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Abstract. An analytical framework for investigating the finite-time dynamics of ant colony optimization
(ACO) under a fitness-proportional pheromone update rule on arbitrary construction graphs is developed.
A limit theorem on the approximation of the stochastic ACO process by a deterministic process is
demonstrated, and a system of ordinary differential equations governing the process dynamics is identified.
As an example for the application of the presented theory, the behavior of ACO on three different
construction graphs for subset selection problems is analyzed and compared for some basic test functions.
The theory enables first rough theoretical predictions of the convergence speed of ACO.
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1 Introduction

The aim of this work is to provide an analytical framework for investigating the dynamics of the Ant

Colony Optimization (ACO) metaheuristic, and to illustrate the applicability of this framework by com-

paring different strategies for applying ACO to the special family of subset selection problems. ACO

is an optimization technique inspired by observations on the behavior of biological ant colonies; it has

been introduced by Dorigo, Maniezzo and Colorni [12], [13], and developed later into a metaheuristic for

combinatorial optimization problems [10], [11], [14]. Recently, ACO algorithms have also turned out as

competitive in a discrete stochastic optimization context [3], [19], [20], [34], [4].

From a more abstract point of view, ACO can be considered as reinforcement learning on a graph

that encodes the problem instance, the so-called construction graph, as it has been formally defined in

[16]. A solution to the given combinatorial optimization problem is encoded as a feasible walk on the

construction graph.

A feasible walk starts in a fixed initial node of the construction graph and has to satisfy the constraint

that each node is visited at most once, i.e., already visited nodes are “tabu”. There may be additional,

problem-specific rules defining certain nodes as tabu in certain cirumstances. When there is no neighbor

anymore that is not tabu, the walk stops and is decoded as a solution to the given problem.

The probability pkl to go from a node k to an allowed neighbor node l is chosen proportional to the

so-called pheromone τkl, a memory value storing how good transition (k, l) has been in previous walks.

Pheromone is initialized by a constant value. After the walk has finished, pheromone is updated. There

are several possible ways to do that. The “classical” update rule is the following: First, set τkl = (1−ρ)τkl

for each arc (k, l), where ρ ∈]0, 1[ is the so-called evaporation factor. Then, increase the pheromone on

the arcs of the chosen walk x by a factor proportional to the fitness f(x) of the walk. In this way, the

partial construction steps of solutions with good objective function values are reinforced. The process
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of random walk construction and pheromone update is iterated. Instead of a single walk (“1 ant”), also

s > 1 walks may be constructed sequentially (“s ants”) in each iteration (“round”).

In general, the procedure above needs not to converge. For an alternative pheromone update rule

where only the best walk seen so far is reinforced (“Global Best”), results on convergence both of solutions

and of pheromone to the global optimum have been obtained ([16] – [18]). Convergence of solutions only

can also be shown for the MAX-MIN Ant System developed by Stützle and Hoos [37], as demonstrated

by Stützle and Dorigo in [36]. For most other usual update rules, the convergence question is still open.

What is even more, the finite-time behavior of the ACO algorithm is widely unexplored in theoretical

research. As a remarkable exception, we mention the articles by Merkle and Middendorf [26] – [27], who

analyze the ACO dynamics by means of the so-called ACO model for a specific problem under an update

rule where the best walk of each round is reinforced.

In the present article, we study the finite-time ACO dynamics under the classical update rule described

above. For this purpose, the ACO process is approximated in Section 2 by its behavior in the case of

a sufficiently large number of ants (the resulting process resembles the ACO model process by Merkle

and Middendorf), and the validity of this approximation is demonstrated by a mathematical convergence

result. Furthermore, it is shown that in an asymptotic case where ρ → 0, compensated by a suitable

re-scaling of the time axis, the approximating process can be described by a system of ordinary differential

equations. Section 3 indicates how to compute the dynamics of the expected fitness in the approximating

process. In Section 4, three types of construction graphs for the application of ACO to the class of

subset problems (including, e.g., knapsack problems or max-clique problems) are introduced. Section 5

compares the behavior of the approximating process on these construction graphs for a few basic test

functions. Section 6, finally, gives some concluding remarks.

2 The Asymptotic Dynamics and its Basic Law

2.1 ACO Algorithm in Formal Terms

We start with a formal presentation of the ACO algorithm investigated in this work. Let us mention

that for our purpose, the algorithm has been simplified by omitting visibility values (see, e.g., [10]), an

additional feature often applied in practice to further improve the performance of ACO. However, since

visibility values are based on problem-specific domain knowledge, an analysis of their influence should

take into account the specific features of the optimization problem under consideration. The general

properties of ACO dynamics show in a clearer way if the visibility concept is put aside.

As mentioned in the Introduction, ACO can be considered as a learning procedure working on a

construction graph C which encodes the given instance of the combinatorial optimization problem under

consideration. Examples for such encodings will be presented in Section 4. C is a directed graph with a

distinguished node, the start node v0. Let S̄ denote the set of directed paths x = (v(1) = v0, v
(2), . . . , v(m))

in C starting in v0. The integer m does not need to be a constant, i.e., different paths in S̄ can have
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different lengths. Observe that the property of x being a path implies that each node of C is contained in

x at most once. Optionally, a set of conditions on the path x can be given, specifying for each possible

path u = (v(1) = v0, v
(2), . . . , v(i)) a subset V(u) of N (v(i))), where N (v) is the set of immediate successor

nodes of v in the directed graph C, as the set of feasible continuation nodes of path u. The set V(u) must

satisfy the property that it does not contain any node already contained in u. In the presence of such

conditions, S̄ is defined in a more restrictive way as the set of all directed paths x = (v(1), v(2), . . . , v(m))

with the property that v(1) = v0 and that v(i+1) ∈ V((v(1), . . . , v(i))) for all i = 1, . . . , m − 1. Also the

case where there are no specific conditions on path x can be captured in this notation by setting in this

case V(u) equal to the set of all those nodes in N (last(u)) that are not already contained in u, where

last(u) is the last node of u.

We define S as the set of paths in S̄ that cannot be prolonged without violating feasibility: Formally, S

is the subset of S̄ containing all those paths x = (v(1), v(2), . . . , v(m)) ∈ S̄ for which V(x) = ∅. Throughout

the paper, we assume that V(v0) 6= ∅, i.e., that the start node has always a feasible successor. (Otherwise,

the empty path would be the only feasible path.) As a consequence, each path x ∈ S contains at least

one node different from the start node.

It is assumed that each path x ∈ S encodes a feasible solution of the given combinatorial optimization

problem. More precisely: There exists a mapping Φ which assigns to each x ∈ S a unique feasible solution

y of the optimization problem in such a way that to each feasible solution y, there exists an x ∈ S such

that y = Φ(x). It is not required that Φ is one-to-one, so a situation where for a feasible solution y, two

different paths x1 ∈ S, x2 ∈ S with Φ(x1) = Φ(x2) = y exist, is allowed.

In the sequel, the given combinatorial optimization problem will always be formulated as a maximiza-

tion problem with objective function f . We shall call f(y) the fitness of solution y. Since the solution

space is finite, f is a bounded function. We restrict ourselves to nonnegative fitness functions. Evidently,

each optimization problem on a finite feasible set can be transformed in an equivalent problem of the

considered form.

The fitness of a path x ∈ S is defined as f(Φ(x)). By this definition, we may just as well consider

the given problem as an optimization problem on the set S. For shortness, we abuse notation by simply

writing f(x) instead of f(Φ(x)) (x ∈ S).

