1

vr

m∑

j=1

(γj,r,T+1 − γjr1) → max (2)

5

γjrt = ϕ(zjrt) ∀j, r, t (3)

zjrt = zjr1 − βr (t− 1) + ηr

K∑

k=1

t−1∑
s=1

xkjrs ∀j, r, t (4)

K∑

k=1

R∑
r=1

xkjrt ≤ ajt ∀j, t (5)

δk∑
t=ρk

m∑

j=1

γjrt xkjrt = dkr

n∑

i=1

cik yi ∀k, r (6)

m∑

j=1

γjrt xkjrt ≤ bkr ∀k, r, t (7)

xkjrt = 0 if (t < ρk or t > δk) ∀k, j, r, t (8)

xkjrt ≥ 0 ∀k, j, r, t (9)

yi ∈ {0, 1} ∀i (10)

The objective function (2) is a weighted average of (i) the economic
benefits wi gained from the completion of the selected projects i, and (ii) the
strategic benefits accrued from the increments of the efficiency values γjrt,
aggregated over all employees j, over the planning horizon. The numbers vr

are used as weights for the strategic importance of the competencies. Note
that in order to make the entire objective function meaningful, the values
vr have to be scaled in such a way that their relative size compared to
the economic benefits wi is appropriate. In practice, this usually implies
that the gains vr from competence development must also be expressed in
monetary units.

Constraints (3) specify the dependence of the efficiency values on the
competence scores. Constraints (4) describe the evolution of the competence
scores by knowledge depreciation and by learning. Constraints (5) bound
the invested working times of each employee by her or his capacity limits.
Constraints (6) ensure that the real working time of each employee in a
competency r within a given task k, multiplied by her or his efficiency
(which gives the ideal working time), and cumulated over all employees and
over the runtime of the task, must sum up to the overall required ideal
effort dkr for task k in competency r, if the project to which task k belongs
is selected in the portfolio, and to zero otherwise. (Note that

∑n
i=1 cikyi

is equal to yi(k), where i(k) is the index of the project to which task k
belongs.) Constraints (7) bound the ideal working time in each competency
of a given task by the maximum allowed amount per period. Constraints
(8) require that no work is carried out on this task before the ready time or
after a task’s due date. Constraints (9) are non-negativity constraints for
the real-valued decision variables xkjrt, and, finally, constraints (10) require
that the decision variables yi for the portfolio selection are binary.

6

We observe that even in the special case where the function ϕ is linear,
the PSSSL problem is a nonlinear problem, since the variables γjrt, which
depend on the decision variables xkjrt by equations (3) and (4), are mul-
tiplied with the variables xkjrt in equation (6). For linear ϕ, the problem
becomes obviously a quadratic mixed-integer program.

2.2 Asymptotic Approximation and Special Cases

In this subsection, we deal with an asymptotic approximation obtained by
assuming small learning and depreciation rates, as well as with the situation
of a (piecewise) linear transformation function ϕ. Both special contexts
allow the reduction of the nonlinear PSSSL problem to either a linear or at
least to a quadratic mixed-integer problem.

2.2.1 Asymptotic Approximation

The assumption of small learning rates ηr and small depreciation rates βr

can be represented mathematically by setting

ηr = η̄r · ε and βr = β̄r · ε, (11)

where η̄r and β̄r are constants, and ε ¿ 1. Letting ε become small without
changing the weights vr automatically reduces the importance of the second,
“strategic” term in the objective function (2), such that in the limit ε → 0,
this term does not play a role anymore. In R&D projects under competitive
circumstances, this is usually not the situation of practical interest: here,
even comparably small increments of the competencies of the personnel
may have eminent positive consequences, as they may be critical for the
question whether it is possible to enter into innovative business fields. For
this reason, we compensate for the decreasing importance of the competency
gain as ε → 0 by simultaneously increasing the weights vr, i.e., we set

vr = v̄r/ε. (12)

Combining (3) and (4) and inserting (11) yields

γjrt = γjrt(ε) = ϕ

(
zjr1 − β̄rε(t− 1) + η̄rε

K∑

k=1

t−1∑
s=1

xkjrs

)
= ϕ (zjr1 + εhjrt)

with

hjrt = −β̄r(t− 1) + η̄r

K∑

k=1

t−1∑
s=1

xkjrs.

By Taylor expansion at ε = 0, we get

γjrt(ε) = ϕ(zjr1) + hjrt · ϕ′(zjr1) · ε +
h2

jrt

2
· ϕ′′(zjr1) · ε2 + O(ε3). (13)

7

In a first-order approximation, we neglect already terms of order O(ε2), such
that

γjrt(ε) ∼ ϕ(zjr1) + hjrt · ϕ′(zjr1) · ε (14)

with the consequence that the objective function (2) becomes

n∑

i=1

wiyi +
R∑

r=1

v̄r

ε

m∑

j=1

(hj,r,T+1 − hjr1) · ϕ′(zjr1) · ε

=
n∑

i=1

wiyi +
R∑

r=1

v̄r

m∑

j=1

ϕ′(zjr1) ·
{
−β̄rT + η̄r

K∑

k=1

T∑
s=1

xkjrs

}
.

Because −β̄rT is a constant, instead of maximizing the expression above,
solving

n∑

i=1

wiyi +
R∑

r=1

v̄rη̄r

m∑

j=1

ϕ′(zjr1)
K∑

k=1

T∑
s=1

xkjrs → max (15)

gives the same result. This objective function is linear in the decision vari-
ables xkjrt (and of course also in the decision variables yi).

