
First Steps to the Runtime Complexity Analysis of Ant
Colony Optimization

Walter J. Gutjahr
Department of Statistics and Decision Support Systems

University of Vienna

Abstract: The paper presents results on the runtime complexity of two ant colony optimization
(ACO) algorithms: Ant System, the oldest ACO variant, and GBAS, the first ACO variant for which
theoretical convergence results have been established. In both cases, as the class of test problems
under consideration, a slight generalization of the well-known OneMax test function has been chosen.
The techniques used for the runtime analysis of the two algorithms differ: In the case of GBAS,
the expected runtime until the optimal solution is reached is studied by a direct bound estimation
approach inspired by comparable results for the (1+1) evolutionary algorithm (EA). A runtime bound
of order O(m log m), where m is the problem instance size, is obtained. In the case of Ant System, the
original discrete stochastic process is approximated by a suitable continuous deterministic process.
The validity of the approximation is shown by means of a rigid convergence theorem exploiting a
classical result from mathematical learning theory. Using this approximation, it is demonstrated
that for the considered OneMax-type problems, a runtime of order O(m log(1/ε)) until reaching an
expected relative solution quality of 1 − ε, and a runtime of O(m log m) until reaching the optimal
solution with high probability can be predicted. Our results are the first to show competitiveness in
runtime complexity with (1+1) EA on OneMax for a proper ACO algorithm.

1 Introduction

Ant algorithms applied to the heuristic solution of combinatorial optimization problems, an approach
that has originally been developed by Dorigo, Maniezzo and Colorni [6, 7] in the early 1990s, have
evolved to a powerful, versatile optimization tool with a still rapidly growing number of publications
and numerous applications in diverse areas of operations research, management science and technology.
Under the name “Ant Colony Optimization” (ACO) coined by Dorigo and Di Caro [4], this approach
has become one of the best-known metaheuristic techniques, side to side with tabu search, genetic and
evolutionary algorithms, simulated annealing, iterated local search, variable neighborhood search and
some other prominent general-purpose search methods.

As Dorigo and Blum point out in their recent survey on theory of ACO [3], after a huge amount
of experimental work on ACO carried out in the recent years, the time has come to deepen the
understanding of ACO by an increased effort to extend its theoretical foundations. In the meantime,
ACO theory can be considered as well-equipped with convergence results (see Gutjahr [11, 12, 13],
Stützle and Dorigo [24], Sebastiani and Torrisi [23]), and also some first investigations on the finite-
time dynamics of ACO are already available (see Merkle and Middendorf [18], Gutjahr [17]). However,
none of these articles addresses the important question how the (expected) runtime until a solution of
a given quality is obtained scales in the size of the problem instance. This is the traditional runtime
complexity problem which has been a focus of interest in the field of analysis of algorithms since

1

the very beginnings of theoretical computer science. For certain evolutionary algorithms (EAs), a
considerable progress concerning runtime complexity analysis has been achieved in the last years. In
particular, for the (1+1)-EA, there is already a comparably large family of optimization problems for
which statements on the expected runtime until reaching the optimal solution have been given (see,
e.g., Droste, Jansen and Wegener [9], Neumann and Wegener [19], or Wegener and Witt [27]). It would
be desirable to have similar results also for the ACO domain. This issue has also been formulated
in [3] as the current Open Problem 1 of ACO theory: to prove convergence speed results for ACO
algorithms that resemble in their spirit those already obtained in the EA field, starting with relatively
simple test problems such as, e.g., OneMax.

The present article presents solutions to the mentioned “Open Problem 1” by giving first runtime
complexity results for two genuine ACO algorithms: The one of them is GBAS with lower pheromone
bounds (GBAS/lb), an ACO variant that has not only been subject to several theoretical investigations
in the ACO literature (see [12] or [23]), but also forms the backbone of the S-ACO algorithm [14, 15]
for stochastic combinatorial optimization, which has already proven successful in applications (see
[22, 1]). The other investigated algorithm is Ant System (AS), the oldest and conceptually simplest
ACO algorithm, from which several more sophisticated variants have been derived in later years. We
use completely different techniques for the analysis of these two algorithms. For GBAS/lb, a technique
borrowed from the EA literature is applied. This technique exploits a certain monotonicity structure
of the algorithm and fails to work in the case of the analysis of AS. Therefore, a more intricate method
using an approximation of the AS process by the solution of a system of ordinary differential equations
is applied to get results on the runtime behavior in the AS case. For both algorithms, the chosen class
of test problems is as a slight generalization of the well-known OneMax problem.

The organization of the paper is as follows: Section 2 describes the overall structure of the ACO
algorithms under consideration. In section 3, the analyzed test problems are introduced. Section 4
contains the analysis of GBAS/lb. In section 5, the process ACDP approximating AS is described,
and a convergence result connecting AS to the ACDP is given. Then, the runtime analysis for the
chosen problem class is carried out. Section 6, finally, contains concluding remarks.

2 General Structure of the Investigated ACO Algorithms

We formulate the investigated algorithms without reference to visibility values but use only the so-
called pheromone values (for an explanation of these notions, the reader is referred to [8]).

First of all, let us recall the following formal definition of a construction graph of an ACO algorithm
(cf. [11, 12]): Let an instance of a combinatorial optimization problem be given. By a construction
graph for this instance, we understand a directed graph C = (V,A) with node set V and arc set A
together with a function Φ with the following properties:

(1) In C, a unique node is marked as the so-called start node.

(2) Let W be the set of (directed) paths w in C satisfying the following conditions:

(i) w starts at the start node of C;
(ii) w contains each node of C at most once;

(iii) the last node on w has no successor node in C that is not already contained in w (i.e., w
cannot be prolonged without violating (ii)).

Then Φ maps a subset W̄ of the set W onto the set of feasible solutions of the given problem
instance. In other words: To each path w in W̄, there corresponds (via Φ) a feasible solution,
and to each feasible solution, there corresponds (via Φ−1) at least one path in W̄.

2

Both ACO algorithms investigated in this paper have the general structure indicated in Fig. 1;
they differ by the special ways the steps “initialize pheromone values” and “do pheromone update”
are performed.

Procedure ACO
Initialize pheromone values τkl on the arcs (k, l) of the construction graph C;
for iteration n = 1, 2, . . . {

for ant s = 1, . . . , S {
set k, the current position of the ant, equal to the start node of C;
set u, the current path of the ant, equal to the empty list;
while (a feasible continuation (k, l) of the path u of the ant exists) {

select successor node l with probability pkl, where
pkl = 0, if continuation (k, l) is infeasible, and
pkl = τkl / (

∑
(k,r) τkr), where the sum is over all feasible (k, r), otherwise;

continue the current path u of the ant to node l by adding arc (k, l) and setting k := l;
}

}
do pheromone update;

}

Fig. 1. Pseudocode of ACO.

In the pseudocode given by Fig. 1, feasibility of a continuation (k, l) of a current (partial) path u
is defined by property (2) of the definition of the construction graph: The complete path must be an
element of W̄, so the continuation u + (k, l) obtained by concatenating u with arc (k, l) must be such
that a path w ∈ W̄ with prefix u + (k, l) exists. The objective function value assigned to a complete
path w is always that of Φ(w), i.e., of the corresponding feasible solution. In this way, paths can be
considered as solutions.

