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Towards a dynamics of social behaviour:
Strategic and genetic models for the evolution

of animal conflicts
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persistence of behavioural traits in animal societies rather than optimality of reproduc-

tive success is described in terms of the game-theoretic notion of evolutionarily stable

strategy. Game dynamics provides a suitable framework to accomodate for the dynamic

urp..i, of permanence and uninvadability, to model the evolution of phenotypes with

frequency äependent fitness and to relate the strategic models of sociobiology to the

mechanisms ol inheritance in population genetics.

Introduction

Classical ethology provided numerous investigations of animal populations exhibiting

social phenomena based on 'altruistic' behaviour. In this non-antropomorphic context,

an act performed by an amimal is called altruistic if it increases the fitness of some other

animul at the cost of its own. Such behaviour was often explained by notions such as
'group selection' and 'benefit of the species' (for example, see Wynne-Edwards, 1962)'

But while there is no logical inconsistency in viewing groups or species as units of

selection. it seems well established that Darwinian evolution acts much more commonly

through selection of the level of individual organisms or eventually genes' The explan-

ation of many altruistic traits in terms of individual selection has, therefore, to be viewed

as a major success of sociobiology.
Roughly speaking, there are three approaches which proved to be fruitful. They may

be designated as genetic. economic and strategic, and attributed to Hamilton (1964)'

Trivers (1972) and Maynard Smith (1974), respectively, although the principles go back

to Haldane and Fisher, and arguably to Darwin himself.
(l) The genetic explanation is based on the notion of kin selection. A gene complex

programming altruistic acts which benefit relatives may well spread, since it occurs, with

a certain probability, within the relatives whose reproductive success is increased.

(2) The economic explanation relies on the notion of reciprocal altruism. If the

altruistic act is likely to be returned at some later occasion, then the behaviour may

become established, especially so if there is individual recognition between members of

the population preventing'cheaters'.
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(3) The strategic explanation, f inally, uses the panoply of game theory to show how

the fitness of an individual may depend on what the other ones are doing. An act which

in certain situations would be called altruistic need not, in other situations, decrease the

reproductive success of the organism performing it.
In this paper. we shall deal exclusively with the third approach stressing its dynamical

aspects. It must, however, be stated at the outset that the game-dynamic approach
described here constitutes only a fraction of the game-theoretical analysis of animal
behaviour. Our discussion is accordingly biased. The theory of games covers many
applications in biological evolution. Some of them do not easily f it into the mould of

ordinary differential equations. For a balanced survey of these topics. we may refer to

a recent  book by Maynard Smith (1982).

Our paper consists of two parts. The first one discusses, within the static context of
game theory. the crucial notion of evolutionarily stable strategy (ESS), which centres on

aspects of permanence rather than optimality. The second part uses game dynamics to
obtain broader notions of permanence, to model the evolution of behavioural strategies
and to relate them to genetic mechanisms.

Before we start our discussion of strategic models in sociobiology we have to comment
on the evolutionary aspects of this approach. The actual mathematical models used in

sociobiology as well as those of population genetics discuss the spreading of mutant
genes in populations.The causes of mutations are considered as external factors and not

as part of the system under consideratiom. A proper description of the evolutionary
process, however. is complete only if i t includes the mechanism of mutant formation. At
present. such complete theories of evolution exist for polynucleotides in laboratory
systems (for example, see Eigen & Schuster, 1979; Biebricher et al. l982; Küppers, 1983)
and eventually for simple viruses (Weissmann , 1914). The replication of bacteria follows

a much more complicated mechanism. Already ten enzymes or more are required for

DNA copying. Although not all the mechanistic details of local mutations and DNA
rearrangements in bacteria are known yet, the basic features of bacterial evolution are
established in principle and we can expect a complete molecular theory to become
available in the not too distant future.

In case of higher. multicellular organisms we encounter new sources of complications
which obscure the relation between mutations and their manifestation in phenotypic
properties. The major problem concerns the unfolding of the genotype: higher organisms
obtain final form and shape through morphogenesis. This is a complicated dynamical
process which is not completely understood at present and to which the genes contribute
markers and other regulatory signals for intercellular communication apart from the
ordinary duties in cell metabolism and cell division. Any complete theory of evolution
of higher organisms hence has to deal explicitely with the influence of mutations on
morphogenesis, which is far outside the bounds of present possibil i t ies. Behavioural
traits are exceedingly complex phenotypic features which apparently cannot be traced
down to single genes. The notion of 'mutant genes' leading to changes in behaviour has

to be understood as a metaphor. Mutations actually operate within complicated net-

works of gene actions which are converted into the properties of the phenotype by a
highly complex transformation during morphogenesis.

Evolutionarily stable strategies

The term 'evolutionarily stable strategy' was introduced by Maynard Smith and Price
(1913) to describe certain seneticallv determined traits of animal behaviour which are
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uninvadable by mutants. The basic idea was to describe such evolutionary stabil ity in

terms of the mathematic framework of game theory. This method was subsequently used

to analyse a wide variety of biological confl icts. both within and between species' and can

be righily considered to be a cornerstone of theoretical biology.

Game theorY and bblog.v

Ever since von Neumann and Morgenstern's (1953) classical treatise first published in

1944. the methods of game theory have been applied to the modell ing of all kinds of

conflicts in human societies. The applications to conflicts within animals and plants'

however. date back to the last ten years. There were a few forerunners using game

theoretic notions in biology. but in a context quite different from the one described here'

With the benefit of hindsilht it seems astonishing that biological 
'games' were neglected

for so long in favour of polit ical. mil itary or economic ones. Indeed. there are at least

two reasons which make human conflicts more diff icult to analyze than their 'natural'

counterparts in biologY:
(l ) The payoff in human systems is often doubtful. since it is hard to evaluate money,

social piestige, health and other factors on a single uti l i ty scale. In the evolutionarily

weighted contests in biology, Darwinian fitness is the ony relevant quantity. Although

this notron presents considerable di{iculties for theoretical analysis and empirical

measurement it provides in principle, at least, a scalar estimate of reproductive success'

(2) The 'rationality axiom' frequently sets empirical and theoretical game theorists at

odds. The investigation of animal behaviour is unhindered by such an assumption'

Biological confl icts tend to be fairly straightforward. compared with all but the simplest

h,.,man conflicts of any real interest. The possibil i t ies for conspiracy, fraud. lunacy' etc'

are greatly reduced
It is interesting to note. however, that the notion of evolutionarily stable strategy In

biological contests is quite close to that of Nash equil ibrlum strategy for noncooperative

games between rational players (cf. the section on 'Characterizations of evolutionary

! ,ubl .  r , .u , "g ies (ESS) 'below).  In  Parker  & Hammerste in (1984),  th is  is  in terpreted as
'quasi-ratioÄlity' of selection. In our view, the convergence of the two concepts is rather

due to the fäct that both 'blind selection' and 'rational decision' lead to adaptative

solutions. After all, rational behaviour itself is a product of selectron.