The simplest example of a construction graph encoding is that for a travelling salesperson problem

(TSP) on m nodes 1, . . . , m: In this case, C is the complete directed graph on node set {1, . . . , m},
the start node v0 is given as v0 = 1, and additional conditions on x do not exist, such that S is the

set of all permutations (x1, . . . , xm) of the indices 1, . . . , m with x1 = 1. The function Φ is given as

Φ(x1, . . . , xm) = (x1, . . . , xm, x1), the last specifying a closed tour on node set {1, . . . , m}.
Based on the definitions above, we can now present a pseudocode formulation of the ACO algorithm,

see Fig. 1. Therein, an ant is a conceptual unit performing a random walk on the construction graph C.
Nodes are represented by node indices. A feasible continuation of a path u = (v(1), . . . , v(i−1), v(i) = k)

is an arc (k, l) in C with the property that l ∈ V(u); if this property is not satisfied, arc (k, l) is called
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infeasible (as a continuation of path u).

The procedures pheromone-initialization and pheromone-update have still to be specified:

Pheromone-initialization: Each τkl(n) is set equal to a pre-specified initial value:

τkl(1) = τ
(0)
kl for all arcs (k, l).

(Note that τkl(n) needs not to be defined if (k, l) is not an arc of C.) Considering the possibility that in

some construction graphs, not every arc plays the same role, we admit cases where the initial pheromone

values are not all equal.

Pheromone-update: As stated in the Introduction, we apply the “classical” fitness-proportional update

rule: In the case s = 1 of a single ant,

τkl(n + 1) = (1− ρ) · τkl(n) + ρ · I((k, l) ∈ X(1)
n ) · f(X(1)

n ), (1)

where X
(σ)
n is the (random) walk traversed by ant σ in round n,

I(statement) =





1, if statement is true,

0, otherwise

is the indicator function, and (k, l) ∈ X means that arc (k, l) is contained in the path defined by walk X.

Procedure ACO

procedure ACO {
do pheromone-initialization;

for round n = 1, 2, . . . {
for ant σ = 1, . . . , s {

set k, the current position of the ant, equal to the start node v0 of C;
set u, the current walk of the ant, equal to (v0);

while (a feasible continuation of walk u of the ant exists) {
select successor node l with probability pkl(n), where

pkl(n) =





0, if (k, l) is infeasible,

τkl(n) /
(∑

(k,r) τkr(n)
)

, otherwise,

the sum being over all feasible continuations (k, r) of u;

set k = l, and append l to u;

} // end while

} // end for ant

do pheromone-update;

} // end for round

} // end procedure

Fig. 1. ACO’s pseudocode.
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In the case of s > 1 ants, the update contributions of each ant are averaged:

τkl(n + 1) = (1− ρ) · τkl(n) +
ρ

s

s∑
σ=1

I((k, l) ∈ X(σ)
n ) · f(X(σ)

n ). (2)

Taking the average instead of the sum of the contributions (i.e., multiplying the sum by ρ/s instead of

ρ) is appropriate since otherwise the process would degenerate with growing number s of ants.

2.2 Asymptotic Approximation of the Process

Let A be the set of arcs (k, l) of C. By indexing the elements of A in an arbitrary order, the pheromone

values τkl can be combined to a vector τ with |A| nonnegative components, τ ∈ [0,∞[|A|. By τ(n), we

denote the vector of pheromone values τkl(n) ((k, l) ∈ A) in round n of the ACO process. We introduce

the following definition:

Definition 2.1. The passage fitness of arc (k, l) under a given pheromone vector τ = (τkl) is the random

variable

I((k, l) ∈ X) · f(X), (3)

where X is the random walk of a fixed ant under pheromone values τkl. Thus, the passage fitness of

(k, l) is identical to the fitness of the resulting walk, provided that the walk contains arc (k, l), and zero

otherwise. The expected passage fitness of (k, l) under τ is the mathematical expectation of the passage

fitness, i.e., the value

Fkl(τ) = E (I((k, l) ∈ X) · f(X)) =
∑

x∈S:(k,l)∈x

Pr{X = x} · f(x) (4)

with X as defined above. It should be noted that the r.h.s. of this equation implicitly depends on τ , as

indicated on the l.h.s. Informally, the expected passage fitness of arc (k, l) describes the expected “gain”

obtained from the random walk of an ant on the assumption that a walk X not passing through arc (k, l)

produces no gain at all, and a walk X passing through (k, l) produces just the fitness of X as its gain.

Now we consider the sequence of vectors τ̄(n) = (τ̄kl(n)) (n ≥ 1) given by the difference equations

τ̄kl(n + 1) = τ̄kl(n) + ρ {−τ̄kl(n) + Fkl(τ̄(n))} (n ≥ 1),

τ̄kl(1) = τkl(1) = τ
(0)
kl (5)

for each arc (k, l) ∈ A, where Fkl(τ̄(n)) is the expected passage fitness under τ̄(n). We call (τ̄(n)) the

associated discrete deterministic process (ADDP). Whereas in the original ACO process, the pheromone

vectors evolve in a stochastic manner, their evolution is described by the deterministic law (5) in the

ADDP.

Our process ADDP is closely related to the so-called ACO model process in [26] – [27]. However, we

presuppose a fitness-proportional instead of an iteration-best pheromone update rule, and we formulate

the ADDP for the very broad range of arbitrary combinatorial optimization problems using arbitrary

construction graph encodings.
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We shall show now that under mild conditions, the trajectories (τ(n)) of the ACO process converge

in probability to the trajectories (τ̄(n)) of the ADDP within each finite time interval, as the number s of

ants tends to infinity. The symbol ||.|| will be used for the Euclidean norm.

Theorem 2.1. Let D ⊆ [0,∞[|A| be a domain containing all possible trajectories of (τ(n)) and (τ̄(n)).

Furthermore, let F (τ) = (Fkl(τ)) ((k, l) ∈ A) be the vector of the expected passage fitness values under

pheromone vector τ . Suppose that F (τ) is Lipschitz-continuous on D, i.e., that there exists a constant

L > 0 such that

||F (τ (1))− F (τ (2))|| ≤ L ||τ (1) − τ (2)||

for all τ (1) ∈ D, τ (2) ∈ D. Then, for an arbitrary integer N∗ ≥ 1, an arbitrary ε > 0, and an arbitrary

δ > 0, there exists an integer s∗ = s∗(N∗, ε, δ) such that for all s ≥ s∗,

||τ(n)− τ̄(n)|| < δ for all n = 1, . . . , N∗

with a probability of at least 1−ε. In other words: The trajectory τ̄(n) yields, with probability arbitrarily

close to one, for any given number of rounds an arbitrarily good approximation to the trajectory τ(n),

provided that the number s of ants is chosen large enough.

Proof. Let N∗, δ and ε be given. W.l.o.g. we assume ε < 1. For abbreviation, let us set

A
(σ)
kl (n) = I((k, l) ∈ X(σ)

n ) · f(X(σ)
n ).

By definition of the expected passage fitness,

E(A(σ)
kl (n)) = Fkl(τ(n)).

Combining the random variables A
(σ)
kl (n) to vectors A(σ)(n), we re-write eq. (2) in vector form as

τ(n + 1) = τ(n) + ρ {−τ(n) +
1
s

s∑
σ=1

A(σ)(n)},

or alternatively as

τ(n + 1) = τ(n) + ρ {−τ(n) + F (τ(n)) + T (s)(n)},

where the noise term T (s)(n) is given by

T (s)(n) =
1
s

s∑
σ=1

A(σ)(n)− F (τ(n))

and has expectation 0 = (0, . . . , 0). The random variables A(σ)(n) (σ = 1, . . . , s) are i.i.d. Therefore, by

the Law of Large Numbers, to an arbitrary fixed α > 0, there exists an s∗, such that

Pr{||T (s)(n)|| ≥ α} <
ε

4N∗

for all s ≥ s∗. In other words: For s ≥ s∗, ||T (s)(n)|| < α holds with a probability of at least 1− ε/(4N∗).