3 Test Problems

We consider a class of simple pseudo-boolean functions with unique local optima. The feasible set
is the set {0, 1}m of binary vectors of length m, or, in other terms, the set of all subsets of a given
collection of m items 1, . . . ,m. A solution is represented as a vector x = (x1, . . . , xm) with xi ∈ {0, 1}
(i = 1, . . . ,m). Now let us define the cost of a solution x as the Hamming distance dH(x, x∗) of x to
a fixed specific solution x∗, i.e., as the number of bits by which x and x∗ differ. It is obvious that x∗

is the only optimal solution.1 In order to re-formulate the problem as a maximization problem, the
objective function (fitness function) may be re-defined as

f(x) = m− dH(x, x∗), (1)

i.e., as the number of “correct” bits in x, or, more generally, as

f(x) = m + c− dH(x, x∗) (2)

with some constant c ≥ 0. Note that although (1) and (2) are equivalent as optimization problems,
the behavior of ACO differs for different values of c. A special case is the case x∗ = (1, . . . , 1); this

1Since dH(x, x∗) = ||x− x∗||22 for x, x∗ ∈ {0, 1}m, our class of test functions can be considered as a discrete
analogue to the sphere model used in the analysis of evolution strategies.

3

yields the well-known OneMax test function given by f(x) =
∑m

i=1 xi + c, where again the addition of
a constant c does not change the optimization problem itself, but may influence the behavior of the
solution algorithm.

Several different construction graphs have been proposed for pseudo-boolean or subset selection
problems (see [8, 17]). In this article, we restrict the analysis to the most simple of them, the chain
construction graph introduced in [17]. It is given as follows: The node set of C consists of the nodes
1, . . . , m, the nodes −1, . . . ,−m and auxiliary nodes 0, . . . , m. The arc set consists of the arcs (i− 1, i),
(i− 1,−i), (i, i) and (−i, i) (i = 1, . . . , m). The choice of node i resp. node −i means that xi = 1
resp. xi = 0. An example is shown in Fig. 2. Note that only the pheromone values on the arcs (i− 1, i)
and (i− 1,−i) are relevant; since, after passing through node i or node −i, the ant has only the choice
to proceed to node i, the pheromone values on the arcs (i, i) and (−i, i) need not to be taken into
account. We shall choose the initial pheromone value τ(0) as 1/(2m), i.e., as the reciprocal of the
number of relevant arcs of the chain. In this paper, the length L(w) of a path w is measured by the
number of decision nodes on w, which means that L(w) = m.

0 1

1

-1

2

-2

3

-3

4

-4

2 3 4

Fig. 2. Chain construction graph for m = 4.

4 GBAS with Lower Pheromone Bound

4.1 The Algorithm

In this section, we investigate an ACO variant with a “global-best” pheromone update rule (see Gam-
bardella and Dorigo [10]) that has been formally described in [12] and named there GBAS/tdlb (Graph-
Based Ant System with time-dependent lower pheromone bound). The idea of applying pheromone
bounds in ACO is due to Stützle and Hoos [25, 26]. As the name says, in GBAS/tdlb, a (lower) bound
on pheromone values is used which is allowed to depend on time, i.e., on the current iteration of the
procedure. In the present paper, we do not exploit the possible time-dependency of the bound, but
instead keep the bound fixed over time. Consequently, the algorithm will be called GBAS/lb instead
of GBAS/tdlb in the sequel. However, we allow that the bound is chosen in dependence of the problem
instance size.

Now let us specify the pheromone handling in GBAS/lb. Pheromone initialization is done by set-
ting τkl = τkl(0) = τ(0) for all arcs (k, l) of C, where the constant τ(0) is chosen inversely proportional
to the number |A| of arcs of C. Pheromone update consists in letting a certain share ρ of pheromone
“evaporate” on all arcs, and compensating this effect afterwards by placing pheromone as a “reward”
on the arcs of the best found path. We say then that this path has been reinforced in the current
iteration. More specifically, pheromone update in iteration n is performed as follows:

τkl(n + 1) :=

{
max ((1− ρ) τkl(n) + ρ /L(ŵ(n)), τmin), if (k, l) ∈ ŵ(n),
max ((1− ρ) τkl(n), τmin), otherwise,

(3)

4

where 0 < ρ < 1, and τmin is a positive number chosen in advance, the lower pheromone bound.
Therein, ŵ(n) is the best path found until the end of iteration n, which is stored in a specific (list)
variable and replaced each time some ant finds a path with better objective function value. L(w) is
the length of path w, expressed by some suitable measure. In this paper, L(w) = m as stated above.
If it is clear from the context to which iteration we refer, we shall write only τkl instead of τkl(n).

In the following subsection, the number S of ants is chosen as S = 1, which is not an essential
restriction in the case of GBAS/lb.

4.2 Complexity Analysis

It is evident that due to the symmetry properties of the chain construction graph and the equal initial
pheromone values, the behavior of GBAS/lb is equivalent for each specific choice of x∗. Thus, the
analysis of the class of test problems (2) can be restricted to the analysis of OneMax without loss of
generality, as long as the chain is used. (This does not hold anymore for certain other construction
graphs, e.g., the disk introduced in [17].)

We shall write GBAS/lb/chain for the algorithm GBAS/lb when using the chain construction
graph.

Based on the definitions and notation above, the question of the expected runtime until the op-
timal solution has been found can now be addressed. As in the literature on the runtime analysis of
evolutionary algorithms (see, e.g., [9]), we measure the runtime by the number of necessary function
evaluations. The following result shows that for a suitable parametrization of GBAS/lb/chain with ρ
near to unity, the expected runtime has an upper bound of order O(m log m). The second part of the
proof essentially follows the lines of the proof of the corresponding (1+1) EA result in [9].

Theorem 4.1. Expressed by the expected number of function evaluations until reaching the optimal
solution, the expected runtime of GBAS/lb/chain with ρ = 1 − a/m and τmin = a/m2 (a > 0
constant), applied to one of the problems (2), is bounded above by (2e2a/a) ·mHm for m ≥ 2a, where
Hm =

∑m
j=1 j−1 is the mth harmonic number. This bound is of order O(m log m).

All proofs can be found in the Appendix.

Remark 1. Although the behavior of GBAS/lb with a parameter choice as indicated in Theorem 4.1
resembles that of the (1+1)-EA in some sense, it should be emphasized that the two algorithms
are not simply identical 2. In particular, it is easily seen that for an arc in the construction graph,
an infinite number of different pheromone values and therefore also an infinite number of different
transition probabilities is possible in GBAS/lb even when the parameter settings of Theorem 4.1
are chosen, such that our algorithm possesses the characteristic ACO property of allowing a gradual
reinforcement of “good” arcs by repeated pheromone increments. This is contrary to the (1+1)-EA,
where the only learned information is the knowledge of the best solution so far, and only two different
probability values, namely 1− 1/n for bits that are part of this best solution so far and 1/n for bits
that are not part of it, occur during the construction of the solution.

Remark 2. As a function of a, the bound in Theorem 4.1 takes its minimum value for a = 1/2.