Now let us consider the constraints. Apart from (3) which we have
already substituted, only constraints (6) – (7) contain the efficiencies γjrt.
Applying (14), we see that a first order-approximation for

∑m
j=1 γjrt xkjrt

is given by
m∑

j=1

ϕ(zjr1) xkjrt =
m∑

j=1

γjr1 xkjrt.

Hence, also the (approximated) constraints are linear in the decision vari-
ables xkjrt.

It is interesting to look at the special case of the linear transformation
function

ϕ(z) =





0, z < 0
z, 0 ≤ z ≤ 1,
1, z > 0.

Observe that if 0 < zjr1 < 1 for all j, r, and if ε is sufficiently small such
that all competence scores zjrt remain within the open interval]0, 1[during
all periods, application of the identity function id(z) = z yields the same
result as applying ϕ(z). Since id′(z) ≡ 1, (15) then reduces to

n∑

i=1

wiyi +
R∑

r=1

ṽr

m∑

j=1

K∑

k=1

T∑
s=1

xkjrs → max (16)

with ṽr = v̄rη̄r. This function is a weighted average of economic benefits
and the overall amounts of work invested within competencies r = 1, . . . , R.

If we include the O(ε2) term in the Taylor expansion (13) and only ne-
glect terms of order O(ε3), we get a second-order approximation for our

8

problem. In this case, the approximation of the objective function becomes
quadratic in the decision variables xkjrt, since the expressions hjrt depend-
ing linearly on the xkjrt then also occur in squared form. In addition,
the constraints (6) – (7) become quadratic in the variables xkjrt in this
refined approximation: the efficiencies γjrt must be approximated here by
(14), which leads to a multiplication of the expressions hjrt by the variables
xkjrt.

2.2.2 A Special Transformation Function

It is also possible to obtain a quadratic mixed-integer program from (2) –
(10) as a special case without performing an asymptotic approximation. For
this purpose, we start with the observation that for t = 1, . . . , T + 1, lower
and upper bounds zmin and zmax, respectively, for the competence scores
zjrt can be derived. First, note that

zjrt ≥ zjr1 − βr(t− 1) ≥ zjr1 − βrT.

Furthermore, because of
∑K

k=1 xkjrs ≤ ajt ≤ 1,

zjrt = zjr1 +
t−1∑
s=1

(
−βr + ηr

K∑

k=1

xkjrs

)

≤ zjr1 +
t−1∑
s=1

(ηr − βr) = zjr1 + (ηr − βr)(t− 1) ≤ zjr1 + (ηr − βr)T.

Therefore,
zmin = min

j,r
zjr1 − T max

r
βr

and
zmax = max

j,r
zjr1 + T max

r
(ηr − βr)

yield the desired bounds. zmin can be positive, zero or negative. With the
exception of the case in which all initial values zjr1 are smaller or equal to
zero, zmax is always positive, because of βr < ηr for all r.

Now, let us define the piecewise linear transformation function

ϕ(z) =





0, z < zmin
z−zmin

zmax−zmin
, zmin ≤ z ≤ zmax,

1, z > zmax.

Since the competence scores zjrt never leave the interval [zmin, zmax], the
behavior of the process is the same as if we would apply the linear function
ϕ̄(z) = (z − zmin)/(zmax − zmin) instead of ϕ(z). In this case, it is easy
to see that the objective function becomes linear and the constraints be-
come quadratic in the variables xkjrt, since the efficiencies γjrt now depend
linearly on the xkjrt.

9

2.3 Additional Constraints

It may prove necessary to introduce additional constraints to adapt the
model to reality even better. We outline five types of such constraints and
show how they can be expressed in the model.

2.3.1 Maximum Number of Employees per Task

For each task k, a maximum number σk of employees to be engaged in
this task may be defined. The purpose of such a constraint is to avoid
the team being assigned a task is too large, in which case the work might
be paralyzed by communication overhead. (In software project planning,
the counter-productive effect of increasing team size in order to meet tight
due dates is known under the term “Brooks’ Law”, a term referring to the
insights in [1].)

The constraint can be formulated by the introduction of additional vari-
ables ξkj , where ξkj is used as an indicator variable for the event that
employee j works on task k. The constraint on the maximum number of
employees per task can then be expressed as

m∑

j=1

ξkj ≤ σk ∀k.

To serve their purpose, the variables ξkj have to satisfy the constraints

R∑
r=1

T∑
t=1

xkjrt ≤ M ξkj ∀k, j

and
ξkj ∈ {0, 1} ∀k, j,

where M is a large number.

2.3.2 “Expert” Constraint

Each team assigned to a competency r of a task k can be required to con-
tain an employee who contributes an ideal amount of work of a certain
minimum size αkr to competency r of task k. The purpose of this rule is
to avoid that a required competency is covered numerically by cumulating
small contributions from a large number of different employees with com-
parably small efficiency. Although the required level of ideal work might
be reached mathematically by such an approach, the team would presum-
ably fail unless it contains at least one “expert” guiding the members with
low competency scores. We identify an “expert” by a sufficiently large ideal
work contribution, where the lower bound αkr on the work contribution can
be specified for each task and each competency separately. The constraint
can be expressed by the introduction of additional variables ζkjr, where ζkjr

is an indicator variable for the event that employee j serves as an expert for

10

competency r of task k in the sense defined above. The constraint is then
the following:

m∑

j=1

ζkjr = 1 ∀k, r

where the variables ζkjr have to satisfy

−
T∑

t=1

γjrt xkjrt + αkr ≤ M (1− ζkjr) ∀k, j, r (17)

and
ζkjr ∈ {0, 1} ∀k, j, r,

where M is a large number. Condition (17) expresses that the variable ζkjr

can only take the value 1 if
∑

t γjrt xkjrt ≥ αkj .