S trategie s and P heno t v Pes

The shift in the application of game theory from human to animal confl icts entails a shift

in the meaning of the two basic notions of 'strategy' and 'payoff. 'Payoff, as we have

said. now corresponds to Darwinian fitness, i.e. the number of offspring or-in subtler

situations-the number of copies of genes transmitted to the next generation' [For an

elaborate analysis of the notion of f itness we refer to Dawkins ( l9S2)'] 'Strategy'. in the

context of chess. of war games, suggests a nicely calculated sequence of moves' This

aspect of plotting and scheming was replaced by the notion of an innate trait of f ighting

biauioui (Maynard Smith & Price. 1973). It was soon realized that this viewpoint was

useful. not only in the analysis of aggressive encounters. but in the modell ing of any clash

ol interests: in the parent offspring conflict, for example, concerning the length of the

weaning period. or in the male female conflict about the respective share in parental

investment ( 'I ' f lvers. 1g72). A strategy, thus, became a genetically programmed way

of behaviour in parrwise contests. But such contests form only a small fraction of
'subgames' of the struggle for l i fe. Differences in resource allocation. size of the l itter'

disoersal rate etc.. affecittre fitness of an individual in quite another way. In such cases'
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the success is determined, not through playing against a particular opponent, or a series
of opponents, but through 'playing the field' (see Maynard Smith, 1982).

A strategy, then, is any behavioral phenotype, or may be any phenotype at all. Indeed,
game theory has been successfully applied to desert shrubs in order to discuss the relative
merits of catching rain water by spreading hoizontal roots near the surface, or of taping
ground water by sending a vertical root deep below: the success obviously depends on
what the neighbours are doing (see Riechert & Hammerstein, 1983). From there it is only
a small step to the protective colouring of moths or the familiar features of Mendelian
peas. Thus, any phenotype may be viewed as a 'strategy', as long as we wish Io analyze
it by game theoretical methods or, to put it less subjectively, as long as its f itness is
frequency dependent, (which means that it depends on the distribution of phenotypes in
the population considered).

On the other hand not every strategy is a phenotype. In particular, a 'mixed strategy'
consisting in playing different strategies with preassigned probabil it ies-need not be

realized as phenotype. In order to avoid confusion, we shall therefore keep the distinc-
tion between phenotype and strategy, even if this implies some modifications in the
standard terminology of ESS theory.

Optimum phenotl'pes and genetic constraints

It is tempting. and often useful. to view selection as an optimization process. In element-
ary situations, as for example with asexually and independently replicating units, this is
indeed the case (see the section on 'Asexual inheritance: optimization and the game-
dynamical equation' below).

The term 'optimum', of course, has meaning only with respect to a given environment.
There is no reason to expect that under continuously changing conditions, selection
would lead to an optimum response to the instantaneous situation. Furthermore, since
the environment includes all other members of the population, adaptation to an environ-
ment wil l change this environment. It is easy to exhibit corresponding population
genetical models where the frequency dependent fitness wil l not, on the average! increase.
This is actually the main theme of this paper.

But even ifeach phenotype had constant f itness, one could not expect, in general, that
the phenotype with highest f itness would prevail. In particular, if this optimum
phenotype corresponds to a heterozygous genotype, as may easily be the case, then at
least one half of its offspring wil l be suboptimum. It is true that according to Fisher's
fundamental theorem. the average fitness wil l never decrease. and even increase,
provided the composition of the gene pool changes at all. However. the maximum
average fitness of the population may be much lower than the fitness of the optimum
phenotype. Furthermore, a population may be 'trapped' in a state where a local. but not
global maximum is attained. Moreover. the fundamental theorem rests upon the
assumption that f itness corresponds to the probabil ity of survival from zygote to adult
stage and that this probabil ity depends on a single genetic locus. For many-loci models
involving recombination, and for fecundity models where reproductive success is a
function of the mating pair, the average fitness will not increase, in general (for example,
see Ewens. 1979).

Sel.fi n t t,ra.s t ttn I op t int i:a t ion

Apart from genetic constraints, there may also be strategic obstacles to an optimization
of the'good of the species', i.e. of the mean fitness of a population. Selection acts through
differential reproductive success of individuals, which may be quite opposed to the
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welfare of the group. Even in human games allowing forethought and deliberation, the

self-interest of two players may in some cases lead without failure to an outcome which

is disastrous for both.

This is best shown by the well known paradigm of the 'prisoners' dilemma'' Two

prisoners kept in separate cells are asked to confess a joint crime. If both confess, both

will remain in jail for seven years. If only one confesses, he will instantly be freed, while

the other one gets sentenced to ten years. Ifnone ofthem confesses, both wil l be detained

for one year. This latter solution is optimum but it wil l not be obtained. Each prisoner,

indeed. will confess: it is the better option, no matter what the other one is going to

decide. As a result, both will have to spend seven years in jail. [For a recent application

of the prisoners' dilemma to the problem of cooperative behaviour in biology see

Axelrod and Hami l ton (1981).1

The prisoners' dilemma is a game between two opponents. Similar results hold for

games where an individual is'playing the field'. The best known example, in this respect,

is Harding's 'tragedy of the commons', where the common meadow is ruined by

overexploitation, each villager trying to increase his payoff. [We refer to Masters (1982)

who bases his sociobiological discussion of polit ical institutions on the 'prisoners'

dilemma' and the 'tragedy of the commons'.]

Ev o lut ionarily s t ab le p heno ty pe s

If adaption leads to an equilibrium at all, it will be characterized by stability rather than

optimality. An evolutionarily stable phenotype, in Maynard Smith's definit ion, is a

phenotype with the property that if all members of the population share it, no mutant

phenotype could invade the population under the influence of natural selection.