2The similar runtime behavior of certain simple variants of ACO and the (1+1)-EA has been observed for
the first time in [16], where also a preliminary version of Theorem 4.1 has been presented. In a recent technical
report [20], Neumann and Witt outline that by providing GBAS with a suitable lower and a suitable upper
bound, by an appropriate renormalization of pheromone values, and by the choice of the evaporation parameter
in a special range, the algorithm can be forced to mimic the behavior of the (1+1)-EA exactly. They also
investigate the runtime of their algorithmic variant on OneMax for parameter choices where the behavior is
different from (1+1)-EA, but do not obtain O(m log m) upper bounds for this case.

5

However, this does not necessarily imply that the choice a = 1/2 provides the best expected runtime,
since Theorem 4.1 only gives an upper bound.

5 Ant System

5.1 AS and ACDP

The runtime of the GBAS variant of ACO is comparably easy to analyze mathematically because of
its monotonicity property: the fitness of those solutions that are used for pheromone reinforcement
is always increasing during the process. This is analogous to the behavior of the (1+1)-EA, where a
new solution is only accepted if it is better than the current solution. Such a monotonous behavior
lends itself to be exploited for the core arguments of a runtime analysis. Unfortunately, the majority of
ACO variants proposed in the literature and used in practice do not show the mentioned monotonicity.
Iteration-based reinforcement schemes, both in their fitness-proportional and in their rank-based ver-
sion, admit the possibility that during an iteration, solutions that are worse than some other solutions
seen previously are reinforced. Thus, the solution quality can deteriorate temporarily. In some sense,
this is more typical for a “natural” learning process than the forced monotonicity of global-based
learning3, and experimental results show that the performance of global-best reinforcement schemes
can be improved by a mix with or sometimes even by a replacement by iteration-based schemes.

The theoretical runtime analysis of ACO variants using iteration-based schemes, however, turns
out to be surprisingly difficult. In this article, we present first results of the following type: As
the ACO variant to be investigated, we choose the historically oldest and simplest ACO algorithm,
Ant System (AS), developed by Dorigo, Maniezzo and Colorni in their pioneering papers [6, 7]. In
order to facilitate the analysis at least to some extent, we study an approximation to the AS process
for the asymptotic case of small pheromone values introduced under the name ACDP (Associated
Continuous Deterministic Process) in [17], which turns out to be the “core process” governing the
essential behavior of AS with small ρ, if random fluctuations are neglected. (Note that in AS, small to
medium-sized pheromone values have been used in experimental research and seem to produce better
results for this algorithmic variant than large values.) We shall give results on the runtime complexity
of the ACDP for the test functions (2), including OneMax, and we shall interpret them in terms of
AS. Instead of investigating the convergence speed of the best solution found so far (as in the previous
section), we shall study in this section the speed of convergence of the pheromone, which is a stronger
type of convergence. This will be discussed at the end of section 5.

For describing AS, we use again the more general ACO pseudocode of Fig. 1 and specify the steps
“initialize pheromone values” and “do pheromone update” for AS. Again, pheromone initialization is
done by τkl(0) = τ(0) for all arcs (k, l), where the constant τ(0) can be chosen in a problem-specific
manner. Pheromone update follows now a fitness-proportional rule: In the case S = 1 of a single ant,

τkl(n + 1) = (1− ρ) · τkl(n) + ρ · I((k, l) ∈ Xn) · f(Xn), (4)

where Xn is the (random) walk traversed by the ant in round n,

I(statement) =

{
1, if statement is true,
0, otherwise

is the indicator function, and (k, l) ∈ X means that arc (k, l) is contained in the path defined by walk
X. This means that each arc lying on the path Xn traversed by the ant in the current iteration gets
a pheromone update that is proportional to the fitness of Xn. It is always assumed that f ≥ 0.

3In natural ant colonies, from where the ACO paradigm is derived, global-best reinforcement does not occur.

6

In the case of S > 1 ants, the contributions of the S paths traversed by the S ants are averaged:

τkl(n + 1) = (1− ρ) · τkl(n) +
ρ

S

s∑

s=1

I((k, l) ∈ X(s)
n) · f(X(s)

n). (5)

For the description of the ACDP, let us start with the definition of the passage fitness: As in
section 4, let A be the set of arcs (k, l) of C. By indexing the elements of A in an arbitrary order, the
pheromone values τkl can be comprised to a vector τ with |A| nonnegative components, τ ∈ [0,∞[|A|.
By τ(n), we denote the vector of pheromone values τkl(n) ((k, l) ∈ A) in iteration n of the ACO
process.

Definition 5.1. The passage fitness of arc (k, l) under a given pheromone vector τ = (τkl) is the
random variable

I((k, l) ∈ X) · f(X), (6)

where X is the random walk of a fixed ant under pheromone values τkl. The expected passage fitness
of (k, l) under τ is the mathematical expectation of the passage fitness, i.e., the value

Fkl(τ) = E (I((k, l) ∈ X) · f(X)) =
∑

x∈S:(k,l)∈x

Pr{X = x} · f(x) (7)

with X as defined above.

Now let us turn to the asymptotic case where ρ is small. It is obvious that if ρ is reduced, such
that pheromone changes in each round become small, a comparably larger number of rounds must be
executed to get substantial changes. Therefore, in order to be able to plot the asymptotic behavior,
it is convenient to re-scale the time axis in such a way that the product of ρ and the number M of
iterations per time unit remains constant. Without loss of generality, we can assume that it is unity,
i.e., we assume that ρ = 1/M . In this scaling, an iteration takes dt = 1/M = ρ time units. Re-scaled
time will be denoted by the symbol t in the sequel. It should be mentioned that this type of re-scaling
for obtaining asymptotic results on “slow learning” is customary and well-established in mathematical
learning theory (see Norman [21]).

Definition 5.2. The ACDP (Associated Continuous Deterministic Process) is given as the solution
τ̄(t) of the system

dτ̄kl

dt
= Fkl(τ̄)− τ̄kl ((k, l) ∈ A) (8)

of ordinary differential equations, where τ̄ = (τ̄kl) is the pheromone vector at time t, and Fkl(τ̄) is the
expected passage fitness of arc (k, l) under τ̄ .

The ACDP has been introduced in [17]. However, the question in which sense the vector-valued
process τ̄(t) approximates the process τ(n) of pheromone vectors in AS has not yet been answered
there by a mathematical convergence result; this question will be addressed in subsection 5.2 of this
paper. For re-scaling the process τ̄(t) back to the process τ(n), it should be observed that iteration n
corresponds to time n/M = nρ. Thus, τ(n) is approximated by τ̄(nρ).

As in section 2, we use the chain as the underlying construction graph in this section. With this
choice, we shall denote the processes AS and ACDP more specifically as AS/chain and ACDP/chain,
respectively.

5.2 Convergence of AS to ACDP

In order to be able to consider the ACDP as a suitable approximation to AS, such that runtime results
on the ACDP can be interpreted in terms of AS, we need a mathematical convergence result showing

7

that in the described asymptotic, the trajectories of AS converge indeed to those of the ACDP. To set
up such a convergence result, we use a general theorem proved by Norman in chapter 8 of his book
[21]. We recapitulate the theorem here in a slightly specialized form in order not to overload the text
with a generality that is not needed in our context. Moreover, we adapt Norman’s notation to that
of this paper, such that we stay consistent with the usual notation in the ACO literature. Norman
defines a vector-valued parametrized stochastic process (τρ(n)) by the recursion

τρ(n + 1) = (1− ρ)τρ(n) + ρU(τρ(n), Xn), (9)

where Xn is a random variable obeying a given distribution

p(τ,G) = Pr{Xn ∈ G | τρ(n) = τ}.