2.3.3 Minimum and Maximum Number of Selected Projects from
Project Sets

One can require that a minimum number n` and a maximum number n̄` of
projects must be selected for a subset U` of the project set {1, . . . , n}. The
special cases n` = 0 and n̄` = n represent the cases in which only a maximum
or only a minimum number, respectively, is defined. Let {U` | ` = 1, . . . , L}
be the family of all sets for which constraints of this type are given. The
sets U` are allowed to overlap. In that event, the constraints can be defined
as follows:

n` ≤
∑

i∈U`

yi ≤ n̄` ∀`.

2.3.4 Precedence Relations Between Tasks

Sometimes, precedence relations between different tasks of a project are
given. For treating such relations, we introduce 2 ·K · T auxiliary variables
ψkt and ψ′kt (k = 1, . . . , K; t = 1, . . . , T) and subject them to the linear
constraints

ψkt ≤ M

t∑
s=1

m∑

j=1

R∑
r=1

xkjrs ∀k, t,

Mψkt ≥
t∑

s=1

m∑

j=1

R∑
r=1

xkjrs ∀k, t,

ψkt ∈ {0, 1} ∀k, t,

ψ′kt ≤ M

T∑
s=t

m∑

j=1

R∑
r=1

xkjrs ∀k, t,

11

Mψ′kt ≥
T∑

s=t

m∑

j=1

R∑
r=1

xkjrs ∀k, t,

ψ′kt ∈ {0, 1} ∀k, t,

where M is a large number. It is easily seen that by these constraints, ψkt

becomes the indicator variable for the event that task k has already been
started in period t or before, and ψ′kt becomes the indicator variable for the
event that task k is not yet terminated at the beginning of period t. Now,
for each precedence relation k1 ≺ k2 between two tasks k1 and k2, we add
the linear constraints

ψk2t ≤ 1− ψ′k1t ∀t,
which ensure that there is no period t where task k2 is already started,
although task k1 is not yet terminated.

2.3.5 Avoiding Project Interruption

Basically, our scheduling model is preemptive, i.e., we allow that work in
a project is interrupted by work in another project and reassumed later,
provided that the given ready times and due dates are not violated. In
some cases, the management might wish to ensure that there is a contin-
uous stream of work in a project once it has been started that does not
end before the project is terminated. This can be modelled by defining,
for each project i, a lower bond hi for the (real) work time invested into
project i in each period between its start and its termination. To handle
these conditions, we introduce 2 · n · T auxiliary variables χit and χ′it sim-
ilar to the variables ψkt and ψ′kt in subsection 2.3.4, but now referring to
projects instead of tasks, and subject them to the linear constraints

χit ≤ M

t∑
s=1

K∑

k=1

m∑

j=1

R∑
r=1

cik xkjrs ∀i, t,

Mχit ≥
t∑

s=1

K∑

k=1

m∑

j=1

R∑
r=1

cik xkjrs ∀i, t,

χit ∈ {0, 1} ∀i, t,

χ′it ≤ M

T∑
s=t

K∑

k=1

m∑

j=1

R∑
r=1

cik xkjrs ∀i, t,

Mχ′it ≥
T∑

s=t

K∑

k=1

m∑

j=1

R∑
r=1

cik xkjrs ∀i, t,

χ′it ∈ {0, 1} ∀i, t,
where M is a large number again. Thus, χit and χ′it become the indicator
variables for the event that project i has already been started in period t,

12

resp. that it is not yet terminated at the beginning of period t. The addi-
tional linear constraints

K∑

k=1

m∑

j=1

R∑
r=1

cikxkjrt ≥ hi −M(1− χit)−M(1− χ′it) ∀i, t

enforce then the desired minimum work times per period for each project i.

3 Heuristic Solution Algorithms

In this section, we describe our approach to solving the PSSSL problem
heuristically for those cases in which an exact solution by means of an ILP
solver is no longer possible, either on account of nonlinearity or because of
an excessively large number of integer variables. The overall heuristic so-
lution approach relies on a greedy algorithm for solving the scheduling-and
staff-assignment part of the problem (lower decision level). This procedure
is described in subsection 3.1. It is called repeatedly as a subroutine by a
master procedure optimizing the portfolio decision. For the master proce-
dure, we implemented two metaheuristic solution approaches, one relying
on the Ant Colony Optimization (ACO) paradigm, the other applying a Ge-
netic Algorithm (GA). These two procedures are outlined in subsections 3.2
and 3.3, respectively.

3.1 Heuristic Scheduling and Staff Assignment

The scheduling-and-staff-assignment procedure (SSAP) takes the problem
instance and a special project portfolio y as input and attempts to compute
a feasible scheduling-and-staff-assignment plan, described by the array x =
(xkjrt), to the given portfolio y. The computation of such a plan can fail,
either because the portfolio y under consideration is infeasible, or because
the (only heuristic) greedy procedure does not recognize that a feasible
solution exists. In this event, the SSAP returns the result “failure” to
the master procedure, which causes the latter to search for an alternative
portfolio y.

For the description of SSAP, we use the following additional notation:
The set S ⊆ {1, . . . , n} consists of the candidate projects i currently under
consideration, i.e., those for which yi = 1. The ready time ρ′i of project
i is equal to the earliest ready time ρk of all tasks k associated with it,
i.e., ρ′i = min{ρk | cik = 1, 1 ≤ k ≤ K}. The due date δ′i of project i
is equal to the latest due date δk of all tasks k associated with it, i.e.,
δ′i = max{δk | cik = 1, 1 ≤ k ≤ K}. The total required effort d′ir of a
project i in competency r is the sum of the required efforts dkr of all tasks
k associated with it, i.e., d′ir =

∑K
k=1 cik dkr.