Since for each n, the random variable A(σ)(n + 1) is conditionally independent of A(σ)(n), conditioned
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on the pheromone vector τ(n + 1) in round n + 1, we can multiply the lower bounds 1− ε/(4N∗) for the

probabilities of the events ||T (s)(n)|| < α to obtain a lower bound for the joint event that ||T (s)(n)|| < α

for all n = 1, . . . , N∗. This yields the bound
(
1− ε

4N∗

)N∗

≥ 1− ε,

where the last inequality follows from the assumption ε < 1 and from

(1− y)k ≥ exp(−4ky) ≥ 1− 4ky

for 0 < y < 1/2 and k ≥ 1.

Let us now define the function

Ψ(τ) = τ + ρ {−τ + F (τ)}.

Since (1 − ρ)τ and F (τ) are Lipschitz-continuous on D, also Ψ(τ) is Lipschitz-continuous, say with a

Lipschitz constant L0. Hence, with a probability of at least 1− ε, for all n = 2, . . . , N∗,

||τ(n)− τ̄(n)|| = ||Ψ(τ(n− 1)) + ρT (s)(n− 1)−Ψ(τ̄(n− 1))||

≤ ρ · ||T (s)(n− 1)||+ L0 · ||τ(n− 1)− τ̄(n− 1)|| ≤ α + L0 · ||τ(n− 1)− τ̄(n− 1)||.

Iterating this estimation and using the initial condition τ(1) = τ̄(1) yields that with a probability of at

least 1− ε, for all n ≤ N∗,

||τ(n)− τ̄(n)|| ≤ α · Ln−1
0 − 1
L0 − 1

≤ α · LN∗−1
0 − 1
L0 − 1

.

By the special choice α = δ(L0 − 1)/(LN∗−1
0 − 1), we obtain the assertion of the theorem.

2

For the application of Theorem 2.1, an important question is how the Lipschitz condition can be veri-

fied. As it will be seen in the following sections, Fkl(τ) typically turns out as a continuously differentiable

function on

D0 = {τ ∈ [0,∞[|A| |
∑

l∈N (k)

τkl > 0 for all k withN (k) 6= ∅}. (6)

Now, if Fkl(τ) is continuously differentiable on some compact set D, then the Lipschitz property follows.

Thus, the crucial question is whether or not the natural domain D0 of Fkl(τ) can be restricted to a

compact (i.e., bounded and closed) subset D containing all possible trajectories of original ACO process

and of the ADDP. For the trajectories τ(n) and τ̄(n) (n = 1, . . . , N∗) within a fixed bounded time interval

of N∗ rounds, this question can be answered by yes: From (2), it is easy to show by induction that τkl(n)

is bounded above by

τmax = max
(k,l)∈A

τ
(0)
kl + max

x∈S
f(x).

Furthermore, τkl(n) is bounded below by

τmin(N∗) = min
(k,l)∈A

τ
(0)
kl · (1− ρ)N∗

> 0.
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as long as n ≤ N∗. Therefore, the compact set

D = [τmin(N∗), τmax]|A|

satisfies the requirements above. It would be desirable to have a compact restriction D of D0 not

depending on N∗, but the existence of such a restriction can only be shown for special construction

graphs as, e.g., the “chain” graph defined in the next section.

To give a clearer picture of the fundamental dynamics of the ADDP, we consider the asymptotic

case of an evaporation factor ρ near zero. This asymptotics is motivated by the fact that in theoretical

convergence results, decreasing ρ increases the probability that convergence to the optimal solution takes

place (see [16] – [18]). It is obvious that if ρ is reduced, such that pheromone changes in each round become

small, a comparably larger number of rounds must be executed to get substantial changes. Therefore,

in order to be able to plot the asymptotic behavior, it is convenient to re-scale the time axis in such a

way that the product of ρ and the number M of rounds per time unit remains constant. Without loss

of generality, we can assume that it is one, i.e., we assume that ρ = 1/M . In this scaling, a round takes

dt = 1/M = ρ time units.

We now define the associated continuous deterministic process (ACDP) as the limit of the (re-scaled)

ADDP as dt → 0: With τ̃(t) denoting the pheromone vector at time t in the re-scaled process, (5) yields:

τ̃kl(t + dt) = τ̃kl(t) + dt · {−τ̃kl(t) + Fkl(τ̃(t))}.

Letting dt → 0, we obtain that the ACDP is given by the system

dτ̃kl

dt
= Fkl(τ̃)− τ̃kl ((k, l) ∈ A) (7)

of ordinary differential equations, where τ̃ = (τ̃kl) is the pheromone vector at time t, and Fkl(τ̃) is the

expected passage fitness of arc (k, l) under τ̃ . We call (7) the basic law of the ACDP.

Remark 1. We do not make any assertion on convergence of the trajectories of the ACO process to

those of the ACDP. Such a result would require a deeper analysis: In Theorem 2.1, we have assumed

that the number of rounds is bounded by some fixed N∗. For investigating the asymptotic case dt → 0,

it would be necessary to estimate the tradeoff between a growing number of rounds on the one hand (for

that, the influence of N∗ on the accuracy of the approximation would have to be made explicit), and

the diminishing value of ρ on the other hand. This type of analysis is beyond the scope of the present

paper. A sort of “local convergence” could easily be derived from Theorem 2.1, but we conjecture that

a stronger convergence result holds without being able to prove it at the moment.

Remark 2. The described re-scaling of the time axis allows to parallel the real ACO process with the

ACDP. E.g., if ρ is chosen as 0.01, and a round takes 10−5 seconds on a given computer, then a time unit

is defined as 10−5 ·M = 10−5 · (1/ρ) = 10−3 seconds. If it is possible to compute the process trajectory

of the ACDP, it can be used to tentatively predict the convergence speed of ACO via this scaling. For an

example, see Fig. 5 and the remarks on it in Subsection 5.2.
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Remark 3. In Theorem 2.1, we have described the ADDP (and hence finally also the ACDP) as a

limiting case for a situation where the number s of ants tends to infinity. A closer consideration shows

that for deriving the ACDP, it is probably not necessary to have s → ∞; it suffices to work with a

fixed number s of ants and to split the number M of rounds per time unit into two factors M1 and

M2 by combining M1 subsequent rounds to a period and executing M2 periods per time unit. By a

straightforward analysis, it can be shown that as M2 →∞, pheromone changes during each fixed period

get infinitesimally small, such that the overall effect achieved in the considered period is in a first-order

approximation the same as that of a single round with s · M1 ants. Letting M1 → ∞ produces then

again the difference equation (5). We emphasize that this consideration is “heuristic”; a mathematical

convergence result would have to make the indicated line of argumentation more precise.

3 Expected Fitness in the Associated Continuous Deterministic

Process

In this section, we derive a simple relation allowing to compute the expected fitness of the walk of an

ant, given a current pheromone vector τ̃ . We do this on the implicit assumption that τ̃ evolves over time

according to the ACDP, i.e., under the basic law (7). Note that although the pheromone dynamics in

the ACDP is deterministic, ants select their walks based on the current pheromone still in a stochastic

fashion, except in degenerate cases.

For the sake of a simpler notation, we shall write τ instead of τ̃ from now on, even though referring

to the ACDP. Since the context makes it always clear whether τ is considered as a function of round

index n or of time parameter t, this cannot lead to misunderstandings.