The vectors τρ(n) are assumed to be contained in a subset I0 ⊆ RN , and the parameter ρ is taken
from a bounded set J ∈ R+ with inf J = 0. The analysis aims at the asymptotic case ρ → 0, n →∞
and nρ → t ∈ R, which corresponds to the “intermediate term” of the process (τρ(n)) for small ρ.
Norman introduces the normalized increment Hρ(n) as

Hρ(n) =
τρ(n + 1)− τρ(n)

ρ
,

and derives the following vector, matrix and scalar from it:

W (τ) = E(Hρ(n) | τρ(n) = τ),

S(τ) = E((Hρ(n)−W (τ))2 | τρ(n) = τ),

and
R(τ) = E(||Hρ(n)||3 | τρ(n) = τ).

Therein, τ2 = τ τ∗ and ||τ || = (τ∗ τ)1/2 for a column vector τ ∈ RN , the star symbol denoting

transposition. For an [N ×N] matrix A, its norm is defined as ||A|| =
(∑N

i=1

∑N
j=1 a2

ij

)1/2
.

Theorem 5.1 (Norman [21]). Let the following assumptions be satisfied:

(i) The vector function W (τ) is differentiable on I0 in the sense that there exists an [N×N] matrix
valued function W ′(τ) on I0 such that

lim
σ→τ,τ∈I0

||W (σ)−W (τ)−W ′(τ)(σ − τ)||
||σ − τ || = 0.

(ii) W ′(τ) is bounded.

(iii) Both W ′(τ) and S(τ) satisfy Lipschitz conditions:

sup
τ,σ∈I0,τ 6=σ

||W ′(τ)−W ′(σ)||
||τ − σ|| < ∞,

and analogously for S(τ).

(iv) R(τ) is bounded.

Then, for µn(ρ, τ) = Eτ (τρ(n)) and ωn(ρ, τ) = Eτ (||τρ(n)− µn(ρ, τ)||2), where Eτ denotes the expec-
tation in a process with initial vector τ , the following holds:

8

(A) ωn(ρ, τ) = O(ρ) uniformly in τ ∈ I0 and nρ ≤ T , for any T ≥ 0.

(B) For any τ ∈ I0, the differential equation

ġ(t) = W (g(t)) (10)

has a unique solution g(t) = g(t, τ) with g(0) = τ . For all t ≥ 0, g(t) ∈ I0, and

µn(ρ, τ)− g(nρ, τ) = O(ρ)

uniformly in τ ∈ I0 and nτ ≤ T .

Assertion (A) of the theorem basically says that in the considered asymptotic ρ → 0, n →∞ and
nρ → t ∈ [0, T], the random fluctuations of the vectors τρ(n) around their mean values tend to zero
at least with speed of order O(ρ). Assertion (B) presents a way to determine the limits of the mean
values (and therefore also of the random process values): Solving (10) provides us with a function g,
to which the re-scaled process values converge. An approximation of τρ(n) for small ρ and large n is
then given by g(t, τ(0)), where τ(0) is the initial vector, and t = nρ. It should be observed that the
convergence is uniform in each fixed interval t ∈ [0, T].

Let us remark that Norman’s original theorem also contains a third assertion (C), a central-limit
theorem stating asymptotic normality of the re-scaled vectors τρ(n). We omit this issue here.

Theorem 5.1 can be applied to the analysis of AS/chain for pseudoboolean functions as follows:
As in section 4, we restrict ourselves to the case S = 1 of a single ant.4 The vector τρ(n) is the
pheromone vector in iteration n for a given evaporation factor ρ. The set J from where ρ is taken is
chosen as the interval]0, 1[. The number N of components of the vector τρ(n) is the number 2m of
relevant pheromone values τ

(k)
i (i = 1, . . . , n; k = 0, 1) in the chain. I0 ⊆ R2m is a domain containing

all possible pheromone vectors τρ(n). The function U introduced in (9), finally, is given by the vector
U(τρ(n), Xn) with components

U(k,l)(τ
ρ(n), Xn) = I((k, l) ∈ Xn) · f(Xn),

where (k, l) runs through all 2m relevant arcs of the chain graph. Evidently, (9) reproduces then our
recursion (4). Moreover,

Hρ(n) = −τρ(n) + U(τρ(n), Xn) = −τρ(n) + (I((k, l) ∈ Xn)) · f(Xn), (11)

where (I((k, l) ∈ Xn)) denotes the vector with components I((k, l) ∈ Xn) for each relevant arc (k, l).
As a consequence,

W (τ) = −τ + F (τ), (12)

where F (τ) is the vector of expected passage fitness values F(k,l)(τ). Then, (10) just reproduces the
defining system of differential equations (8) of the ACDP.

The following result shows that under mild conditions, ACDP/chain suitably approximates
AS/chain for all pseudoboolean fitness functions:

Proposition 5.1. Let f be a pseudoboolean function with the following properties:

(a) For a suitable initial value τρ(0), all vectors τρ(n) of the corresponding AS/chain process stay
within a compact set I0 ∈ R2m with min{τ (0)

i + τ
(1)
i | τ ∈ I0} > 0 for i = 1, . . . ,m.

4The case of S > 1 ants which can be treated analogously, with similar results, is omitted here for the sake
of brevity.

9

(b) For each arc (k, l) of the chain, the expected passage fitness Fk,l(τ) is 3-times (partially) differ-
entiable in I0.

Then, for the process τρ(n) with initial values τρ(0), the convergence statements (A) and (B) of
Theorem 5.1 hold for AS/chain applied to f , and the limiting process g(t) is the ACDP given by (8).

Now we apply Proposition 5.1 to the special case of the functions (2).

Lemma 5.1. For the fitness functions (2), the pheromone values in AS/chain with S = 1 always
satifsy

c ≤ τ
(0)
i (n) + τ

(1)
i (n) ≤ m + c (i = 1, . . . , m),

provided that these inequalities are valid for the initial pheromone values.

According to Lemma 5.1, we can define the pheromone vector domain I0 for the functions (2) as

I0 = {τ ∈ R+
2m | c ≤ τ

(0)
i + τ

(1)
i ≤ m + c (i = 1, . . . ,m)}. (13)

This is a bounded and closed and hence a compact subset of R+
2m. For c > 0, the set I0 given by

(13) satisfies condition (a) of Proposition 5.1. (Note that this is not true anymore for the boundary
case c = 0.) Let us now turn to condition (b). It is immediately seen that

Fi−1,i (τ) =
τ

(1)
i

τ
(0)
i + τ

(1)
i

·

1 + c +

∑

j 6=i

τ
(1)
j

τ
(0)
j + τ

(1)
j

 (14)

and

Fi−1,−i (τ) =
τ

(0)
i

τ
(0)
i + τ

(1)
i

·

c +

∑

j 6=i

τ
(1)
j

τ
(0)
j + τ

(1)
j

 . (15)

The first factors on the r.h.s. of (14) and (15) yield the probabilities that the considered arc (up-move
and down-move, respectively) in link i of the chain is chosen. The second factors yield the conditional
expected fitness values, given that the considered arc has been chosen. By the independence between
the links, this expected fitness can be computed by summation of the up-move probabilities over all
links different from link i, plus c, plus 1 for link i in the case of (14). Thus, in the case c > 0, for
τ ∈ I0 as in (13), all Fk,l(τ) are infinitely times differentiable functions of τ , which verifies condition
(b). In total, this yields:

Proposition 5.2. For each of the problems (2) with c > 0, the trajectories of AS/chain converge in
the sense of Theorem 5.1 to those of the ACDP/chain.