SSAP works priority-based (cf. [17] for an example) in five nested loops.
First, the projects i are sorted according to their due dates, with projects

13

with earlier due date getting a higher priority of being scheduled and be-
ing assigned staff (i.e., we follow an “earliest-due-date rule”). Second, for
each project, we sort the competencies it requires on the basis of the efforts
needed and give competencies with higher needed effort a higher priority.
Third, for each competency, employees are sorted according to their effi-
ciency in the required competency; employees with higher efficiency are as-
signed first. Fourth, the tasks contained in the project are sorted according
to their due dates, with an earlier due date leading to higher priority. The
innermost loop goes over the periods of the time window for the respective
task. The pseudo-code for the overall procedure is shown in Figure 1.

Procedure Scheduling-and-Staff-Assignment
for all projects i ∈ S in ascending order of δ′i {

for all competencies r in descending order of d′ir {
for all employees j in descending order of γjrρ′

i

for all tasks k with cik = 1 in ascending order of δk {
for period t = ρk to δk {

assign to employee j a maximum share of the remaining work
in work package (k, r), respecting the current free capacity
of employee j and the bound bkr;

given x additional time units have been assigned to employee j
during period t in work package (k, r), reduce the remaining
ideal effort for work package (k, r) by γjrt x;

} } } }
if (needed effort for some work package in project i not fully covered)

return(“infeasible”);
}

Figure 1: Greedy procedure for scheduling and staff assignment.

3.2 Portfolio Selection by Ant Colony Optimization

The first approach we apply on the upper decision level of portfolio selection
is based on Ant Colony Optimization (see [5]). ACO is a population-based
metaheuristic technique combining stochastic search with a learning mech-
anism. There are several variants of ACO; we applied the MAX-MIN Ant
System [22]. The main ideas will be outlined for the special situation of a
search space S = {0, 1}n, as it occurs in the portfolio selection part of the
PSSSL problem. Solutions are encoded as walks in a so-called construction
graph (CG); for the problem at hand, we took a very simple CG, the chain
graph introduced in [9]. An example for the case n = 4 is shown in Figure 2.
A conceptual agent starts a random walk in node 0 of the CG and traverses
directed arcs until no move is possible anymore. An up-move in the chain
graph from node i− 1 to node i corresponds to a selection of item i (in our

14

case: project i), a down-move from node i− 1 to node −i corresponds to
rejection of item i.

0
 1

1

-1

2

-2

3

-3

4

-4

2
 3
 4

Figure 2: “Chain” construction graph for a subset selection problem with
n = 4.

One iteration of the procedure consists of the mutually independent
construction of N walks (by N agents); several iterations are performed.

To the arcs of the graph, so-called pheromone values are assigned which
govern the learning process. As the last action in each iteration, the walks
of all agents are de-coded as solutions y, and their objective function values
are determined. We applied an iteration-best pheromone update mecha-
nism (for details, see [5]). First, all pheromone values are multiplied by a
factor 1 − ρ, where ρ ∈]0, 1[is called the evaporation rate. Then, in the
iteration-best update, pheromone values along the best walk constructed in
the current iteration are increased by a value proportional to the fitness of
this walk.

The effect of an increased pheromone value on an arc is that this arc is
given a higher probability of being chosen by the agents in the next iteration.
We computed the transition probabilities as proportional to the pheromone
values and did not use so-called visibility values, which are sometimes ap-
plied to influence the transition probabilities in a problem-specific way.

To avoid stagnation situations that can arise from the chosen pheromone
update strategy, pheromone limits have been used, as proposed by the MAX-
MIN Ant System [22].

A final remark concerns the feasibility of the obtained solutions. If one
of the two possible moves in node i− 1 turns out as infeasible (in our case,
this can happen when the choice of a specific additional project leads to a
portfolio exceeding the capacities of the staff), the agent is simply forced
to make the other move. In our tests, we restricted ourselves to cases
where for the sets U`, only maximum numbers n̄` of projects to be selected
are defined, but no minimum numbers n` > 0 (cf. subsection 2.3.3), and
we did not include the constraints presented in subsections 2.3.4 – 2.3.5.
In this situation, the described simple procedure suffices to cope with the
problem of infeasible solutions, since portfolios can always be made feasible
by omitting projects. In the case of minimum numbers n`, more involved
techniques such as repair mechanisms or penalty functions would have to
be applied.

15

The ACO parameters were set to the following values: N = n and
ρ = 0.02.

3.3 Portfolio Selection by a Genetic Algorithm

As an alternative approach for the upper decision level of portfolio selection,
we implemented a genetic algorithm GA in a very “classical” fashion, follow-
ing the standard GA scheme presented in [15]. As GAs are very well-known,
we can restrict the description to the presentation of some implementation
details. The binary string structure of the portfolio selection part of the
problem lends itself very well to the application of a GA. (This is in con-
trast to ACO, which exhibits its strengths usually rather in problems with
routing or sequencing structure).

In generation 0, an initial population of N chromosomes is generated,
with each chromosome y consisting of n bits that are chosen uniformly at
random in the initialization phase. The fitness functions of all elements
of the population are evaluated, where we set fitness equal to the objec-
tive function value to be maximized. Then, by a standard roulette-wheel
selection procedure, a generation 1 is created, again consisting of N chro-
mosomes. The genetic operators mutation and crossover, both with certain
rates Rm and Rc, respectively, are applied to this generation. Mutation is
implemented bit-wise by an independent random flip of each bit in each of
the chromosomes with probability Rm. For crossover, we use a standard
one-point crossover, which is applied to a fraction of Rc of the population;
the two generated offsprings replace their parents in the new population.
This procedure is repeated until a termination criterion is met.