Proposition 3.1. Let k be a node of the construction graph C with the property that k must be traversed

in each feasible walk, and that k cannot be the last node of the walk. By µ(τ) = Eτ (f(X)) we denote

the expected fitness of the walk chosen by a fixed ant under pheromone vector τ . Then,

µ(τ) = ϕk(τ) + ϕ̇k(τ), (8)

where

ϕk(τ) =
∑

l∈N (k)

τkl (9)

is the total pheromone flow out of node k (recall that N (k) denotes the set of immediate successor nodes

of k in the directed graph C), and ϕ̇k(τ) denotes the derivative dϕk(τ(t))/dt.

Proof. From (7), we obtain by summation over all indices l ∈ N (k) that

dϕk

dt
=

∑

l∈N (k)

Fkl(τ)− ϕk(τ). (10)
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Since k is traversed in each walk and must have a successor on each walk, the set of all walks x can be

classified according to the node l ∈ N (k) traversed after k on x. Hence by (4),

µ(τ) = Eτ (f(X)) = Eτ


 ∑

l∈N (k)

I((k, l) ∈ X) · f(X)


 =

∑

l∈N (k)

Eτ (I((k, l) ∈ X) · f(X))

=
∑

l∈N (k)

Fkl(τ).

Therefore (10) yields

ϕ̇k(τ) = µ(τ)− ϕk(τ).

2

Remark. The start node v0, shortly denoted as node 0, is guaranteed to be traversed by each feasible

walk, and we have assumed that it always has at least one feasible successor. Therefore, the equation

µ(τ) = ϕ0(τ) + ϕ̇0(τ) (11)

must hold.

Proposition 3.2. In a situation where pheromone has become stationary, i.e., where τ̇kl = 0 for each

(k, l), one has

µ(τ) = ϕk(τ) (12)

for each node k with the property that it is traversed by each feasible walk, and that k cannot be the

last node on the walk. In particular, the expected passage fitness in a stationary situation is equal to the

total pheromone flow out of the start node v0.

Proof. Follows immediately from (8) and from the fact that τ̇ = 0 entails ϕ̇k = 0. 2

Example 3.1. Consider the special case of a problem where all feasible paths x ∈ S have identical fitness

f(x) = µ0 = const. In this case, µ(τ) = µ0 for all τ , such that (11) yields the inhomogeneous linear

differential equation

y0 + ẏ0 = µ0 (13)

for the function y0 = y0(t) = ϕ0(τ(t)). The general solution of (13) is

y0 = µ0 + ce−t,

and for the initial value y0(0) = y
(0)
0 , one gets the special solution

y0 = µ0 + (y(0)
0 − µ0)e−t.

Thus, the pheromone flow y0 = ϕ0(τ(t)) out of the start node converges to the constant fitness µ0

according to a negative-exponential function.
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4 Three Types of Construction Graphs for Subset Problems

The theory developed above can be applied for several purposes. For example, the convergence rate of

ACO for specific test functions, depending on the problem instance size, can be investigated. We leave

this issue outside the scope of the present paper (results of this type will be presented in [21]), but focus

instead on another possible application: a comparative theoretical evaluation of diverse construction

graphs. To outline this application, let us consider the wide class of problems of subset selection type,

i.e., problems where the feasible set is the set {0, 1}m of binary vectors of length m, or, in other terms, the

set of all subsets of a given collection of m items 1, . . . ,m. Examples are (linear or nonlinear) knapsack

problems, max-clique problems, or binary portfolio selection problems.

Different types of construction graphs can be designed for the application of ACO to such problems.

A main criterion for the decision on a suitable construction graph is whether or not there is an a-priori

order between the items 1, . . . , m among which a choice has to be made. If there is no such a-priori

order, it is arbitrary which item gets which of the labels 1, . . . , m, provided that item characteristics

are assigned correctly to the labels. E.g., the three problem types mentioned above have this symmetry

property. (An example for a problem lacking it is obtained in the case where the binary vector of length

m is a binary encoding of an integer between 0 and 2m − 1; here, bit positions have a pre-defined order.)

In this paper, we restrict ourselves to the case where an a-priori order in which the items are arranged

does not exist. In this case, also the construction graph encoding should be such that re-arrangements

of the items (together with their characteristics) leave the results essentially invariant. More precisely,

if item i is re-named as item π(i) (i = 1, . . . , m), where π is some permutation of 1, . . . , m, then the

distribution of the states at time t of the resulting ACO process should differ from that in the original

process only by the assignment between item labels and items. In the sequel, we describe three types

of construction graphs satisfying this invariance condition. In each case, a solution is represented as a

vector x = (x1, . . . , xm) with xi ∈ {0, 1} (i = 1, . . . ,m), and the start node v0 of C is the node 0.

1. Chains: The node set of C consists of the nodes 1, . . . , m, the nodes ¬1, . . . ,¬m and auxiliary nodes

0, . . . , m. The arc set consists of the arcs (i− 1, i), (i− 1,¬i), (i, i) and (¬i, i) (i = 1, . . . , m). The

choice of node i resp. node ¬i means that xi = 1 resp. xi = 0. An example is shown in Fig. 2.

2. Disks: The node set of C consists of the nodes 0, 1 and the nodes 1, . . . , m. The arc set consists of

the arcs (0, i), the arcs (i, 1) (i = 1, . . . , m), the arcs (i, j) (i 6= j), and the arc (0, 1). Choice of node

i means that xi = 1. If i is not chosen during the walk, xi = 0. An example is shown in Fig. 3.

3. Drums: The node set of C consists of the node 0, the nodes 1, . . . , m and the nodes ¬1, . . . ,¬m.

The arc set consists of the arcs (0, i), the arcs (0,¬i) (i = 1, . . . , m), the arcs (i, j) (i 6= j), the arcs

(¬i,¬j) (i 6= j), the arcs (i,¬j) (i 6= j) and the arcs (¬i, j) (i 6= j). As an additional constraint,

both node i and ¬i are forbidden after node i or ¬i has been visited, i.e., V(u) contains only those

nodes i and ¬i that do not occur in u, neither in their positive form i nor in their negated form ¬i

(cf. Subsection 2.1). Interpretations are as in the chain case. An example is shown in Fig. 4.
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Fig. 2. Chain construction graph for m = 4.
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Fig. 3. Disk construction graph for m = 4. Undirected links are bidirectional, i.e., each of them

corresponds to two directed arcs with opposite orientation.
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Fig. 4. Drum construction graph for m = 4. Undirected links are bidirectional, i.e., each of them

corresponds to two directed arcs with opposite orientation.
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5 Comparisons of the Construction Graphs on Test Functions

In this section, we compare the three construction graphs introduced in Section 4 on some basic test

functions: indicator functions with one or two optima, and the well-known OneMax test function (see,

e.g., [31]). All statements refer to the ACDP.

5.1 Indicator Functions

One of the most elementary fitness functions that can be imagined as a test function is an indicator

function

f(x) = I(x ∈ S∗)

stating whether a solution x from a given set S∗ ⊆ S of “good solutions” has been found or not. We

will derive results on the expected fitness µ(τ) = Eτ (f(X)) for some test functions from this class on the

three construction graphs. Let us remark that the emphasis in this context is not on how fast a “good”

solution will eventually be found (without additional hint, a heuristic can perform this task only by trial

and error anyway), but rather on how efficient the heuristic is in sticking to already seen good solutions.