5.3 Complexity Analysis

Based on the insight of Proposition 5.2, AS/chain for (2) can be analyzed by investigating the runtime
behavior of the corresponding ACDP. We still have to decide on the initial pheromone value τ(0). As
discussed in [17], for OneMax on ACDP/chain, the sum τ

(0)
1 + τ

(1)
1 converges to the maximum fitness

value fmax. If initially the total pheromone flow τ
(0)
1 + τ

(1)
1 = 2τ(0) out of node 0 is chosen distinctly

smaller or larger than fmax, this flow will quickly scale to the “correct” order of magnitude fmax.
Here, we are not interested in this scaling process for the overall pheromone amount, but in the core
optimization process, i.e., the identification of the optimizer x∗ by the adjustment of the pheromone
values relative to each other. Thus, in order to filter scaling effects out, it is reasonable to choose

10

τ
(0)
1 (0) and τ

(1)
1 (0), and therefore also all other pheromone values, as half of the maximum fitness, i.e.,

we set τ(0) = fmax/2 = (m + c)/2 for a fitness function of type (2).
We shall express our runtime result on ACDP/chain under the indicated circumstances in terms

of the relative fitness of a solution:

Definition 5.3. The relative fitness of a solution x is given by (f(x) − fmin)/(fmax − fmin), where
fmax = max{f(x) | x ∈ {0, 1}m} and fmin = min{f(x) | x ∈ {0, 1}m}.

For the interpretation of the following proposition, it should be noted that although the ACDP
is a deterministic process in terms of the pheromone evolution, the walk of the ant based on the
pheromone vector τ(t) at time t is still random, such that it is appropriate to consider its expected
relative fitness.

Proposition 5.3. For each of the problems (2) with c > 0 and for each ε > 0, the required amount
of (re-scaled) time t until the expected relative fitness of the ant’s walk in the ACDP/chain reaches a
value of 1−ε, is bounded from above by 2(m+c) log((1−ε)/ε) and from below by (m/2) log((1−ε)/ε).

Proposition 5.3 shows that the considered runtime (in re-scaled time units) is of order Θ (m log(1/ε))
for large m and small ε.

Remark 1. Let us now interpret Proposition 5.3 in terms of the original process AS/chain. Given
that the parameters of AS are chosen in such a way that the AS process is approximated by the ACDP
to a sufficient degree of accuracy, our results say that the required number of function evaluations
until AS/chain, applied to one of the functions (2), reaches an expected relative fitness of 1− ε, is of
order

Θ
(

m

ρ
log

1
ε

)
. (16)

This follows immediately from the fact that during one unit of re-scaled time, 1/ρ iterations and hence
the same number of function evaluations are performed. Evidently, the indicated runtime increases
with decreasing ρ, such that there is a tradeoff between the accuracy of our approximation and the
runtime of the algorithm: The prediction is the better, the smaller ρ is; however, one will decide to
choose ρ not too small because this would negatively affect the computational effort.5

In order to ensure that the runtime of AS (as opposed to ACDP) until reaching the 1 − ε level
remains within a bound of type (16) with a pre-specified probability, we would have to refine the
mathematical analysis by taking from Norman’s theorem not only the “law of large numbers” parts
A – B, as cited in Theorem 5.1, but also the “central limit theorem” part C omitted here. This analysis
is outside the scope of the present paper. Let us confine ourselves to the remark that for obtaining
a probabilistic bound of the outlined type, ρ would probably have to be chosen in dependence of m,
which would increase the runtime to Θ

(
m

ρ(m) log 1
ε

)
with some suitably decreasing ρ(m). However,

this is presumably not the best thing to do from a practical point of view: The real aim is not to
design the optimization procedure in such a way that it gets mathematically predictable, but to find
good solutions as fast as possible. Now, the noise superimposed to the deterministic core process
(as described by the ACDP) by some not too small ρ can also reduce the runtime until the expected
relative fitness has reached the level 1 − ε for the first time, since it can effect that by chance, one
of the pheromone vectors achieves this level already earlier than it is reached in the correspondingly

5At the first look, the mentioned tradeoff may seem more harmful than it is. Actually, it is typical for
several well-established applications of probability theory. E.g., the classical statistical tests are derived from
asymptotic approximations of test statistics distributions. Making the applied formulas exact would require to
let the sample size and hence the experimental effort go to infinity.

11

scaled ACDP. Therefore, choosing ρ as independent of m is not to be expected to worsen the runtime
behavior, compared to the strategy where ρ is decreased with increasing m.

Remark 2. The consideration in Remark 1 refers to the runtime until some relative solution quality
is reached, e.g., solutions with an (expected) fitness only 1% below the maximum fitness. By setting
ε = ε(m) = ε0/m with some fixed ε0 > 0, we obtain the time until the distance of the expected
absolute fitness to the maximum fitness is smaller than the pre-defined value ε0. For the problems (2),
the distance between the best and a second-best fitness value is unity, therefore a pheromone vector
τ(n) supporting an expected absolute fitness value of fmax − ε0 (0 < ε0 ¿ 1) guarantees that the ant
chooses the optimal solution with a probability of at least 1− ε0 ≈ 1, since from

fmax−ε0 = expected absolute fitness ≤ fmax ·Pr{fmax reached}+(fmax−1)·Pr{fmax not reached},

the inequality Pr{fmax not reached} ≤ ε0 follows. Evidently, the re-scaled runtime until this situation
occurs for ACDP/chain is of order

Θ
(

m log
m

ε0

)
= Θ (m(log m− log ε0)) = Θ(m log m),

and the corresponding runtime for AS/chain is therefore of order Θ((m/ρ) log m). As argued in
Remark 1, it is suitable to keep ρ independent of m. For constant ρ, we obtain in this way the
same Θ(m log m) runtime behavior as that for the (1+1)-EA and for the GBAS/lb parametrization
investigated in section 2.

Nevertheless, it should be observed that the type of analysis in this section is basically different
from that in section 4: In section 4, we asked for the expected time until a solution of a given quality
is produced for the first time. In section 5, we were interested in the time until the process has evolved
to a pheromone vector that supports solutions with a given quality — in other words, until the ACO
algorithm has learned to produce high-quality solutions. Simple examples show that the time until
the first hit of a good solution is usually distinctly smaller than the time needed for representing the
characteristics of this solution in the pheromone values. However, in [16, 17] it is argued that for being
able to deal efficiently with more complex optimization problems, the ability to learn, i.e., to create
internal representations of essential properties of (parts of) good solutions, is of crucial importance.
In this sense, the type of runtime properties investigated in section 3 can be considered as stronger
than that of section 4.