As in the case of the application of ACO, we must take care that feasible
portfolios y are obtained. Whereas in the ACO case, in the absence of
minimum numbers n`, feasibility of the overall portfolio can be ensured
directly by the construction mechanism outlined in the previous subsection,
this is no longer true for the GA, where the crossover operator can easily
lead to infeasible solutions. Several repair mechanisms have been proposed
in the relevant literature to deal with the occasional infeasibility of solutions
in knapsack-type problems. In [16], a greedy repair is reported to provide
the best results. In our case, the complex constraints make it impossible
to compute an analogue to the “weight” of an item in a knapsack problem;
therefore, benefit/weight ratios, on which a greedy repair relies, are also
not applicable. For this reason, we implement a simpler repair mechanism
instead, removing randomly selected projects from the portfolio in the event
of an infeasible portfolio and continuing to do so as long as feasibility is
not yet achieved. Evidently, in the case of minimum numbers n`, this is
not sufficient, but – as stated in the previous subsection – this case was
excluded from tests and could in principle be dealt with by a more refined
repair mechanism or by the application of the penalty function method.

The GA parameter were set to the following values: N = 20, Rm = 0.01,
and Rc = 0.9.

16

4 Case Study

4.1 Test Data

We tested our approach in a real-world setting provided by the Electronic
Commerce Competence Center (EC3) Austria. The EC3 is a public-private
partnership institution that is funded by the Austrian Federal Ministry of
Economic Affairs and the City of Vienna, as well as by twelve private en-
terprises (e.g., T-Mobile, SAP, Tiscover, Swarovski Crystal Online, etc.).
By embedding innovation practices into a collaborative network consisting
of both the three major universities in Vienna (i.e., the University of Vi-
enna, the Vienna University of Technology and the Vienna University of
Economics and Business Administration) and the company partners, EC3
strives to implement a fast and problem-tailored transfer of knowledge into
its business partners’ realm of production and value generation. To this
end, some 15 FTEs of permanent research staff are assigned to four work-
ing groups dealing with (i) structuring and representation of information
corpora, including methods of information access and information visual-
ization, (ii) logical models, designs, and mechanisms of inter-operable Web-
based systems, (iii) empirical business analyses using formal quantitative
methodologies and modeling techniques, and (iv) the evaluation of busi-
ness ideas and models, including empirical analysis of customer needs and
further methods of market research.

As a foundation for the data collection process, a catalogue of R =
80 professional and methodological competencies [8] relevant at the EC3
and 56 competence indicators (or evidences, cf. [12]), including objective
evidences in terms of formal qualifications and professional experience, as
well as subjective evidences, viz. competence ratings by peers, the scientific
director, and the researcher him-/herself, was devised. A score matrix was
specified that provides the contribution of each objective evidence to each
competence, essentially based on background information such as curricula
or journal citation indices. Resorting to Dreyfus’ skill acquisition model [6],
the subjective evidences were measured on a six-item ordinal scale discerning
no competence, novice, advanced beginner, competent performer, expert,
and mentor.

A total number of m = 28 employees – including the heads of the re-
search groups, the scientific director, and several freelancers, in addition
to the 15 permanent researchers – were surveyed via e-mail to collect the
objective and subjective evidences. The competence score zjrt was then
computed as the sum of the contributions of all objective evidences a re-
searcher holds plus a score built from the subjective competence ratings as
an adjusted, weighted average and was constrained to the interval [0, 100].
Learning and depreciation rates, ηr and βr, were defined assuming that
learning by experience is faster and more sustainable than depreciation.
Bearing in mind the score contributions specified for objective evidences,
the rationale behind the setting of the learning rate was that the score con-

17

tribution of a master’s degree should approximate the score contribution
of three to four years of research experience in the same competence. The
rate of oblivion (competence depreciation) was fixed at a rather ‘optimistic’
level. For the time being, no differences were made between the competen-
cies, except for several methodological competencies that were supposed to
grow and diminish more slowly.

The logistic function from equation (1) was chosen to transform the com-
petence score zjrt to an efficiency value γjrt. The parameters a and b were
set based on the specification of the input value domain and the conception
of a relatively high increase of efficiency for medial competence scores in
contrast to relatively small gains for rather low and rather high competence
scores. Thereby, “rather low” indicates a competence score below the score
that is assigned to graduation (approximately 30 to 40, subject to the com-
petency), i.e., competencies trained at university level are located at the
lower bound of the range of competence scores with high gains in efficiency.
On the other hand, experts with a long record of formal qualifications and/or
research experience that have already reached a high level of efficiency do
not gain much in efficiency any more. The actual parameter values of a
and b were obtained via ad-hoc “educated guesses” satisfying these basic
ideas and plausibility considerations. Although first experiments with vary-
ing parameters have already been carried out, a comprehensive sensitivity
analysis has yet to be done.

Data on n = 18 potential projects with two projects composed of two
tasks, the other projects of only one task (i.e., K = 20), was gathered from
project plans and assumptions on the distribution of the scheduled efforts
with respect to the competence catalogue. Nine different competencies were
required per task and the time period between ready time ρk and due date δk

was 12 months on average. The amount of third-party funding was provided
as a measure of economic gain wi. In order to enable a comparison of the
decision support obtained from the results of the optimization problem and
the decisions actually made, the data was collected ex-post for a previous
research period of two years (i.e., T = 24). Projects actually carried out as
well as project opportunities that had not been seized were included. Those
projects for whom it had already been decided that they would be carried
out at the beginning of the selected research period were not described,
but rather used to estimate the disposable capacities ajt of researchers.
The parameters for the additional constraints, such as the expert rule, are
usually not subject of project plans and had to be specified ad-hoc. Finally,
the weights of relative importance of the competencies vr were fixed in line
with EC3’s overall strategy.