The reason why the last-mentioned aspect is important lies in the fact that good overall solutions are

often composed of good partial solutions: If, e.g., f is given as f(x) = g(f1(x|A1), . . . , fK(x|AK)), where

g is an increasing function of K real variables, A1, . . . , AK forms a partition of the set {1, . . . , m} of

bit positions, x|Ak ∈ {0, 1}|Ak| is derived from x ∈ {0, 1}m by restriction to the bit positions contained

in Ak, and fk : {0, 1}|Ak| → [0,∞[ is a fitness function on the binary vectors defined on the block

Ak (k = 1, . . . ,K), then for approaching the optimum of f quickly, it is not sufficient that the partial

optimizers (xk|Ak)∗ of Fk (k = 1, . . . ,K) are found at some times by chance, unless they are preserved

after having been found. So, ideally, the expected fitness on each block Ak should continually increase

and converge (quickly) to its maximum possible value.

5.1.1 Indicator functions with a single optimizer

In Subsection 5.1.1, we assume that |S∗| = 1, i.e., that S∗ consists of a single optimal solution x∗, and

choose the test function as f(x) = I(x = x∗).

(a) Behavior of the chain

Consider a chain with m links. Because of symmetry between “up moves” and “down moves” on the

chain and their mutual independence, we can restrict ourselves without loss of generality to the special

case x∗ = (1, 1, . . . , 1), i.e., we consider the fitness function f(x) = I(x1 = . . . = xm = 1). Under

these circumstances, there is complete symmetry between the m chain links. Therefore, at each time t,

all pheromone values τi−1,i (i = 1, . . . , m) will be identical; for abbreviation, we set u = u(t) = τi−1,i.

Analogously, at each time t, all all pheromone values τi−1,¬i (i = 1, . . . , m) will be identical; we set

w = w(t) = τi−1,¬i. We write Fu resp. Fw instead of Fi−1,i resp. Fi−1,¬i. The expected passage fitness
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of arc (0, 1) is immediately obtained as

Fu =
(

u

u + w

)m

,

and the expected passage fitness of arc (0,¬1) is Fw = 0. Thus, the ACDP is given by the system

u̇ =
(

u

u + w

)m

− u, ẇ = −w (14)

of ordinary differential equations. The second equation of (14) has solution w = w0e
−t, where w0 is the

initial value for w at time t = 0, hence the first equation of (14) reduces to a differential equation in one

variable,

u̇ =
(
1 + w0e

−tu−1
)−m − u. (15)

By Proposition 3.1, the expected fitness of an ant’s solution evolves over time according to

µ = (u + w) + (u̇ + ẇ) =
(

u

u + w

)m

=
(
1 + w0e

−tu−1
)−m

. (16)

By (14),
d

dt

w

u
= − w

u2

(
u

u + w

)m

≤ 0,

hence (14) yields u̇ ≥ γ−u with γ = (1+w0/u0)−m > 0, where u0 is the initial value for u at time t = 0.

Thus, if u ≤ γ/2, we have u̇ > 0, and therefore u cannot become smaller than γ/2. As a consequence,

(16) implies µ → 1 as t →∞.

We see that the chain is asymptotically efficient for the considered test function in the sense that the

expected fitness tends to its optimal value.

(b) Behavior of the disk

Interestingly, the disk construction graph already fails at the very simple test function f(x) = I(x =

x∗). To see this, let us consider the special case x∗1 = x∗2 = 1, x∗i = 0 (i = 3, . . . , m). (Contrary to the

chain, the disk construction graph does not treat the decisions xi = 1 and xi = 0 in a symmetric way,

so we cannot restrict ourselves here without loss of generality to the special case x∗ = (1, . . . , 1).) For

abbreviation, set u = τ0,1 = τ0,2, y = τ1,1 = τ2,1, z = τ1,2 = τ2,1, a = τ0,i for i = 3, . . . , m, b = τi,1 for

i = 3, . . . , m, c = τi,j for i, j ∈ {3, . . . ,m} and i 6= j, d = τi,j for i ∈ {1, 2} and j ∈ {3, . . . , m}, e = τi,j for

i ∈ {3, . . . ,m} and j ∈ {1, 2}, and g = τ0,1. (Therein, equations between τ -values hold due to symmetry.)

Similarly as for the chain under (a), we abbreviate the corresponding expected passage fitness values by

Fu, Fy, etc.

Since, as it is easily seen, Fa = Fb = Fc = Fd = Fe = Fg = 0, in a stationary situation, a = b = c =

d = e = g must hold. Therefore, Proposition 3.2 yields that

µ = 2u + (m− 2)a + g = 2u (17)

in the stationary case. Moreover, the expected passage fitness of arc (0, 1) is easily computed as

Fu =
u

2u + (m− 2)a + g
· z

z + y + (m− 2)d
· y

y + (m− 2)d
,
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which reduces to

Fu =
1
2
· z

z + y
(18)

in the stationary case. Similarly, it turns out that in the stationary case, the expected passage fitness

values Fz and Fy of arc (1, 2) and of arc (1, 1), respectively, become equal to the r.h.s. of (18) as well.

(Note that (0, 2, 1, 1) is the only path with positive fitness containing (1, 1)). Therefore, by (7), in steady

state

u =
1
2
· z

z + y
, z = 0 or 2(z + y) = 1, and y =

1
2
· z

z + y
. (19)

From the last equation, we get z = 2y(z + y) which must be equal to y by the equation before, unless

z = 0. The first equation of (19) and eq. (17) leave u = 1/4 and hence µ = 1/2 as the only possible

stationary values for which µ > 0. Therefore, the disk is asymptotically inefficient at the considered test

problem: the expected fitness needs not to converge to its optimal value.

(b) Behavior of the drum

As in the case of the chain, we can assume x∗ = (1, . . . , 1) without loss of generality. Let u = τ0,i,

w = τ0,¬i (i = 1, . . . , m), x = τi,j , y = τi,¬j , z = τ¬i,j and s = τ¬i,¬j (i = 1, . . . , m; j = 1, . . . ,m; i 6= j).

One finds

Fu = Fx =
u

m(u + w)

(
x

x + y

)m−1

, (20)

and Fw = Fy = Fz = Fs = 0. The equation for Fx follows from the facts that (a) the probability that

the current walk has fitness 1 is
u

u + w

(
x

x + y

)m−1

,

and that (b) out of all paths with fitness 1, a fraction of (m−1)(m−2)!/m! = 1/m contains a fixed given

arc of type (i, j), say arc (1, 2). Using Fu = Fx, which implies u̇−ẋ = x−u and hence u−x = (u0−x0)e−t,

the equations in (20) can be combined to a single differential equation for u or x.

In the stationary situation, we have w = y = z = s = 0, and hence (from u̇ = 0 and ẋ = 0)

u =
1
m

and x =
1
m

.

The stationary value of µ is therefore µ = m(u + w) = 1. Thus, the drum is asymptotically efficient for

the considered test function.

5.1.2 Indicator functions with two optimizers

Let us now consider the case |S∗| = 2 where S∗ consists of two (equally good) optimizers x(1) =

(x(1)
1 , . . . , x

(1)
m ) and x(2) = (x(2)

1 , . . . , x
(2)
m ), such that f(x) = I(x = x(1) or x = x(2)). It turns out

that in this case, the behavior of the ACDP heavily depends on how similar the two solutions x(1) and

x(2) are. Measuring similarity by the Hamming distance

d(x(1), x(2)) =
m∑

i=1

I(x(1)
i = x

(2)
i ),
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we focus the analysis on the two extreme cases d(x(1), x(2)) = 1 and d(x(1), x(2)) = m. In view of the results

of the previous subsection, we restrict ourselves to chain and drum. It is easy to see that for these types

of construction graphs, no loss of generality is caused by the assumption that x(1) = (1, 1, 1, . . . , 1) and

x(2) = (0, 1, 1, . . . , 1) in the case of Hamming distance 1, resp. by the assumption that x(1) = (1, 1, 1, . . . , 1)

and x(2) = (0, 0, 0, . . . , 0) in the case of Hamming distance m. Our main interest will be the question

whether the construction graphs are asymptotically efficient or not.