6 Conclusions

We have analyzed the runtime complexity of two ACO algorithms, GBAS/lb and Ant System, applied
to the optimization of pseudobooelean functions of OneMax type. In both cases, computation times
of order O(m log m) were found as sufficient for reaching the optimum, which is the same order as that
determined previously by other authors for the (1+1) evolutionary algorithm. For AS, our runtime
complexity bound primarily refers to the pheromone behavior, which gives a stronger assertion than
the corresponding one for the best solution found so far. For this reason, it is possible that the expected
runtime until reaching the optimal solution for the first time is even of a more favorable order than
O(m log m).

Admittedly, our analysis refers to rather basic test functions. However, as Proposition 5.1 shows, it
is probable that the analysis can be extended to more general pseudoboolean functions, and perhaps
even beyond this range to fitness functions for permutation-type problems or problems with still
another combinatorial structure. In particular, the approach of section 3 provides a tool to overcome
the intrinsic difficulties of the analysis of ACO variants as Ant System or Ranked-Based ACO [2]

12

where the reinforcement does not follow the monotonous “global-best” scheme, but instead allows
temporary deteriorations of the currently reinforced solution.

A specific feature of our results is that they do not only address the expected runtime until the
optimal solution has been found (as most papers on the runtime complexity analysis of evolutionary
algorithms do), but also the expected runtime until some pre-defined (relative) solution quality has
been reached. This may turn out as especially helpful as soon as NP-hard problems are included into
the analysis: In this situation, computation times until reaching the optimum are inefficient anyway,
but from a practical point of view, one would like to have answers to questions as: “How much time
will it take until we get a solution quality of, say, 1% below the optimum, which is sufficiently good
for our application?” It would be a very desirable justification of a metaheuristic algorithm if it could
be shown that for some NP-hard problems, the expected runtime until reaching an expected relative
fitness of 1−ε in the sense of Definition 5.1 is only polynomial. (At least for certain NP-hard problems,
complexity theory does not exclude this possibility.)

Obviously, many open problems and topics for future research remain. Let us list only a few of
them: (1) As mentioned above, an extension of the results to other (linear and nonlinear) pseudo-
boolean functions as well as to problems with permutation-structured solutions should be the next
aim. (2) ACO variants such as ACS [5] , Rank-Based ACO [2] or MAX-MIN Ant System [26] should
be included into the analysis, and the performance of these variants might be compared in terms of
runtime complexity results. (3) The influence of parameter choices such as that of the evaporation
factor ρ or the number S of ants on the runtime behavior should be investigated in detail. (4) A re-
fined mathematical analysis might make the relations between ACO and the auxiliary process ACDP
used in section 3 more explicit, e.g., by linking their runtime behavior in terms of stochastic bounds.
(5) Optimization problems could possibly be identified for which ACO has a better or a worse runtime
complexity than some other metaheuristic algorithm outside the ACO domain. This might lead to
a classification of optimization problems according to the most suitable metaheuristic for treating
them, which would provide a very helpful guideline for the choice between metaheuristic techniques
in applications.

Although all the mentioned problems are mathematically rather challenging, the chances are good
that several of them can be solved in the near future.

Acknowledgement. The author is indebted to an anonymous reviewer for profound and detailed
comments on the first version of this paper. In particular, the proof of Proposition 5.3 has been given
a more compact and comprehensible form based on these valuable comments.

References

[1] Brailsford, S.C., Gutjahr, W.J., Rauner, M., Zeppelzauer, W., “Combined discrete-event simu-
lation and ant colony optimisation approach for selecting optimal screening policies for diabetic
retinopathy”, Computational Management Science, in print (published online: 15th Aug. 2006).

[2] Bullnheimer, B., Hartl, R. F., Strauss, C., “A new rank-based version of the Ant System: A
computational study”, Central European Journal for Operations Research 7, pp. 25-38 (1999).

[3] Dorigo, M., Blum, C., “Ant colony optimization theory: a survey”, Theoretical Computer Science
344 (2005), pp. 243–278.

[4] Dorigo, M., Di Caro, G., “The ant colony optimization metaheuristic”, in: New Ideas in Opti-
mization, D. Corne, M. Dorigo, F. Glover (eds.), pp. 11-32, McGraw–Hill (1999).

13

[5] Dorigo, M., Gambardella, L.M., “Ant Colony System: a cooperative approach to the traveling
salesman problem”, IEEE Transactions on Evolutionary Computation 1 (1997), pp. 53–66.

[6] Dorigo, M., Maniezzo, V., Colorni, A., “The Ant System: An autocatalytic optimization process”,
Technical Report 91–016, Dept. of Electronics, Politecnico di Milano, Italy (1991).

[7] Dorigo, M., Maniezzo, V., Colorni, A., “The Ant System: Optimization by a colony of cooperating
agents”, IEEE Trans. on Systems, Man, and Cybernetics 26 (1996), pp. 1–13.

[8] Dorigo, M., Stützle, T., Ant Colony Optimization, MIT Press, Cambridge, MA (2004).

[9] Droste, S., Jansen, T., Wegener, I., “On the analysis of the (1+1) evolutionary algorithm”,
Theoretical Computer Science 276 (2002), pp. 51–81.

[10] Gambardella, L.M., Dorigo, M., “Ant-Q: A reinforcement learning approach to the traveling sales-
man problem”, in: Proc. ML-95, Twelfth Intern. Conf. on Machine Learning (Morgan Kaufman,
Palo Alto, CA, 1995) 252–260.

[11] Gutjahr, W.J., “A graph-based ant system and its convergence”, Future Generation Computer
Systems 16 (2000), pp. 873–888.

[12] Gutjahr, W.J., “ACO algorithms with guaranteed convergence to the optimal solution”, Infor-
mation Processing Letters 82 (2002), pp. 145–153.

[13] Gutjahr, W.J., “A generalized convergence result for the Graph-based Ant System”, Probability
in the Engineering and Informational Sciences 17 (2003), pp. 545–569.

[14] Gutjahr, W.J., “A converging ACO algorithm for stochastic combinatorial optimization”,
Proc. SAGA 2003 (Stochastic Algorithms: Foundations and Applications), Springer LNCS 2827,
pp. 10-25 (2003).

[15] Gutjahr, W.J., “S-ACO: An ant-based approach to combinatorial optimization under uncer-
tainty”, Proc. ANTS 2004 (4th International Workshop on Ant Colony Optimization and Swarm
Intelligence), Springer LNCS 3172, pp. 238-249 (2004).

[16] Gutjahr, W.J., “Theory of ant colony optimization: status and perspectives”, MIC ’05 (6th
Metaheuristics International Conference), Proceedings CD-ROM (2005).

[17] Gutjahr, W.J., “On the finite-time dynamics of ant colony optimization”, Methodology and Com-
puting in Applied Probability 8 (2006), pp. 105–133.

[18] Merkle, D., Middendorf, M., “Modeling the Dynamics of Ant Colony Optimization”, Evolutionary
Computation 10 (2002), pp. 235–262.

[19] Neumann, F., Wegener, I., “Rundomized local search, evolutionary algorithms, and the minimum
spanning tree ”, Technical Report CI-165/04, Dept. of Computer Science, University of Dortmund,
Germany (2004).

[20] Neumann, F., Witt, C., “Runtime analysis of a simple ant colony optimization algorithm”, Tech-
nical Report CI-200/06, Dept. of Computer Science, University of Dortmund, Germany (2006).

[21] Norman, F., Markov Processes and Learning Models, Academic Press, New York and London
(1972).