4.2 Testing Scheme

Our goal in this work is not to give an extensive experimental evaluation of
the implemented heuristic algorithms, but rather to illustrate some results
obtained in our case study. Two different problem instances are used for

18

the tests presented here: a real-life instance (18 candidate projects, 24 plan-
ning periods, 28 employees and 80 competencies), and a simplified instance
(14 candidate projects, 24 planning periods, 28 employees and 40 compe-
tencies), with the latter constructed in order to provide comparisons with
exact solutions. For the real-life problem instance, we were also interested in
knowing how the behavior of the algorithms changes with the introduction
of additional constraints, as described in section 2.3. Furthermore, we per-
formed tests for two scenarios: in the first scenario, all competencies were
given the same weight in the objective function. In the second scenario, a
small subset of six competencies was selected and provided with nonnega-
tive weights, whereas the weights of the remaining competencies were set
to zero. This represents a case where the decision maker intends to pursue
a rather focused strategic goal in competence development.

Each heuristic was allowed to consume a previously specified runtime
budget, which was set to the value RTCE ∗ 0.5/counter, where RTCE is
the runtime required by complete enumeration over all project portfolios y
(combined with the heuristic scheduling-and-staff-assignment procedure de-
scribed in subsection 3.1), and counter = 1, . . . , 30. For each instance, con-
straint configuration and runtime, 100 runs of each heuristic with different
seeds for the random numbers were carried out, with the mean values over
the 100 runs being used for the comparisons.

Table 1 provides an overview of the test cases.

Problem Size Addit. Constraints Compet. Weights
Test case 1 small no equal
Test case 2 big no equal
Test case 3 big yes equal
Test case 4 small no unequal
Test case 5 big no unequal
Test case 6 big yes unequal

Table 1: Test case survey.

4.3 Equal Competence Weights

4.3.1 Simplified Instance

In the case of the simplified instance, it was possible to compute the ex-
act solution of the problem (2) – (10) in its linear approximation given
in subsection 2.2.1 by means of the MILP solver of CPLEX. (In addition
the heuristic approaches were then provided with this linearization to make
the results comparable.) Thus, the results of these tests make it possible
to evaluate not only the performance of the metaheuristics ACO and GA
applied to the portfolio decision problem, but also to gather information
on the performance of the overall heuristic approach, including the heuris-

19

tic scheduling-and-staff-assignment procedure (SSAP). It should be kept in
mind that even applying complete enumeration (CE) to the project port-
folios while scheduling each single portfolio by means of SSAP will usually
not produce the exact solution. The result is depicted in Figure 3. For
convenience, the solution quality values achieved by the MILP solver and
by CE have been represented by horizontal bars starting already at time 0;
note, however, that by construction (see subsection 4.2), the computation
time required even for CE exceeds the time scale of the figure: The MILP
solver and the CE approach required about one hour and about 34 seconds
of computation time, respectively.

As Figure 3 shows, there is a comparably large gap between the solution
quality of the exact optimum (denoted by “MILP solution”, since it has been
determined by means of the MILP solver) and that of the solution delivered
by CE plus SSAP, whereas the further gap between CE plus SSAP on the
one hand, ACO plus SSAP or GA plus SSAP on the other hand is distinctly
smaller.

CPU time [sec]

0 2 4 6 8 10 12 14 16 18

va
lu

e

0,0

0,1

0,2

0,3

0,4

MILP solution
CE
ACO
GA

Figure 3: Solution quality development test case 1

Figure 3 demonstrates that for the simplified instance, ACO shows a
slightly better performance than GA, and that the CE solution quality lies
about 25 % below the optimum, i.e., about one quarter of the theoretically
possible objective function value is given away by the (only heuristic) SSAP
procedure. The further loss by the gap between CE and ACO is only about
6% for the (small) runtime being considered. This indicates that future
investigations should focus on improving the SSAP for the scheduling-and-
staffing part rather than on the metaheuristics for the portfolio optimization
part.

Nevertheless, when judging the gap between CE and exact solution, it
should also be noted that portfolio selection based on the SSAP tends to
be conservative with respect to the number of selected portfolios, a bias

20

Figure 4: Solution quality develop-
ment test case 2

CPU time [sec]

0 50 100 150 200 250 300

va
lu

e

0,082

0,084

0,086

0,088

0,090

0,092

CE
ACO
GA

Figure 5: Solution quality develop-
ment test case 3

that can be advantageous in a context of work times that are not precisely
known in advance: the exact approach packs the projects very densely,
exploiting every opportunity to schedule them. If there is uncertainty on
actual work times, exact deterministic optimization can lead to schedules
lacking robustness. The looser way of packing projects provided by the
SSAP may deliver more realistic plans in this context.