(a) Behavior of the chain

(a1) Minimal Hamming distance

For x(1) and x(2) as defined above for Hamming distance 1, the test function becomes f(x) = I(x2 =

x3 = . . . = xm = 1). Let a = τ0,1, b = τ0,¬1, c = τi,i+1, d = τi,¬(i+1) (i = 1, . . . ,m− 1). One finds

Fa =
a

a + b
·
(

c

c + d

)m−1

,

Fb =
b

a + b
·
(

c

c + d

)m−1

,

Fc =
(

c

c + d

)m−1

,

and Fd = 0. Therefore, in steady state, d = 0, c = 1, and a+ b = 1, provided that (a, b) 6= (0, 0). Because

of ȧ + ḃ = (c/(c + d))m−1 − (a + b), the point (a, b) = (0, 0) is repelling. Thus, in a stable fixed point,

µ = a + b = 1 must hold, which is optimal.

(a2) Maximal Hamming distance

For x(1) and x(2) as defined above for the Hamming distance m, the test function becomes f(x) =

I(x1 = x2 = . . . = xm). With the abbreviations a = τi−1,i and b = τi−1,¬i (i = 1, . . . , m), one finds

Fa =
(

a

a + b

)m

and Fb =
(

b

a + b

)m

,

such that for the stationary case ȧ = ḃ = 0, the conditions

a = 0 or am−1 = (a + b)m,

b = 0 or bm−1 = (a + b)m

have to be satisfied, which imply either a = b = 0 or a = b = 1/2m. As a consequence, µ = a+b = 1/2m−1,

except in the degenerate case a = b = 0, where µ = 0. We see that the chain is here asymptotically

(highly) inefficient. The reason is that in the ACDP, the chain does not manage the symmetry break

between the two solutions. (Although they refer to a different pheromone update scheme, the results in

[18] indicate that the original ACO process could possibly achieve such a symmetry break by means of

its random perturbations, albeit at the price of a very slow convergence. We must skip a discussion of

this interesting question for the sake of brevity.)
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(b) Behavior of the drum

(b1) Minimal Hamming distance

Again, let f(x) = I(x2 = x3 = . . . = xm = 1), and let u = τ0,1 = τ0,¬1, w = τ0,i, z = τ0,¬i,

a = τ1,i = τ¬1,i, b = τ1,¬i = τ¬1,¬i, a′ = τi,1 = τi,¬1, b′ = τ¬i,1 = τ¬i,¬1 (i = 2, . . . , m), x = τi,j , y = τi,¬j ,

y′ = τ¬i,j , s = τ¬i,¬j (i, j ∈ {2, . . . , m}, i 6= j). We show that the drum is asymptotically efficient, i.e.,

that µ must take its optimal value 1 in a stationary situation. To see this, observe that

µ = 2u + (m− 1)(w + z).

In the stationary case, z = b = b′ = y = y′ = s = 0 by analogous arguments as in subsection 5.1.1.

Distinguish two possible cases for the stationary situation:

1. u > 0: We compute Fu by considering (without loss of generality) the arc (0, 1). Given that node

1 has been reached, the walk is continued with probability one in such a way that the fitness value

1 is reached, since b = y = 0. Therefore,

Fu =
u

2u + (m− 1)(w + z)
· 1 =

u

µ
.

From 0 = u̇ = Fu − u, we get µ = 1.

2. u = 0: In this case, we compute Fw by considering (without loss of generality) the arc (0, 2). We

obtain

Fw =
w

2u + (m− 1)(w + z)
=

1
m− 1

.

From 0 = ẇ = Fw − w, one gets w = 1/(m− 1) and hence

µ = 2u + (m− 1)(w + z) = 1,

which shows the assertion.

(b2) Maximal Hamming distance

As before, let f(x) = I(x1 = x2 = . . . = xm). Setting u = τ0,i = τ0,¬i, x = τi,j = τ¬i,¬j and

y = τi,¬j = τ¬i,j , we obtain

Fu = Fx =
1

2m

(
x

x + y

)m−1

,

and Fy = 0. The equation for Fx follows from the fact that out of the 2m! equiprobable paths with fitness

1, there are (m− 1)(m− 2)! = (m− 1)! paths containing a fixed arc (i, j) or (¬i,¬j), say arc (1, 2), and

that the probability that the walk has fitness 1 is (x/(x + y))m−1.

In the non-stationary case,

ẋ =
1

2m

(
x

x + y

)m−1

− x,
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and ẏ = −y, such that y = y0e
−t, hence x satisfies the differential equation

ẋ =
1

2m

(
1 + y0e

−tx−1
)−m+1 − x

similar to (15). Furthermore,

µ = 2m(u + u̇) = 2mFu =
(

x

x + y

)m−1

=
(
1 + y0e

−tx−1
)−m+1

.

Analogously as in Subsection 5.1.1 (a), the case x → 0 as t →∞ can be excluded, so by the last equation,

µ → 1 as t →∞, i.e., asymptotic efficiency holds. We see that in this setting, the drum outperforms the

chain.

5.2 The OneMax Function

In this section, we deal with the so-called OneMax fitness function,

f(x) =
m∑

i=1

xi,

i.e., the aim is now to maximize the number of 1-bits. Contrary to the test functions in Subsection 5.1,

the OneMax function gives “guidance” for an evolution of the search process towards the maximizer

x∗ = (1, . . . , 1).

As in Subsection 5.1.2, we consider only chain and drum, in view of the elementary inefficiency of the

disk detected in Subsection 5.1.1.

(a) Behavior of the chain

The OneMax function preserves symmetry between the m links of the chain, so it suffices to consider

the two values u = τi−1,i and w = τi−1,¬i (i = 1, . . . , m). The passage fitness can be computed as follows:

Let us call a bit xi with value xi = 1 a hit, such that the fitness is the number of hits. For each i, the

probability of a hit is u/(u+w). Hence, the expected number of hits is m ·u/(u+w), the passage fitness

of arc (0, 1) (i.e., the probability that (0, 1) is traversed, multiplied by the expected number of hits in

this case) is

Fu =
u

u + w
·
(

u

u + w
(m− 1) + 1

)
=

u(mu + w)
(u + w)2

, (21)

and the passage fitness of arc (0,¬1) is

Fw =
w

u + w
· u

u + w
(m− 1) =

(m− 1)uw

(u + w)2
. (22)

We have

µ = Fu + Fw =
mu

u + w
.

Solving u̇ = Fu − u = 0 and ẇ = Fw − w = 0 yields either u = w = 0 or u = m and w = 0. It is

easy to see that the first possible fixed point (0, 0) is repelling: Straightforward calculation shows that
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(d/dt)(w/u) ≤ 0 and hence w/u ≤ w0/u0, where u0 and w0 are the initial values of u and w, respectively.

Therefore, with ζ = u + w, we obtain

ζ̇ = u̇ + ẇ = (Fu − Fw)− (u + w) =
m

1 + w/u
− ζ ≥ γ − ζ

with γ = m/(1 + w0/u0) > 0. Thus, if ζ ≤ γ/2, we have ζ̇ > 0, which means that ζ cannot reach

the value 0. So (u,w) can only converge to the second possible fixed point (m, 0), where µ = m. Since

max f(x) = m, this means that the chain is asymptotically efficient for the OneMax function.