One possible way of formalizing this is the following one (Maynard Smith, 1982). Let

us denote by W(l,"r) the fitness of an individual /-phenotype in a population of

J-phenotypes and by pl + (1 - p)J the mixed population where p is the frequency of

.I-phenotypes and 1 - p that of ,I-phenotypes. A population of /-phenotypes will be

evolutionarily stable if, whenever a small amount of deviant "I-phenotypes is introduced,

the old phenotype 1 fares better than the newcomers ,I. This means that for all pheno-

types J * I,

w(J,il + (l - {11 < w(1, e"I * (l - s)/),

for all e > 0 which are sufficiently small.
It must be mentioned that this definition has to be modified if the population is small.

In such a case, a deviant individual would change the composition of the population by

a notable amount, and not just by some small e. This situation has been analysed by

Riley (1979). In our context, we shall always assume large population sizes, thus avoiding

this problem and, moreover, the effects of sampling errors.

By letting e - 0 we obtain from inequality (l) that

W(J,I) < W(1, D, Q)

for all .I, which means that no individual fares better against a population of /-pheno-

types, than the 7-phenotype itself. The converse is not true in general: (2) does not imply

( l )

Ev olut ionar ilY s t ab le s tate s

Now we restrict our attention to those biological games which satisfy the following two

assumDtions:

259
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(l) They consist in one or repeated pairwise contests, rather than in'playing the field'.
This implies that the payoff lI/ ' is an affine function of its second variable. i.e. that for
any three phenotypes E, I and./ and any p e (0. l):

w(E,pJ + ( l  -  p)1)  :  pw(E,  J)  + ( l  -  p)w(E.  I )  (3)

Indeed the probabil ity that an individual f-phenotype matches up against a J-
phenotype, in the mixed population pJ + (l * p)1. is just p; and its payoff. in this case.
is W(E. "/). Here. we have tacitly assumed random matching of opponents. In some
situations----e .g. games against relatives-this wil l be not valid. [For a discussion of this
case we refer to Hines and Maynard Smith (1979).]
(2) There are only finitely many phenotypes E, , . . . , E, This assumption may look
innocuous. But there are situations where it is quite misleading, even as an approxi-
mation. As an example, we mention the so called 'war of attrit ion', a contest where the
prize goes to the player who invests more time-or energy-than his opponent. The set
of strategies consists of a continuum of waiting times and its discretization may be as
il l-advised as the replacement, say, of the bell shaped probabil ity density of body sizes
by a f in i te  subdiv is ion.

The loss of generality entailed by these two assumptions is compensated in a way by
an increase in mathematical convenience. We may now describe the game in normal
form, with the help of a payoff matrix.

By ,t, we denote the frequency of the phenotype E, in the population. The point
x :  ( , t ,  . . . . , n , )desc r i bes thes ta teo f thepopu la t i on .S ince the r , sa re f requenc ies , x l i es
o n  t h e  u n i t  s i m p l e x  S , :  { x :  ( , t r , . . . , , r , ) : - r : ,  )  0 ,  L r , :  1 l . B y  o , ,  w e  d e n o t e  t h e
average payoff, i. e. the expected change in fitness, for an d-individual matched against
an,{-opponent. The n x n-maftix A : (a,,) is called the payoffmatrix. The average
payoff for the phenotypes d is

(Ax) ,  :  a , r t ,  - l  . . .  I  t t inXn :  I  u , * . t * .
k

If x and y describe two populations, then the average payoff for a y-member opposed
to an x-member is

. y . A r : , r 1 ( A x ) ,  + . . . + , ) ' , ( A x ) ,  l l . r . o * , . t , .  ( 5 )

and in particular, the average payoff for contests within the x-population is

\ pes1X1 .  ( 6 )

There is an alternative interpretation of distributions of strategies. In game theory, E,
to A, are viewed as 'pure strategies'. They correspond to the corners e, of the unit simplex

3,. By e, we denote the lth unit vector: all components are 0 except the ith one which is
L We may interpret now a point x e S, as a 'mixed strategy' which consists in playing
A,  wi th probabi l i ty . r ,  ( i  :  1 , . . . ,n) .  The expression y 'Ax is  the payof fof  a y-st rategis t
playing against an x-strategist. In the sequel, we shall make use of both interpretations.
Points of ,S, wil l correspond, according to the context, either to strategies or to states of
the population.

Under our assumptions, the phenotype d is evolutionarily stable i lT

e , 'A , ( t e ,  +  ( l  -  6 )e i )  <  e , 'A ( t : e , *  ( l  -  e )e , ) ,  ( 7 )

for all .7 * i and all e > 0 which are sufficiently small.

( 4 )

II
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One may extend this definit ion, just as one extends the notion of a pure strategy to that

of a mixed one. A strategy (or state) p € S, is evolutionarily stable (or an ESS) iff for all

J € S , w i t h y  *  p .

J . A(sJ + (l - e)p) < p' A(ty + (l - e)p), (8)

for all e > 0 which are sufficiently small. i .e smaller than some appropriate ä(y)'

Characterizations of evolutionarill'- stable strategies ( ESS )

Equat ion (8)  may be wr i t ten as

( l  -  e ) ( p  ' A . p  -  y ' ^ p )  +  E ( p ' L v  -  v  ' A v )  >  O '  ( 9 )

This implies that p is an ESS iff the following two conditions are satisfied:

(l) equil ibrium condition

y '  ^p  <  p 'Ap fo r  a l l  .1 '  €  S , ;

(2) stabil ity condition

i f  - y  €  S , ,  y  +  p  and  y '  ^p  :  p '  Ap ,  t hen  ! '  A !  <  p '  Ly '

( l  l )

This is the original definit ion from Maynard Smith (1914). The equil ibrium condition

states that the strategyp is a best reply against itself. It corresponds to the notion of Nash

equi l ibr ium fami l iar  to  game theor is ts .  In  Dawkin 's  (1982) terms'an ESS " '  can be

crudely encapsulated as a strategy that is successful when competing with copies of itsell'

This property alone. however, does not guarantee uninvadabil ity, since it permits that

another itrategyy is an alternative best reply top. In facts, if p is'properly mixed', i 'e'

if p, > 0 for all i , then any J € S, is a best reply. The stabil ity condition states that in

such a case, p fares better, against y, than y against itself. The same argument leads to

the following characterization: a phenotype d is evolutionarily stable iff

( I ) equil ibrium condition

ai1 2 a1,i for all A;

(2) stabil ity condition

if eii ari for k + i, then a1, ) app'

A third equivalent definition of ESS, probably the most useful for computations' is the

following one (Hofbauer et al.,1979): p e S, is an ESS iff

p '  A x  >  x ' A x  ( 1 4 )

for all x + p in some neighbourhood U of p in S,.