14

[22] Rauner, M., Brailsford, S.C., Gutjahr, W.J., Zeppelzauer, W., “Optimal screening policies for
diabetic retinopathy using a combined discrete-event simulation and ant colony optimization
approach”, Proc. Int. Conference on Health Sciences Simulation, Western MultiConference ’05,
eds.: Anderson, J.G., Katzper, M. (2005), pp. 147–152.

[23] Sebastiani, G., Torrisi, G.L., “An extended ant colony algorithm and its convergence analysis”,
Methodology and Computing in Applied Probability 7 (2005), pp. 249–263.

[24] Stützle, T., Dorigo, M. “A short convergence proof for a class of ACO algorithms”, IEEE
Trans. Evol. Comput. 6 (2002), pp. 358–365.

[25] Stützle, T., Hoos, H.H., “The MAX-MIN Ant System and local search for the travelling sales-
man problem”, in: T. Baeck, Z. Michalewicz and X. Yao (eds.), Proc. ICEC ’97 (Int. Conf. on
Evolutionary Computation) (1997), pp. 309–314.

[26] Stützle, T., Hoos, H.H., “MAX-MIN Ant System”, Future Generation Computer Systems, 16
(2000), pp. 889–914.

[27] Wegener, I., Witt. C., “On the analysis of a simple evolutionary algorithm on quadratic pseudo-
boolean functions”, J. of Discrete Algorithms 3 (2005), pp. 61–78.

APPENDIX

Proof of Theorem 4.1. It is easy to see that the pheromone values cannot exceed an upper bound
τmax = 1/m: Initially, τkl(0) ≤ 1/m by our choice τ(0) = 1/(2m). By induction with respect to m,
it immediately follows from (3) that then also τkl(n) ≤ 1/m for all n must hold. Note that on an arc
(k, l) that is reinforced in every iteration, pheromone can expressed for the choice made for ρ, τ0, τmin

and m, as

τkl(n) = 1/m− 1
2m

(a/m)n,

which converges to 1/m = τmax.
We set q = 1 − ρ = a/m. By move 1 and move 0 on position i we denote the choice of an arc

(i− 1, i) and (i− 1,−i), respectively. We shall also call move 1 an up-move and move 0 a down-move.
Instead of τi−1,i and τi−1,−i, we use the shorter notation τ

(1)
i and τ

(0)
i , respectively. Analogously, we

denote the probability of move k on position i by p
(k)
i (k = 0, 1). Since p

(k)
i = 1/(1 + τ

(1−k)
i /τ

(k)
i) and

τmin ≤ τ
(k)
i ≤ τmax (k = 0, 1), the minimal possible value for p

(k)
i is

pmin =
τmin

τmax + τmin
=

a

m + a
=

q

1 + q
,

and the maximal possible value for p
(k)
i is

pmax =
τmax

τmax + τmin
=

m

m + a
=

1
1 + q

.

Without loss of generality, we assume that the problem of type (2) under consideration is just OneMax,
i.e., x∗ = (1, . . . , 1). Suppose move k (k = 0, 1) on position i has been reinforced in the last iteration.
Then, the two pheromone values for position i in the current iteration satisfy

τ
(k)
i ≥ qτmin +

1− q

m
≥ 1− q

m
,

15

and
τ

(1−k)
i = τmin =

q

m
,

where the second formula follows from the fact that a move that is not reinforced makes the pheromone
fall to a value not larger than qτmax = q/m = τmin. Hence

p
(1−k)
i =

τ
(1−k)
i

τ
(k)
i + τ

(1−k)
i

≤ q/m

(1− q)/m + q/m
= q

and therefore
p
(k)
i = 1− p

(1−k)
i ≥ 1− q.

By Aj , we denote the set of all solutions x with f(x) = j. Assume that in the iteration before the
current iteration, a currently best solution y ∈ Aj has been reinforced (0 ≤ j ≤ m− 1). We look for
a lower bound for the probability π that the solution x generated in the current iteration differs from
y only by flipping one or more 0-bits to an 1-bit, such that x ∈ Ak with k > j. Obviously,

π ≥ Pr{only one of the m bits of y is flipped from 0 to 1}.

Thus, we bound the probability π from below by only considering those events where exactly one of
the moves corresponding to the 0-bits of y becomes an up-move. Evidently, these events are mutually
exclusive. There are m − j possibilities to choose the position of the desired up-move. For each of
these possibilities, we have:

• The probability that at the position chosen among the m − j possible positions, an up-move
occurs, is larger or equal to pmin = q/(1 + q).

• The probability that all other m− 1 positions are not changed is larger or equal to (1− q)m−1.

Thus,
π ≥ q

q + 1
(1− q)m−1 (m− j).

Therefore, the expected runtime until some current solution y ∈ Aj is changed to a solution in
Aj+1 ∪ . . . ∪Am (which leads to a new currently best solution) is bounded from above by

q + 1
q

(1− q)−m+1 (m− j)−1.

In the worst case, the current solution y starts in the first iteration in the set A0 and passes in each
solution improvement event from some Aj only to the immediately next Aj+1 , which results in an
upper bound for the total expected runtime of

m−1∑

j=0

q + 1
q

(1− q)−m+1 (m− j)−1 =
q + 1

q
(1− q)−m+1

m∑

j=1

1
j

=
q + 1

q(1− q)m−1
Hm =

a + m

a(1− a/m)m−1
Hm <

2
a

1
(1− a/m)m−1

·mHm <
2e2a

a
mHm,

where the last inequality follows by exponentiation from (m − 1) log(1 − a/m) ≥ (m − 1) · (−2a/m)
> −2a for a/m ≤ 1/2. Since 2e2a/a is a constant and Hm = O(log m), the bound is of order
O(m log m) (m →∞). 2

Proof of Proposition 5.1. It suffices to verify that the conditions (i) – (iv) of Theorem 5.1 are
satisfied. Condition (a) ensures that I0 can be taken as the vector domain I0 in Theorem 5.1. By (12)

16

and condition (b), W (τ) is 3-times (partially) differentiable in I0. In particular, the Jacobi matrix
W ′(τ) of W (τ) exists, satisfying the condition on the matrix W ′(τ) in Theorem 5.1. This proves (i).
Furthermore, since also the elements of W ′(τ) are differentiable, hence in particular continuous and
therefore bounded on the compact set I0, condition (ii) is satisfied as well.

For verifying the first part of condition (iii), it is sufficient to show that each element of the matrix
W ′(τ) is Lipschitz. This, however, follows from the fact that the gradient of each element of W ′(τ) is
differentiable itself, hence continuous and therefore bounded on I0.