Equations (21) and (22) enable a numerical solution of (7). Fig. 5 shows the resulting dynamics for

m = 50 over a period of 100 time units, starting with initial values u0 = w0 = m/2 = 25. (The initial

value m/2 for each of the two variables has been chosen since the stationary value of u + v is m.) The

uppermost curve shows that the expected fitness reaches 90 % of its optimal value in about 80 time units.

With the numbers assumed in Remark 2 of Section 2, e.g., these would be 0.08 seconds.
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Fig. 5. Dynamics of the chain for OneMax, m = 50 and u0 = w0 = 25. The current expected fitness

and the variables u and v are plotted as relative values, normalized by m = 50, which is the maximum

of the objective function.

(a) Behavior of the drum

Again using symmetry, it suffices to consider the values u = τ0,i and w = τ0,¬i (i = 1, . . . ,m) together

with the values x = τi,j , y = τi,¬j , z = τ¬i,j and s = τ¬i,¬j (i = 1, . . . , m; j = 1, . . . ,m; i 6= j). Omitting

the start node 0, we can describe a walk W by a sequence (W1, . . . , Wm), where Wi ∈ {π(i),¬π(i)}
with a permutation π of {1, . . . , m}. By the symmetry of the OneMax function, all m! permutations π

occur with the same probabilities in the walks on the drum. Let us fix a pair of different integers from

{1, . . . , m}, say (1, 2). We classify the possible occurrences of (1, 2) as two successive elements in π by the

position i of the first element 1 (1 ≤ i ≤ m− 1). Obviously, the probability that (π(i), π(i + 1)) = (1, 2)
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is
(m− 2)!

m!
=

1
m(m− 1)

.

Note that in the case (π(i), π(i + 1)) = (1, 2), element 1 may occur in original or in negated form (as 1

resp. as ¬1) in the walk W ; the same holds for element 2.

To compute the expected passage fitness values of (1, 2), (1,¬2), (¬1, 2) and (¬1,¬2) as well as those

of (0, 1) and (0,¬1), we use an auxiliary graph H = Hm, as depicted in Fig. 6. Therein, the nodes

of the drum are re-ordered according to the currently chosen permutation π of node indices, such that

the (irrelevant) “names” of the items among which the algorithm selects are factored out. Node K0 in

H corresponds to node 0 in C. Transition from K0 to K
(1)
1 resp. K

(0)
1 in H corresponds to transition

from 0 to π(1) resp. to ¬π(1) in C, transition from K
(1)
i to K

(1)
i+1 resp. to K

(0)
i+1 corresponds to transition

from π(i) to π(i + 1) resp. to ¬π(i + 1), and transition from K
(0)
i to K

(1)
i+1 resp. to K

(0)
i+1 corresponds

to transition from ¬π(i) to π(i + 1) resp. to ¬π(i + 1). To each feasible walk in C, there corresponds a

complete directed walk from K0 to Km+1 in H.
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Fig. 6. Auxiliary graph H = Hm.

We use the following abbreviations for the transition probabilities, computed from the pheromone

values u, w, x, y, z and s (cf. Fig. 6):

a = u/(u + w), b = w/(u + w) (a + b = 1),

c = p11 = x/(x + y), d = p10 = y/(x + y) (c + d = 1),

e = p01 = z/(z + s), g = p00 = s/(z + s) (e + g = 1).

Furthermore, we introduce the following notation: For a partial walk W in H, let U(W ) denote the

number of 1-bits in W , and let P (W ) denote the probability that the partial walk W is chosen, given the

random walk starts in the first node of W . For two nodes K, K ′ in W , let

A(K, K ′) = set of complete walks in H that traverse arc (K,K ′),
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and

B(K, K ′) = set of partial walks in H starting in K and ending in K ′.

We distinguish six different types of arcs in H (the two arcs not covered by this classification are not

relevant for the analysis):

• type (1): arc (K0,K
(1)
1 ),

• type (0): arc (K0,K
(0)
1 ),

• types (k1, k2) with k1 ∈ {0, 1}, k2 ∈ {0, 1}: arcs (K(k1)
i , K

(k2)
i+1 ).

The arcs in C are classified according to the types of the corresponding arcs in H, e.g., arc (i,¬j) is of

type (1, 0).

By F(1), F(0) and F(k1,k2), we denote the expected passage fitness (in C) of an arc of type (1), (0) and

(k1, k2), respectively. Finally, for a complete random walk W in Hi (i ≤ m), we set:

φ
[k]
i = Pr{W contains K

(k)
i } (k = 1, 0),

ψ
[k]
i = E(U(W ) · I(W contains K

(k)
i )) (k = 1, 0),

χ
[j]
i = E(U(W ) | W contains K

(j)
1 ) (j = 1, 0),

φ
(j,k)
i = Pr{W contains K

(k)
i | W contains K

(j)
1 } (j = 1, 0; k = 1, 0),

ψ
(j,k)
i = E(U(W ) · I(W contains K

(k)
i ) | W contains K

(j)
1 ) (j = 1, 0; k = 1, 0).

Obviously,

φ
[k]
i = aφ

(1,k)
i + bφ

(0,k)
i (23)

and

ψ
[k]
i = aψ

(1,k)
i + bψ

(0,k)
i . (24)

It is immediately seen that

F(1) =
1
m

aχ[1]
m , F(0) =

1
m

bχ[0]
m . (25)

The factor 1/m results from the fact that for a fixed arc (0, i) or (0,¬i) of type 1 or 0, respectively, the

probability that π(1) = i is 1/m.

Somewhat more complicated is the computation of the remaining passage fitness values. We fix two

different indices, say 1 and 2, classify the possible occurrences of (1, 2) in π according to the (possible)

position i of 1 (as described above) and recall that the probability for (π(i), π(i+1)) = (1, 2) is 1/(m(m−
1)). By this consideration, we obtain

F(k1,k2) =
m−1∑

i=1

1
m(m− 1)

F
(i)
(k1,k2)
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where

F
(i)
(k1,k2)

= E
(
passage fitness of (K(k1)

i ,K
(k2)
i+1 ) in Hm

)
=

∑

W∈A(K
(k1)
i

,K
(k2)
i+1 )

P (W ) · U(W )

=
∑

W1∈B(K0,K
(k1)
i

)

∑

W2∈B(K
(k2)
i+1 ,Km+1)

P (W1) · pk1k2 · P (W2)(U(W1) + U(W2))

= pk1k2 ·





∑

W1∈B(K0,K
(k1)
i

)

∑

W2∈B(K
(k2)
i+1 ,Km+1)

[P (W1)P (W2)U(W1) + P (W1)P (W2)U(W2)]





= pk1k2 ·





∑

W2∈B(K
(k2)
i+1 ,Km+1)

P (W2) ·
∑

W1∈B(K0,K
(k1)
i

)

P (W1)U(W1)

+
∑

W1∈B(K0,K
(k1)
i

)

P (W1) ·
∑

W2∈B(K
(k2)
i+1 ,Km+1)

P (W2)U(W2)





= pk1k2

(
1 · ψ[k1]

1 + φ
[k1]
i · χ[k2]

m−i

)
.

What remains to be done is the computation of the numbers φ
[k]
i , ψ

[k]
i and χ

[j]
i .

Computation of the numbers φ
[k]
i : We use (23). Straightforward considerations show that the recursion

φ
(1,1)
i = cφ

(1,1)
i−1 + dφ

(0,1)
i−1 , φ

(0,1)
i = eφ

(1,1)
i−1 + gφ

(0,1)
i−1

holds for i ≥ 2, and that

φ
(1,1)
1 = 1, φ

(0,1)
1 = 0.