There are examples of games admitting no ESS, or several ones. If there is an ESS in

the interior of S,, however, then it is the only ESS. Indeed, in such a case expression (14)

must be valid for all x # P.

The 'hawk-dove' game and mixed strategies

Let us now consider the famous 'hawk dove' game, a model devised by Maynard Smith

and price (1973) to explain the prevalence of ritual f ighting in innerspecific confl icts' We

do not attempt to repeat here the considerable amount of work done on this model

(Maynard Smith, 1912; 1914; 1982; Zeeman, 1979: Schuster et al., l98l), but describe it

in its most rudimentary form in order to elaborate the distinction between mixed

strategies and mixed populations.
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We shall assume that there are two phenotypes. E, ( 'hawk') escalates unti l f l ight of the
opponent or injury decides the outcome. E ('dove') is only prepared to fight in a ritual
way, without risking or infl icting injury. The prize of the contest corresponds to a gain

G in fitness. while an injury reduces fitness by I C I *. The effort expanded in a ritual contest
costs I,El. A natural and self-explantory order relation among these parameters is

G > O > E > C ,

Then a,, is (G + C)12----each 'hawk'has the same chance to win or to get injured; a, is
(G + E)12 since only one of the 'doves' can win, a,, is G and a^ is 0-the 'dove' retreats
when it meets a 'hawk'. Furthermore we restrict our discussion to the case lCl > G. Thus

Clearly. no phenotype is evolutionarily stable. A population of 'doves' can be invaded
by 'hawks' and vice versa.

The unique ESS of the population p : (pt, pr) is a mixture of p' 'hawks' and

P z : 1 - P '  
' d o v e s ' , w i t h

E - G
v 1 E + C

This follows from the fact that

is positive for all x : (xr, xr) with xr * pr. Note that this state is not optimal. The
average fitness

x ' A x  ! ( C  1  E  -  2 E x , +  : E  +  C ; x , )

is largest for x, : El(C + -E). A numerical example is shown in Fig. l.
What happens if we introduce a third phenotype är, which plays the mixed strategy

corresponding to the ESS: p, et + p2e21 (For simplicity, we set -E : 0). The payoff
matrix now is

G + C -  G ( G + C )(' 
2c

9  G(G+c)
2 2 C

G(G + C) G(C - G) G(G + C)
2C 2C 2C

Conditions (12) and (13) show that E, is evolutionarily stable and cannot be
replaced by neither E1 nor E, phenotype. The corresponding state e3, however, is not an
ESS, and nei ther  is  p,e1 *  pre. ,  in  th is  extended game: condi t ion (11)  is  not  sat is f ied

* We measure all parameters on the same value scale. Hence, gains like G are positive and losses like C or
Ä negative quantities.

le+ G 1
A: l -  |

L''g#)

( 1 5 )

(  l 6 )

A (  1 7 )
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F ig .  t .  The 'hax ' k -dove '  game  G:4 '  C :14 '  E :1 '  ä r  and  A2  a re  t he  l r equenc ' v',zä,rrrlrnt 
pa1,ofls p; :nÄ.tr' and ,doves,, v.hite @ is the average pa1,off for the total

' 
p'ipilation consisting oJ' 11 'hawks' and x' : | - x1 'dotes'

(cf. also the section 'Some examples'). Indeed, e3 is not protected against the mixture and

vice versa.

we may consider other 'mixed' phenotypes corresponding to mixed strategies

-rrer + -)r"e, which are not the ESS in the hawk-dove game (i 'e' "x, I p') '  Such pheno-

types are nät evolutionarily stable: the population could be invaded, either by'hawks"

or by .doves'. Furthermore, such'mixed' strategies could not invade E| All this is easy

to check.
continuing along these lines, one could analyze populations with several phenotypes

corresponding to different mixtures of the 'hawk' and the 'dove' strategies' There is no

reason ,howeve r , t os topa ta f i n i t enumbero fsuchpheno types . In themos tna tu ra l se t
up, all possible mixed sirategies would correspond to phenotypes competing with each

other, but we pref'er to stick to a finite set of phenotypes here and shall not pursue this

question any further, refering instead, to Zeeman, (1981) and Akin' (1983)'

Howplausib le,anyway,arephenotypescorrespondingtomixedstrategies?This isa
delicate problem to which Maynard Smith (1982) devotes several chapters' His con-

clusion is roughly that such phenotypes are most important when 'playing the field" e'g'

in the .sex ratio' game, but probably of rather minor importance in the pairwise contests

we are considering here.

On the other hand, does one find mixed states of the population which are evolution-

arily stable? Again, this is not an easy matter. Mixed states are of course extremely

common, but we are looking for strategic equilibria, consisting of several phenotypes for

which the fiequency depen-dent fitness values are equal. This is obviously difficult to

verify. The saf-est empirical evidence, at present, seems to be found in Hamilton's, (1979)

investigation of figwasPs.
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A s t'tnnte I r t( c o n t e.\ t s

So far we have considered contests which are symmetric. in the sense that both

opponents play the same role. Many conflicts are asymmetric however: within the same

species we have conflicts between males and females. between young and old. between

owners and intruders of a habitat. and so on. The methods apply equally well to

interspecific confl icts. e.g. between predators and preys. If we assume again that the

contests are pairwise and the numbers of phenotypes finite. we are led to bimatrix games.

Thus let  Är  . .  .  . .  d ,  denote the phenotypes of  populat ion X.  and F , . .  .F, ,  those of

population )'. By .v, we denote the frequency olE-,. and by l ' , that of {. Hence. x is a point

in  S, ,  anclJ ' in  S, , .  I f  an d- indiv idual  is  matchcd against  an { - ind iv idual .  the payof fwi l l

be a,, for the former and h,, for the latter. Thus the game is described by two payoff

matrices A : (a,,) and B : (ä,i). If the population X is in the state .r and the population

I in the state -y. then x'Ay and -l ' '  Bx are the respective average payoffs. If the

phenotype ä, is stable in contests against the population J, then it must do as well as all

compet ing phenotypes.  Thus e,  '  Ay )  er '  A l  for  k  :  1 . . .  - .n .  But  what  i f  equal t i ty

holds? There is nothing. then. to prevent Ä^ from invading. Thus, in contrast to the

symrnetric case. we cannot allow several 'best replys'. This leads to the lollowing

def in i t ion.  A pai r  of  phenotypes (8.  { )  is  sa id to be evolut ionar i ly  s table i f f

e k i  < l i t  f o r  k + i

and

h r , < h , ,  f o r  k + i

Similarly, a pair of states (or strategies) (p. g) with p e

evolut ionar l i ly  s table i f

( 18 )