For the second part of (iii), we consider the component in line a and column b of the matrix S(τ),

E((Hρ
a(n)−Wa(τ)) (Hρ

b (n)−Wb(τ)) | τρ(n) = τ),

where a and b correspond to arcs of the chain graph. Short computation using (11) shows that the
expression above is equal to

E(I(a ∈ Xn) I(b ∈ Xn) (f(Xn))2 | τρ(n) = τ)− Fa(τ)Fb(τ)

=
∑

x∈{0,1}m

Pr{Xn = x | τρ(n) = τ} · I(a ∈ x and b ∈ x) (f(x))2 − Fa(τ)Fb(τ). (17)

By condition (b), Fa(τ) and Fb(τ) are 3-times differentiable on I0. On the other hand, since

Pr{Xn = x | τρ(n) = τ} =
m∏

i=1

τ
(xi)
i

τ
(0)
i + τ

(1)
i

,

where xi is the ith bit of x, and τ
(0)
i + τ

(1)
i > 0 by condition (a), also the probability Pr{Xn =

x | τρ(n) = τ} is 3-times differentiable on I0 as a function of τ , and therefore also the expression (17).
This entails the Lipschitz property of S(τ) on the compact set I0 and finishes the verification of (iii).
Finally, since, for a component a of the vector τ ,

| − τρ
a (n) + I(a ∈ Xn)f(Xn)| ≤ |τρ

a (n)|+ |f(Xn)| ≤ M1 + M2,

where M1 = supτ∈I0 ||τ || < ∞ and M2 = max{f(x) | x ∈ {0, 1}m} < ∞, we have

||Hρ(n)||3 =

(∑
a

(Hρ
a(n))2

)3/2

≤ (2m)3/2 · (M1 + M2)3,

which shows condition (iv). 2

Proof of Lemma 5.1. Induction with respect to n. By assumption, the inequalities hold for n = 0.
Let n ≥ 0. Then, by adding the two equations

τ
(k)
i (n + 1) = (1− ρ)τ (k)

i (n) + ρ I(Xn makes move k on position i) f(Xn) (k = 0, 1),

we obtain

τ
(0)
i (n + 1) + τ

(1)
i (n + 1) = (1− ρ) (τ (0)

i (n) + τ
(1)
i (n)) + ρ f(Xn) ≥ (1− ρ) · c + ρ · c = c.

Analogously, the second inequality is verified. 2

Proof of Proposition 5.3. Without loss of generality, we consider OneMax. It is easy to see from
the symmetry properties of OneMax and from (8) that equal initial pheromone values at all positions i,

τ
(k)
1 (0) = . . . = τ (k)

m (0) (k = 0, 1)

17

entail that in the ACDP,
τ

(k)
1 (t) = . . . = τ (k)

m (t) (k = 0, 1) (18)

holds also for each time t ≥ 0. As a consequence, also the expected passage fitness values for the up-
moves are equal in each position, and so are the expected passage fitness values for the down-moves.
For abbreviation, we set u = τ

(1)
1 (t), w = τ

(0)
1 (t), Fu = F0,1(τ(t)), and Fw = F0,−1(τ(t)). Note that all

these quantities depend on t. From (14), (15) and (18), we get

Fu =
u((m + c)u + (1 + c)w)

(u + w)2
, Fw =

w((m− 1 + c)u + cw)
(u + w)2

. (19)

Thus, by (8),

u̇ = Fu − u = u

[
(m + c)u + (1 + c)w

(u + w)2
− 1

]
, ẇ = Fw − w = w

[
(m− 1 + c)u + cw

(u + w)2
− 1

]
. (20)

It has been shown in [17] that if Φ = Φ(t) denotes the total pheromone flow out of the start node 0 at
time t, i.e., the sum of all pheromone values on arcs leaving 0, then the expected fitness µ of an ant’s
walk based on the pheromone vector at time t in the ACDP is given by µ = Φ + Φ̇. Since Φ = u + w
for the chain, we get by short calculation

µ = Fu + Fw =
mu

u + w
+ c.

We transform u, w and µ to relative values by setting

ξ = u/m, η = w/m, ϕ = µ/m,

and we abbreviate 1/m by δ, such that

ξ̇ = ξ

[
(1 + cδ)ξ + (1 + c)δη

(ξ + η)2
− 1

]
, η̇ = η

[
(1 + (c− 1)δ)ξ + cδη

(ξ + η)2
− 1

]
, ϕ =

ξ

ξ + η
+ cδ, (21)

and hence

ϕ̇ =
ξ̇η − ξη̇

(ξ + η)2
=

ξη

(ξ + η)4
{(1 + cδ)ξ + (c + 1)δη − (1 + (c− 1)δ)ξ − cδη} =

δξη

(ξ + η)3
. (22)

Alternatively, (22) can be written as

ϕ̇ =
δ

ξ + η
· ξ

ξ + η
· η

ξ + η
=

δ

ξ + η
(ϕ− cδ) (1− (ϕ− cδ)).

Let us set ϕc = ϕ− c/m = ϕ− cδ. Then the last equation simplifies to

ϕ̇c =
δ

ξ + η
ϕc (1− ϕc). (23)

with ϕc(0) = 1/2. Since fmax = m + c and fmin = c, the expected relative fitness is just (µ− c)/m =
ϕ− cδ = ϕc.

Initially, we have
ξ(0) = η(0) = (1 + cδ)/2 > 0.

By (21), ξ̇(t) = 0 if ξ(t) = 0, so ξ(t) ≥ 0 for all t, and similarly η(t) ≥ 0 for all t.

18

The solution of eq. (23) is

ϕc(t) =
[
1 + exp

(
−

∫ t

0

dσ

u(σ) + w(σ)

)]−1

.

If µl ≤ u(t) + w(t) ≤ µr for all t, it follows:

(
1 + exp

(
− t

µr

))−1

≤ ϕc(t) ≤
(

1 + exp
(
− t

µl

))−1

.

The times when the first, second and third function, respectively, in the above inequality are equal to
1− ε, satisfy

µl log((1− ε)/ε) ≤ tϕ ≤ µr log((1− ε)/ε).

We will now derive expressions for µl and µr.
Let z = u + w. Straightforward calculation shows

ż = u̇ + ẇ =
m

1 + w/u
+ c− z. (24)

Furthermore, one easily verifies

d

dt

w

u
=

ẇu− wu̇

u2
=

1
u2

[(Fw − w)u− w(Fu − u)] = − w

u(u + w)
< 0,

so w(t)/u(t) ≤ w(0)/u(0) = 1 for all t.
The initial condition for eq. (24) is z(0) = m + c. Since 0 ≤ w/u ≤ 1, it follows m/2 + c ≤

m/(1 + w/u) + c ≤ m + c. The function z̃ = (m + c)(1 + e−t) is solution of

dz̃

dt
= m + c− z̃, (25)

with initial condition z̃(0) = 2(m+c). Subtracting from each of the two sides of (25) the corresponding
sides of eq. (24), it follows

d

dt
(z̃ − z) = m + c− (m/(1 + w/u) + c)− (z̃ − z) ≥ −(z̃ − z).

If we introduce r = z̃ − z, the inequality above gives ṙ ≥ −r, with initial condition r(0) = m + c > 0.
It is known that this implies r(t) ≥ 0. Therefore, z̃ ≥ z, and since z̃ ≤ 2(m+ c), we have z ≤ 2(m+ c),
which provides an expression for µr.

Analogously, we can consider the function z′ = m/2 + c(1− e−t), which satisfies the equation

dz′

dt
= m/2 + c− z′, (26)

with initial condition z′(0) = m/2. Subtracting each of the two sides of (26) from the corresponding
sides of eq. (24), it follows

d

dt
(z − z′) = (m/(1 + w/u) + c)− (m/2 + c)− (z − z′) ≥ −(z − z′).

This implies in this case z ≥ z′, and since z′ ≥ m/2, we have m/2 ≤ z, which provides an expression
for µl. 2

19