By application of the theory of linear difference equations, we obtain the following solution:

φ
(1,1)
i =

e + d(g − d)i−1

d + e
, φ

(0,1)
i =

e− e(g − d)i−1

d + e
,

φ
(1,0)
i =

d− d(c− e)i−1

d + e
, φ

(0,0)
i =

d + e(c− e)i−1

d + e
.

Computation of the numbers ψ
[k]
i : We use (24) and the recursion

ψ
(1,k)
i = cψ

(1,k)
i−1 + dψ

(0,k)
i−1 + φ

(1,k)
i ,

ψ
(0,k)
i = eψ

(1,k)
i−1 + gψ

(0,k)
i−1

for i ≥ 2 and k = 1, 0, and

ψ
(1,1)
1 = 1, ψ

(1,0)
1 = 0, ψ

(0,1)
1 = 0, ψ

(0,0)
1 = 0.

This inhomogeneous system of difference equations seems to have no closed-form solution, but the values

ψ
(j,k)
i can be computed iteratively by means of the formulas for φ

(j,k)
i .
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Computation of the numbers χ
[j]
i : From

χ
[1]
i = cχ

[1]
i−1 + dχ

[0]
i−1 + 1, χ

[0]
i = eχ

[1]
i−1 + gχ

[0]
i−1

for i ≥ 2, and

χ
[1]
1 = 1, χ

[0]
1 = 0,

one obtains, again by using the theory of linear difference equations:

χ
[1]
i =

d

(d + e)2
[
1− (c− e)i

]
+

ei

d + e
,

χ
[0]
i =

d

(d + e)2
+

e

(d + e)2
(c− e)i +

ei− 1
d + e

.

In total, the formulas above allow the computation of all passage fitness values and, as a consequence,

the numerical solution of (7) for OneMax. Fig. 7 shows the resulting dynamics for m = 50 over a period

of 100 time units, starting with a constant initial pheromone value τ0 on each arc. To obtain results

comparable with Fig. 5, we have chosen τ0 = 1/2, such that the entire pheromone flow out of node 0 is

the same as in the chain case.
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s 

Fig. 7. Dynamics of the drum for OneMax, m = 50 and u0 = w0 = x0 = y0 = z0 = s0 = 0.5. The

current expected fitness is plotted as a relative value, normalized by the maximum m = 50 of the

objective function.

Comparison with Fig. 5 leads to some interesting observations:

• The curves for the (relative) expected fitness µ/m are nearly identical.

• The curve for u in the drum case is nearly identical to that for u/m in the chain case.

• The curve for w in the drum case is nearly identical to that for w/m in the chain case.
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While the corresponding curves almost coincide for m = 50, decreasing the value of m leads to growing

deviations, which indicates that the congruence is not exact even for larger m. However, the numerical

results suggest the following conjecture, which we are not able to prove formally at the moment:

Conjecture. As m → ∞, the expected fitness functions µchain(t) and µdrum(t) for OneMax on chain

and drum, respectively, with the initial values as given above, are asymptotically equivalent.

To complete our analysis of the three construction graphs investigated in this section, some biblio-

graphical remarks on the origin of them in the ACO literature seem to be in order: Optimization by

learning in the chain fashion is more typical for Evolution of Distribution (EDA) algorithms such as

Population-Based Incremental Learning (PBIL, see [1]) than for ACO. In the ACO field, chain-type con-

struction graphs have been applied rather in their kary generalization where from each auxiliary node i

of the chain, not only two, but k arcs originate, such that the solution is encoded in a kary instead of

a binary alphabet. Examples of articles where the construction process is organized in this way can be

found in [2], [29], [20], [34], or [22]. Construction graphs of disk type are the most commonly applied for

subset selection problems in the ACO literature, see, e.g., [25], [23], [5], or [15]. It should be noted that

our theoretical analysis of the disk does not directly address the approaches in these articles, because

the problems they investigate have the convenient special property that the considered fitness functions

never decrease if a further item is added as long as feasibility is preserved, which provides a “natural”

stopping rule for the walks of the ants. In such a context, the main weakness of the disk, the inefficiency

with respect to the termination condition for the walk, does not occur. A problem where the mentioned

monotonicity property is lacking, the project portfolio selection problem, has been treated by ACO with

the disk construction graph in [8], [9]; in these articles, the drawback of the disk has been overcome by

applying a lifespan concept for ants, which, however, requires additional parameters to be tuned. Finally,

the drum construction graph does not seem to have been applied up to now in the experimental ACO

literature.

6 Conclusions

We have developed a formal framework for analytical investigations of the finite-time dynamics of ant

colony optimization (ACO) under the “classical” pheromone update rule. A limit theorem for the ACO

process has been demonstrated, a system of ordinary differential equations has been identified as the

“skeleton” of the dynamic process, and it has been shown how the evolution of the expected fitness

values can be derived from this system. As an example for the application of the presented theory, the

behavior of ACO on three different construction graphs for subset selection problems has been analyzed

for some basic test functions.

In particular, it has been shown that the simplest of these construction graphs, the chain with storage

requirement O(m), already turns out as surprisingly efficient for some test functions, but completely fails
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on others. The two other investigated types of construction graphs, disk and drum, use storage of order

O(m2). Nevertheless, the disk fails on a very simple test function for which even the chain succeeds.

Thus, our theoretical investigation suggests that for diverse subset selection problems, the potential of

the drum construction graphs might be explored. Of course, the final judgement of the efficiency of an

encoding is a matter of empirical research.

Of course, the test functions analyzed here are still rather elementary, and future investigations should

turn to more complex types of fitness functions. Let us mention two especially interesting classes: (a) By

analyzing ACO on the class of the so-called Royal Road fitness functions (see, e.g., [28]), the semi-formal

argumentation at the beginning of Subsection 5.1 could possibly be made precise in a quantitative sense.

(b) In contrast to “good-natured” functions as OneMax, also deceptive fitness functions (see, e.g., [30] or

[6]) should be investigated.

As explained at the beginning of Section 4, we have focused on subset selection problems where there

is no a-priori order between the items among which a choice has to be made. There are other types of 0-1-

problems where such an order exists. Construction graphs that are more suitable for this situation would

also deserve to be investigated. Combinatorial problems in sequencing, routing, scheduling etc. need still

other construction graphs; the theory presented here includes these cases, but detailed analysis would be

necessary to obtain results from which practical conclusions could be drawn.

The pheromone update rule considered here was fitness-proportional. Other rules, such as rank-based

update [7] or the update mechanism of MAX-MIN Ant System [37] could be investigated along similar

lines. Perhaps this would enable an analytical comparison of update rules, which could guide the choice

between ACO design variants for new problem types for which experimental know-how is not yet available.

From a theoretical viewpoint, on the other hand, three topics would be of special interest: The first is

the question in which sense and under which conditions the trajectories of the real ACO process converge

to those of the ACDP. For treating this question, extensive use of the theory of stochastic approximation

(see, e.g., Kushner and Yin [24]) could be helpful. A second challenge concerns a refinement of the

analysis in Section 2 by finite-population corrections (cf. the related work by Prügel-Benett and Shapiro

[32] or Rattray and Shapiro [33] in a genetic algorithm context). Finally, asymptotic approximations

of functions describing the process dynamics that can, at the moment, only be computed numerically

(cf. the end of Section 5) would be desirable. Mathematical tools as those developed in the analysis of

algorithms (see, e.g., Sedgewick and Flajolet [35]) might be applied in this context and could possibly

lead to a clearer understanding of the dynamics triggered by particular decisions on problem encoding,

design variants and/or parameter choices.
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