( l e )

$, and q € S-, is said to be

and

(20)

(2 l )

p ' A q > x ' A q  f o r a l l  - r € S , .  x * P

q'Bp > y 'Bp for  ar l l  J '  €  ,S, , , .  ) '  +  q

It is easy to see that such a pair (p. q) must consist of pure strategies. Thus. in contrast

to the symmetric case. a mixed strategy can never be evolutionarily stable. This has been

shown for a considerably wider class of asymmetric games by Selten (1980). It also

reflects on symmetric contests since it is often quite possible that a small, seemingly

irrelevant difference can break the symmetry between the opponents and transform the

onginal ly  symmetr ic  contest  in to an asymmetr ic  one (Maynard Smith,  1976;  Hammer-

stein, 1979). This could explain why mixed strategies are rather rare in pairwise contests.

On the other hand. if the population X interacts, not only with the other population X,

but also with itself, then mixed ESSs become possible again (Taylor. 1919: Schuster

e t  u l . . l 9 8 l a ,  h )

Ita.sh equilibria untl the 'cot'ness philanderittg' game

A pair of strategies (p, q) (with p e S,, { € .S-) is called a Nash equil ibrium pair if

p .  A q  >  x '  ^ q .  V x  e  S , ,

q 'Bp  >  J '  Bp .  V l  e  S , , , .
(22)

Nash equil ibria play an import role in classical game theory, since for rational players

there is no reason to depart from the strategies p and q. as long as their opponent sticks
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to it. we shall presently see, however. that in biological games. Nash equil ibria are not

invasion proof.
Indeed, let us consider another famous example. the 'coyness-philandering' game by

Dawkins (1976). Let us suppose that the successful raising of an offspring increases the

fitness of both parents Uy C. fne parental investment lCl wil l be entirely borne by the

female if the male deserts. otherwise, it is shared equally. The female strategy to counter

male desertion ls'coyness', i.e. the insistence upon a long engagement period. which costs

]El to both partners. Again we measure all parameters on the same value scale and have

G > 0: C. E < 0. There are two phenotypes in the male population X' namely E'

(.philandering') and ä, ( 'faithful ') and two phenotypes in the female population I ' '

namely F, ( 'coy') and F ('fast'). The payoff matrices are

A

No pair of phenotypes is evolutionarily stable. and no state of the population is an ESS

(we have or., ly to check the pure states). There exists a unique pair of mixed strategles

p and q in Nash equil ibrium, given bY

E C
P t  E + C + G .  4 r  z t r + c l

I o G I t-o c.i.4

fo*f*u".;l'B:1".. o*t_l "o'

(2s)

( w i t h  p : ( p , , P r ) € S : ,  Q : t 4 r , q r ) e  S : )  p r o v i d e d  l E l < G  < l c l  < 2 ( G +  E ) '

itr is equil itrrium is not stabte. however. If a fluctuation decreases' say. the amount of

philanäering males, then the payoff for the males wil l not change: each phenotype sti l l

iras the same payoff, which depends only on the female population. One cannot expect

the frequency of philanderers to return to p,. The payoff for the female population wil l

actually increase: but 'fast' females gain more than 'coy' ones, since their risk of being

deserted decreases. lt is only when the amount of 'fast' females increases that the male

payoffs change. Again, they increase: but .philanderers' gain more than the .faithful.

nlut.r; hence. more 'philanderers': hence more 'coy' females; hence, less 'philanderers"

and so on. This looks l ike an oscil lating system. The static approach of game theory is

no longer sulicient to deal with this situation'

Game dYnamics

Evolution is dynamrc, and hence any evolutionary model must present dynamical

aspects. For the study of equil ibria and persistence, however. such aspects may well

remain implicit, as they do in the game theoretical approach. Indeed, a straight appli-

cation of the inventory of dynamical systems used in popullation genetics may be quite

off the point, in ...tuin situations. In particular. ESS theory is essentially phenotyptc

rather than genotypic. It is, incidentally, quite interesting that a major part of socio-

biology-a science which reputedly delivers everything, including humanity' into the

cluches of selfish genes- {erives its interest from taking a strategic rather than genetlc

point of view.
The present state of knowledge does not allow anything definite to be said about the

genetic mechanism behind a giv-n behavioural trait; and to tie such a trait arbitrari ly to

iome hypothetical genotyp. n1uy well confuse things. The Mendelian machinery could
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override the frequency-dependent regulation at the strategic level which one wants to
investigate. To avoid such interference, it wil l therefore be quite appropriate to assume
asexual reproduction at least as a first approximation. Most game-theoretical models in
biology concern sexual populations, of course; but this may eventually lead to irrelevant
complications based not on a necessary constraint but on speculations about the
inheritance of behaviour.

Aserual inheritance: optinti:ation and the game-dlnamical equation

Let us consider a population with r phenotypes. The point x(t) e S, denotes the state of
the population at t ime t. Asexual reproduction means ' l ike begets l ike'. The better the
phenotype { is adapted. the higher its rate of relative increase

I
ri

Ifthe fitness ofthe phenotype E, is given by a constant L,, then the average fitness ofa
p o p u l a t i o n i n s t a t e x i s g i v e n b y < D ( x ) :  ) t x t  + . . .  +  ) . , , x , , . I I i s n a t u r a l  t o a s s u m e t h a t
the rate of relative increase of d is given by the difference between the fitness ), of E,
and the average fitness <D(x). Thus the equation

(26)

restricted to the invariant set S.
phenotypes in the population.

wil l describe the evolution of the distribution of

This equation plays an important role in the theory of Eigen and Schuster (1979) on
prebiotic evolution. The population, in this case, consists of n types of selfreplicating
macromolecules, RNA or DNA, in a flow reactor. It can easily be shown that the average
'fitness', i.e. the mean reproduction rate. increases monotonically. Indeed, the time
derivative of O is just the variance of the 'f i tness' in the molecular population. The
molecular types with less than average fitness will be eliminated, and the average fitness
thereby increased. In the l imit, only the molecules with the highest f itness wil l remain.
In populations with asexual replication and frequency independent fitness, selection is a
global optimization process.