CPU time [sec]

0 2 4 6 8 10 12 14 16 18

va
lu

e

0,00

0,10

0,20

0,30

0,40

MILP solution
CE
ACO
GA

Figure 6: Solution quality development test case 4

4.3.2 Real-Life Instance

Figures 4 and 5 show the results for the original real-life test cases with-
out and with additional constraints, respectively. The exact solution is no

21

CPU time [sec]

0 200 400 600 800

va
lu

e

0,260

0,270

0,280

0,290

0,300

0,310

CE
ACO
GA

Figure 7: Solution quality develop-
ment test case 5

CPU time [sec]

0 50 100 150 200

va
lu

e

0,082

0,083

0,084

0,085

0,086

0,087

0,088

0,089

0,090

CE
ACO
GA

Figure 8: Solution quality develop-
ment test case 6

longer known for these two instances, but the CE solution based on the
SSAP results can still be determined. We see that if the solution space
is not very restricted (Fig. 4), GA performs now much better than ACO
and approaches the solution quality of CE within reasonable time. This
seems to indicate that GA can best unfold its strengths for larger problem
instances. In the situation where additional constraints delimit the solution
space (Fig. 5), both approaches reach the solution quality of CE rather fast.
In this instance, ACO clearly outperforms GA. An intuitive explanation
may be that the implemented ACO algorithm uses an incremental solution
construction procedure so that the generation of unfeasible solutions can al-
ready be avoided during the construction process. GA, on the other hand,
constructs a complete solution and then uses a repair function if the con-
structed solution is not feasible. This may be very time-consuming in the
presence of restrictive constraints.

4.4 Unequal Competence Weights

To test the robustness of the obtained results with respect to a broad
resp. narrow choice of the strategic aim, we repeated the experiments with
unequal competence weights as described before.

4.4.1 Simplified Instance

By comparing Figures 3 and 6, one can see that the general behavior of the
algorithms basically remains the same. The main part of the gap to the
MILP solution is not caused by the metaheuristics, but by the SSAP. One
difference can be observed: in Figure 6, ACO is not consistently better than
GA, but looses its dominant position when computation times are increased.

22

4.4.2 Real-Life Instance

Again, the trends in overall performance essentially stay the same as in test
cases 2 and 3. However, the plots in Figures 7 and 8 show that now, for
short computation times, the obtained solution quality value behaves in a
rather erratic way. For larger computation times, the results stabilize, with
GA once again outperforming ACO if there are no additional constraints,
and vice versa for the opposite case.

4.5 Increasing the Number of Tasks per Project

In our real-world application instance, there were only two projects that
consisted of more than one task, and also in these two projects, only two
tasks occurred. In order to study the influence of the number of tasks
per project, we performed some additional tests: First, we took a special
test instance from the EC3 application (with a specific objective function
emphasizing economic benefits) and joined, in each of the two projects with
two tasks, the two tasks to a single one, which produced a baseline test
instance T1 with 18 projects, where each project contained one task. Then,
we gradually increased the number of tasks per project by splitting projects
into tasks according to the following scheme:

• Test instance T2: Each project of T1 was split into two tasks. The
time windows of the two tasks were shortened to 2/3 of the time
window length of the corresponding project, such that they partially
overlapped: The time window of the first task of each project was
chosen to cover the first two thirds of the project’s time window, the
time window of the second task was chosen to cover the last two thirds.

• Test instance T3: Each project of T1 was split now into three tasks,
with time windows shortened to the half of the time window lengths of
the corresponding projects, and partially overlapping in an analogous
manner as in T2.

• Test instance T4: Analogously as for T3, each project was now split
into four tasks.

• Test instance T5: Starting from T4, we selected two projects, in-
creased the numbers of tasks contained in them from 4 to 10, and
shortened the time windows accordingly.

We performed 20 runs with the GA variant of our optimization program for
each of these test instances. The results are shown in Table 2. In the second
column, the mean objective function value (benefit) of the best found port-
folio is indicated (averaged over the 20 runs). The third column contains
the mean number of projects contained in the portfolio. As it can be seen,
increasing the number of tasks per project from one to two tasks consider-
ably worsened the optimal objective function value, and also reduced the

23

number of projects contained in the portfolio. Obviously, this is a conse-
quence of the loss of flexibility caused by the division of projects into tasks
with specific competency requirements and time windows. Interestingly, for
an increment from two to three tasks per project and then from three to
four tasks, this trend turned out as much weaker. Further increasing the
number of tasks for two projects from 4 to 10 did not change the picture
anymore, although, as we verified, one of the projects with 10 tasks was
eventually included in the portfolios.

test instance mean benefit mean number of projects
T1 218.8 7.6
T2 160.0 6.1
T3 157.4 6.0
T4 155.8 5.9
T5 156.2 5.9

Table 2: Results for instances with increasing number of tasks per project.

5 Conclusion

We have developed a model for project portfolio selection that pays atten-
tion to competencies which, on the one hand, act as resources for the efficient
execution of projects, and, on the other hand, are increased as a result of
individual learning processes during the projects that require them. The
model is able to simultaneously consider both the economic benefits from
projects and the achievement of strategic aims connected with competence
development in desirable directions. The relative importance of economic
and strategic aims can be controlled by formulating the overall objective
function as a weighted mean. For the execution of the projects contained in
a selected portfolio, the scheduling-and-staff-assignment problem has been
taken explicitly into account. Further, work times, capacities and the com-
petencies of employees are considered on an individual level. We have shown
that the model allows a nonlinear mixed-integer programming (MIP) for-
mulation that can be approximated by a linear MIP formulation in certain
cases.

For solving the problem, we proposed two metaheuristic techniques, one
based on Ant Colony Optimization (ACO), the other based on Genetic Al-
gorithms (GA), combined with a problem-specific greedy heuristic which is
called as a sub-procedure for doing the scheduling and staff assignment. We
evaluated the approach by means of a real-world test application provided
by the E-Commerce Competence Center Austria. For a reduced instance
without additional constraints, comparisons with exact solutions obtained
by CPLEX were possible. Here, the performance of the scheduling-and-
staff-assignment procedure proved to be sufficiently good, and that of the

24

metaheuristics used in the “master procedure” for portfolio optimization
turned out to be very satisfactory. The real-life instance itself was solved
by both metaheuristic algorithms within a few minutes; here, only a compar-
ison with a complete enumeration approach also using the scheduling-and-
staff-assignment procedure was possible to evaluate the results. In general,
the GA approach seems to be slightly superior, except in those cases where
the solutions space is highly constrained, in which case ACO yielded the
better results.