The above results are valid for 'error-free' replication. In more detailed studies (Eigen,
l97l ;  Thompson & McBr ide,  1974;  Jones et  a l . ,  1976; '  Swet ina and Schuster ,  1982)
mutations were taken into account. In this case. the average fitness <D is not, in general,
optimized. However, the state reaches a unique stable equil ibrium, and this implies that
there exists some (Ljapunov) function which increases monotonically. Actually, Jones
(1978) displayed a function of this type which is closely related to the average fitness.

Let us now return to the 'error-free' case, but assume that the fitness of phenotype d
is frequency dependent, i.e. a function of x. More precisely, let us assume that it is given
by the game theoretical payoff (Ar), as derived in the section on 'Evolutionary stable
states' above. The averase fitness then is

O ( x )  r . A x

according to equation (6). To be correct, (Ax), and x . Ax are not to be viewed as fitness
but as increase in fitness resulting from the conflict. The differential equation (27) given
below, however, is invariant to the addition of constants to the columns of A and hence
remains unchanged when we replace differential fitness by total fitness.

I d't'
-x, dl
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The equation of 'game dYnamics

i ,  :  x , { (Ax) ,  -  o (x ) } '  i  - -  1 , " ' ,n , (27)

restricted to the invariant set S, (the unit simplex) describes the evolution of the

distribution of phenotypes (Taylor & Jonker, 1978). In writ ing down a differential

equation for game dynamics we made two implicit assumptions: ( 1) complete mixing of

generations u"a 121 infinitely large population size. By infinitely large we mean in this

context so large that fluctuations can be neglected.

Equation (27) plays a central role for many models of selection in fields as diverse as

prebiotic evolution, population genetics and mathematical ecology (see Schuster &
-Sigmr,nd, 

1983). Its usefulness in sociobiology is a new facet of its widespread applic-

abil ity.
In general, the average fitness <D will not increase monotonically' Maxima of <D need

not coincide with fixed points of equation (27). Moreover, the dynamics of equation (27)

may admit l imit cycles, i.e. persistent oscil lations (examples are discussed in Hofbauer

et at.. 1980), and strange attrators, i.e. seemingly chaotic, highly irregular oscil lations

with extreme sensitivity to the choice of init ial conditions (see Hofbauer, 1981, Arneodo

et a:.,19801). Every game theoretical equil ibrium, i.e. every pointp on S, which satisfies

equation (10) is a fixed point of equation (27), and every ESS, furthermore, is asymp-

totically stable in the sense that every state which is sufficiently close by will converge

towards it (Taylor & Jonker, 1978; Hofbauer et al., 1979; Zeeman' 1980)'

Thus, small perturbations of evolutionarily stable states will be offset by the dynamics

of the evolution. The converse, however, is not true: there are asymptotically stable fixed

points of equation (27) which cannot be found as an ESS by the game theoretical

approach (Hofbauer et al., 1979 Zeeman' 1979)'

Some eramPles

In a special case, namely when rz', : a;r holds for all i and j' the average fitness o will

alwayi increase. Games whose payoff matrix satisfies this condition are called partner-

ship games: both players always share the outcome fairly.Indeed, it can easily be checked

that the rate of increase of O corresponds, again, to the variation of the fitness in the

population. It is, of course, no surprise that in partnership games, in contrast to the
'prisoners dilemma' and the l ike, an optimization principle holds.

The ESS of  the 'hawk dove'  game, p :  Pr€r  + ( l  -  p ' )e,  wi th Pr :  (E -  G) l

(E + C) as described by equation (15) is globally stable. In the extended'hawk dove'

game given by Expression (17) with the phenotype E corresponding to this ESS, there

exists a l ine F of f ixed points through er and p (see Fig' 2)'

All orbits converge to 4 remaining on the constant level curves of the function

QG) x. , r ,  P 'x ,  o ' .  (28)

There is an argument (Hofbauer, private communication) that random drift will cause

the state to approach e.,, leading to fixation of the phenotype E.Indeed the constant

level curves of-q ut" concave. If the state of the population has approached some fixed

point 4 on F, and if a random perturbation sends it away, then the differential equation

will lead it back to some point q' on -F. The probability I"haI q' is between 4 and e, is

slightly larger than I /2 (see Fig. 2). In this way, a sequence of small f luctuations wil l drive

the state towards ej. This, however, depends upon the assumption of f luctuations with

radial symmetry.
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Fig. 2. Strutegie.s e, uul e- torrespond to' luvk' urul dore' plrcntt l t 'pt ' . t ,  e. lo u phcruttrpe
plu.t ing u ni.r t ' t l  strute,s,. t ,  u( ' t ing tt .s 'hunk' nith prohuhil i l . t '  1t,  tutd us'dovc't i th prohubil i t .r
p . ( r h a r c  p l u n t l  p . u r e g i t ' e n h ) ' t l t e  E S S p  :  ( p t e t  +  p . e . ) o /  t h c ' h u w k  d o t e ' g u m e ) . T h e
linc lront el to p (onsists o/ li-red point.s. Rundont drilnnight leud the .\tute of thc population,

throu.qh flttctuutittns ulong tlte line. tlttser to e.

We reca l l  f rom equat ion  (17)  tha t  phenotype E.  i s  no t  evo lu t ionar i l y  s tab le .  A  morc

s t r i c t ins  examole  fo r  such a  s i tua t ion  is  ob ta incd  w i th

(see Fig.  3)
phenotypes

alone.  or  by E,  a lone.

(2e )

but  not  i f  both

€t €z

F ig .  - l  .  The gunte-d . tnun i tu l  equu l io t t  ( . :7 )  \ ' i th  nn l r i . r  g ivan  h t  (29)

il[n  
r0

A 
I'] ' :
L t  I

Ä, is  s table against  invasion by E,
invade s imul taneously.



Dvnamics of social hehuviour 269

€ 1

Fig.4. The game-th'namical equation (27) tt'ith mdtri't giv('n bt G0)

Another interesting example due to Zeeman (1981) is given by the matrix

A (30)

In this case, equation (27) admits two asymptotically stable equil ibria, namely

e r :  ( 1 , 0 , 0 )  a n d m :  ( 1 i 3 ,  l i 3 ,  1 / 3 ) ( s e e F i g . 4 ) . T h e f o r m e r p o i n t i s e a s i l y c h e c k e d t o

be an ESS. Hence the latter one, which l ies in the interior of S,, cannot be an ESS'

Permanence and uninvadlhilit.v in terms of dynamical svstems

As mentioned before, the orbits of a game-dynamical equation (27) need not converge

to an ESS. They may converge to an equil ibrium which is asymptotically stable but not

an evolut ionar i ly  s table st raregy in  the sense of  game theory.  or  they may set t le  to a

persistent oscil latory regime, or exhibit chaotic behaviour. In the two latter cases it can

be shown that the time averages of the phenotype frequencies converge to an equil ibrium

value (see Schuster  et  a1. ,1981a).
Of course. one cannot hope to measure such time averages directly, since they would

have to include a large number of generations. If the population is subdivided into many

such populations (or demes) which oscil late out of phase with each other. then the mean

value (at a given instant) of the phenotype frequencies of the different demes gives a

plausible estimate of their t ime-averages and hence of the quil ibrium.

The game dynamical approach suggests two eventualit ies:

(l) the existence of equil ibria which, although not'evolutionarily stable', are neverthe-

less relevant and persistent features of the model. either because they are asymptotically

stable and hence perturbation-proof, or because they correspond to the time averages of

regular or irregular oscil lations, and
(Zi ttre existenie of asymptotic regimes which, although not static. are nevertheless

robust features of the sYstem.

Io u -ol

l-3 0 s I
L- l  3  o l
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Whether such phenomena occur in situations of biological interest is sti l l  open. but the

possibil i ty shold be kePt in mind.

In any case it is not dilhcult to describe, within the framework of population dynamics'

the notions of permanence and uninvadabil ity in a non-static way which generalizes the

concepr of evolutionary stabil ity. Roughly speaking. the n phenotypes E' to E, are

pernlanent if there is some minimum level 4 > 0 such that, if init ially all phenotypes are

present. i.e. if .v,(0) > 0 for all i . then after some time their frequencies r'(t) wil l be larger

itrun q. These frequencies could oscil late or converge: the only relevant property, in this

context. is that random fluctuations which are small and occur rarely are not able to wipe

out some of the PhenotYPes.
The society can be termed unint,adahle, with respect to some lurther phenotypes d'*,

to E,_r, if i t is permanent and if all init ial conditions with sull iciently low frequencies

.r , , * , i0 j  to . t , , , * (0)  lead to the u l t imate vanishing of  these phenotypes '  Permanence and

uninvadabil ity, in this sense. mean protectedness against disturbance from within and

from without. We refer to Schuster and Sigmund (1984) for a more detailed discussion

of these notions and their applicabil ity to models of biological evolution.

D.rttuntit .s Ior as.l'mntcl rit' gamcs

Let us turn now to asymmetric contests. i.e. to games described by two payoffmatrices

A and B (see the section on 'Asymmetric contests' above). The same argument which led

to the game-dynamical equation (27) now yields the differential equation

- i i  :  x , [ ( A Y ) ,  -  x ' A l ] .  i  :  1 " " ' n '

t ,  :  l , [ ( B x ) ;  -  r ' B r ] .  i  :  1 . " ' . m ,

describing the evolution of the population states x(l) e S,' and y(t) e S,' (see Schuster

et  a l . ,1981b).
If one of the populations contains only one phenotype, equation (31) reduces to

equation (26) and hence to an optimization problem.

In the general case, selection leads usually to the fixation of one genotype in each

population. This reflects the fact that there exist no mixed ESS for asymmetric games.

In the case n : nlj however. it may also happen that the frequencies oscil late periodic-

ally. This is the case, for example. in the 'coyness philandering' game of Dawkins

(Schuster  & Sigmund,  l98 l ;  see a lso the sect ion on the 'Nash equi l ibr ia  and the coyness -

philandering game' above). Again, the time averages converge to the game-theoretic

equil ibrium. which is not evolutionarily stable.

D i:;crete game dYnumics

Difference equations are the appropriate tool to study infinite populations with distinct

generations. Thus. they apply to situations in which premise (l) for the validity of

equation (27) is not fulf i l led. Often, blending of generation is prevented by the action of

some internal or external pacemakers for the reproductive cycle. An obvious example for

the latter case is the periodicity of seasons.

The most straight-forward candidate for discrete-game dynamics of symmetric con-

tests is the equation

(32)

Here r' : (ri. . . . ..r j) denotes the state of the population in the next generation. It is

somewhat disturbing that this class of difference equations, in contrast to the differential

( 3 1 )
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equations discussed above, does not seem to fit ESS theory very well. Indeed, equation

(3)) behaves rather badly in several cases. We consider as an example the 'hypercycle'

g a m e w i t h n : 3 g i v e n b y

r,A :  
l0  

0
L l  0

Ir has rn : (l/3, l/3, l/3) as an ESS. The fixed point rr is not asymptotically stable,

however. This is surprising, since the continuous analogue of expression (32), namely

, i i  :  (x  .Ar)  r  x , [ (Ar) ,  -  x 'Ax]  (34)

has the same trajectories as the game-dynamical equation (27). For asymmetric games.

the difference equation

r i  :  ( r 'Ay) ' , t , (A.y) ' ,

t ;  :  (Y 'Bx)  '1 (Bx) ,

corresponds to the differential equation

i i  :  ( x 'Ay )  ' , t , [ (A -Y ) '  -  r 'AY ] .  
( 36 )

j ' i  :  ( - r  'Bx)  ' - r1[ (Bx) ,  -  l ' 'Bx] ,

which need no longer be equivalent to equation (3 1). In particular, the inner fixed point

(p, q) of the'coyness-philandering'game is now asymptotically stable (Hofbauer, see

Vuy"u.a Smith, 1982, appendix J). This may be viewed either as a misleading trick of

the dynamics-after all, (p. 4) is not an ESS-or as a remarkable vindication of

Dawkins early claim (1916) that the strategies do converge to (p, q)- Of course, there are

no empirical dates to decide which of the two equations (31) or (36) is more correct.

An interesting approach has been proposed by Eshel and Akin (1983). It consists in

assuming that the sign of ,t, (or. in the discrete case, of "t i - x,) is that of the difference

(Al ), - .r . AJ, without writ ing down an explicit equation l ike equation (31) or (36). The

dynamics, then, is only incompletely specified. but should reflect the basic traits of the

model; surely, the last word on difference equations, differential equations and ESS has

not been said yet.

So far, we have accepted the simplif ication that ' l ike begets l ike'. More sophisticated

discussions have to take account of the Mendelian mechanism of inheritance.