Two directions deserve particular attention as topics for future research:
first, the mathematics-based multiple objective programming approach cho-
sen in this paper required the user to provide a-priori weights for the sin-
gle (economic and strategic) goals. This approach should be extended to
a multiple criteria decision analysis (MCDA) approach in which weights
do not have to be defined in advance; instead, the Pareto front of the
multi-objective problem could be determined and explored by an interactive
technique. Second, it is highly advisable that future research include the
consideration of uncertainty (e.g., on benefits and/or on work times) into
the problem description by giving stochastic (multi-objective) optimization
problem formulations, and that suitable techniques for solving such mod-
els be designed. Both extensions are works in progress; some first results
concerning the second extension are already available [10].

Acknowledgment. Financial support from the Austrian Science Fund
(FWF) by grant # L264-N13 is gratefully acknowledged. – We are indebted
to Karl Fröschl for valuable ideas and fruitful discussions by which he con-
tributed to this work already in an early stage. Furthermore, we would like
to thank Markus Günther and Mariusz Malinowski for stimulating hints.

References

[1] Brooks, F., The Mythical Man-Month, Addison-Wesley, New York (1975).

[2] Chen, A.N.K., Edgington, T.M., “Assessing value in organizational knowl-
edge creation: considerations for knowledge workers”, MIS Quarterly 29,
pp. 279–309 (2005).

[3] Coffin, M.A., Taylor, B.W., “Multiple criteria R&D project selection and
scheduling using fuzzy logic”, Computers & Operations Research 23, pp. 207–
220 (1996).

[4] D’Aveni, R.A., Hypercompetition: Managing the Dynamics of Strategic Ma-
neuvering, The Free Press, New York (1994).

[5] Dorigo, M., Stützle, T., Ant Colony Optimization, MIT Press, Cambridge,
MA (2004).

[6] Dreyfus, H., Dreyfus, S., Mind over Machine: the Power of Human Intuition
and Expertise in the Era of the Computer, The Free Press, New York (1986).

[7] Dutta, S., Narasimhan, O., Rajiv, S., “Conceptualizing and measuring ca-
pabilities: methodology and empirical application”, Strategic Management
Journal 26, pp. 277–285 (1999).

25

[8] Erpenbeck, J., Heyse, V., Kompetenzbiographie – Kompetenzmilieu – Kom-
petenztransfer, QUEM-Report 62, Berlin (1999). In German.

[9] Gutjahr, W.J., “On the finite-time dynamics of ant colony optimization”,
Methodology and Computing in Applied Probability 8, pp. 105–133 (2006).

[10] Gutjahr, W.J., Katzensteiner, S., Reiter, P., “A VNS algorithm for noisy
problems and its application to project portfolio analysis”, Proc. SAGA 2007
(Stochastic Algorithms: Foundations and Applications), eds.: J. Hromkovic
et al., Springer Lecture Notes in Computer Science 4665, pp. 93–104 (2007).

[11] Haesli, A., Boxall, P. “When knowledge management meets HR strategy:
an exploration of personalization-retention and codification-recruitment con-
figurations”, International Journal of Human Resource Management 16,
pp. 1955–1975 (2005).

[12] HR-XML Consortium, Competencies (Measurable Characteristics) Rec-
ommendation 2006-02-28, available at http://ns.hr-xml.org/2 4/HR-XML-
2 4/CPO/Competencies.html, last visited: March 30, 2007.

[13] Kolisch, R., Meyer, K., Mohr, R., “Maximizing R&D portfolio value”, Re-
search Technology Management 48, pp. 33–39 (2005).

[14] Kolisch, R., Hartmann, S., “Experimental investigation of heuristics for
resource-constrained project scheduling: an update”, European Journal of
Operational Research 174, pp. 23–37 (2006).

[15] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Pro-
grams, Springer, London (1996).

[16] Michalewicz, Z., Arabas, J., “Genetic algorithms for the 0/1 knapsack prob-
lem”, Proc. 8th Int. Symposium on Methodologies for Intelligent Systems,
LNCS 869, Springer, Berlin, pp. 134–143 (1994).

[17] Möhring, R.H., Stork, F., “Linear preselective policies for stochastic project
scheduling”, Mathematical Methods of Operations Research 52, pp. 501–515
(2000).

[18] Ngwenyama, O., Guergachi, A., McLaren, T. “Using the learing curve to
maximize IT productivity: A decision analysis model for timing software
upgrades”, Int. J. Production Economics 105, pp. 524–535 (2007).

[19] OECD, Main Science and Technology Indicators 2006/2, OECD, Paris
(2006).

[20] Padman, R., Zhu, D., “Knowledge integration using problem spaces: a study
in resource-constrained project scheduling”, Journal of Scheduling 9, pp. 133–
152 (2006).

[21] Peteraf, M.A., “The cornerstones of competitive advantage: a resource-based
view”, Strategic Management Journal 1, pp. 179–191 (2001).

[22] Stützle, T., Hoos, H.H., “MAX-MIN Ant System”, Future Generation Com-
puter Systems 16, pp. 889–914 (2000).

[23] Venkatraman, R., Venkatraman, S., “R&D project selection and scheduling
for organizations facing product obsolescence”, R&D Management 25, pp. 57–
70 (1995).

[24] Wu, M.-C., Sun, S.-H., “A project scheduling and staff assignment model
considering learning effect”, International Journal of Advanced Manufactur-
ing Technology 28, pp. 1190–1195 (2006).

26