Serual models

Although the strategic and the genetic point of view are to some degree disjoint, it is

nevertheless of interest to check their compatibil i ty, even if this requests assumptions

which are quite hypothetical.
It is obvious that a genetic constraint can prevent the population from attaining an

ESS. In particular, an evolutionarily stable phenotype which is only realized by a

heterozygote genotype can never become fixed. Such a case of'overdominance' leads to

different predictions of game theory and population genetics. So far only one locus

models have been studied (Maynard Smith, l98l; Eshel, 1982; Hines, 1980; Bomze er a/..

1983). In this case it was always overdominance which led to divergences from ESS

results. In many-locus models one may expect other genetic constraints as well.

(33)jl

(35)
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Let us consider first the frequency independent case. We assume that there are k alleles
Ar to Ar in the gene pool. Their frequencies are denoted by p,to p*. The fitness of the
genotype A,A, is given by some constant w, which corresponds to the probabil ity of
survival from the zygote to the adult stage. Introducing the laws of Mendelian genetics
we obtain the classical selection equation of Fisher for the evolution of the gene

distribution

i i :  P , { t w P l ,  - O ( P ) } .  l : 1 . . . . . k .  ( 3 7 )

The differential equation is invariant on S*, W : (w,i) is the 'viability matrix' and
O(p) : p 'Wp represents the average fitness in a randomly mating population with the
gene d is t r ibut ion p :  (p, , . . . ,pJ.This equat ion is  a specia l  case of  equat ion (27) .
Precisely, it corresponds formally to the (game) dynamical version of a partnership game
since w, : nii. Accordingly, the average fitness O increases monotonically. Selection can
be visualized as optimization of the mean reproductive success. There is nevertheless an
important difference with respect to the nature of the optimization process in equation
(37) and in the asexual case described by equation (26). fn the latter case optimization
was global on S,.Here, selection does not lead in general to a global optimum of O.
Consider for example the particularly simple case r? : 2. The average fitness is of the
form

O (h ' , ,  -  2 l r ' ,1  *  r r , , r , )p]  f  2(wr,  -  t t , . r )p,  I  w.2.

In case lr ' > tl ' 'r2 and n,r, ) D'12, O has a minimum on the interval 0 < p, < 1 and
hence, there are two optima coinciding with the pure states pr : 0 and pr : 1. Depend-
ing on the init ial conditions either allele A, or allele A, wil l be selected.

We turn now to the frequency dependent case and consider equations which combine
the game theoretical model with popultion genetics. It wil l be appropriate to carry out
the analysis on two levels, the phenotypic and the genotypic one. We shall assume that
the population consists of r phenotypes E, to En and that each genotype A,A, corre-
sponds to one of those phenotypes, or possibly to a probabil ity distribution p(ry) :

Q,(D,...,p,(n), where prQ) is the frequency of A,A,-individuals of phenotype E*.
The converse, however, need not be true: as it happens in the case of dominance, two
or more genotypes may give rise to the same phenotype.

The payoff is given as before by the n x n-matrix A. Now we have to specify how its
is related to reproductive success. This is a rather delicate point which cannot be decided
without a closer inspection of the situation to be modelled. Two alternative simple cases
are:

(l) The payoffis independent of sex, and the number of offspring of a given couple
is proportional to the product of parental payoffs. This situation corresponds to fights
which are not sex-specific, l ike contests for food. Maynard Smith (1981) considered such
a model.

(2) The expression of the genotype is sex-specific although the relevant genes are
carried by both sexes. The number of offspring of a given couple again is proportional
to contributions from both parents. The parent who carries the silent genes now contri-
butes a constant factor. Such a model is appropriate for fights within the male popu-
lation, e.g. contests for females, breeding grounds or other ressources. A detailed
discussion of this approach can be found in Hofbauer et al. (1982).

In any case one is led to fecundity models. To set up the corresponding (discrete or
continuous) equations for the time evolution of genotype or phenotype frequencies is
immediate, but the analysis of the resulting systems is in general difficult.
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l A o l

?

Fig. 5 A tliagram dest,rihing a typit:al evolution of genott'pes AA. Aa and aa(correspond-

irigtothecornerse,,e.,er)i l ' t tr i irprortur't i lesr.r( '( 'err dependsondffirentiullbcunditv.The
,t:it, u./ th, pnpulatioti tont,ergn, ,,;r.i. quitklt'to u'Hurdt' llefuberg' parahola, and evoltes

thr1ugh friqiencv-ctependeni seletr'irri utn,ig the parahola tov'rtrd.s an equitibrium P [fbr
rletuils. see Hofbauer et al. (1982)l

In some cases. however. the investigation is simplif ied by the fact that a Hardy-

Weinberg equi l ibr ium gets establ ished:  in  case ( l ) i f  the model  is  d iscrete (nonover lap-

ping generations) and in case (2) if i t is continuous (generations blending into each other.

,.. äg 5). Thus rhe frequency of genotype A,A, is given by the product of the frequen-

cies oithe corresponding genes A, and A,. (More generally. it often happens that the

mating system-random or assortative-leai1s to relations between the genotype fre-

qu..,. i.. j . This allows to reduce the problem to the time evolution of gene frequencies'

The corresponding equations are similar to equation (37). except that the l1'/r are now

polynomials in p, to p^. The average fitness wil l not increase in general'
- 

An analysis of two-strategy games (see Maynard Smith. l98l; Hofbauet et al., 1982

Eshel .  1982) shows,  essent ia l ly .  that  i f  the genet ic  constra ints  a l low the ESS to be real ized

at all. then it wil l asymptotically be reached indeed. If, for example. one of the alleles is

dominant, then the outcome predicted by the simple game theoretic considerations of the

section on 'The'hawk dove' game and mixed strategies' above wil l also be obtained by

the genet ic  model .  ( I t  is  worth ment ioning in  th is  context  that  Bürger .  1983.  us ing a

model of Sheppard. 1965, has shown that dominance may be established. if the selection

pressue is sufficiently high, by the action of a secondary gene locus. Thus the genetic

mechanism itself may evolve towards a suppression of the genotypic obstacles to

phenotypic adaptation).
One may similarly investigate genetic models lor asymmetric contests. In Bomze e'l a/.

(19S3); the'coyness philandering' model is discussed at some length. We briefly sketch

it. as an i l lustration. Let us assume that two alleles A, and Ar determine the male

behaviour, and that P,,, P, and Pr are the probabil ites that the male genotypes A'A'.

A,A, and A,A", respectively, are faithful. Then. if p denotes the frequency of A'.

6  :  p 2 { P o *  P . - 2 P t ) + 2 p ( P , -  P ) +  P )
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is the frequency of faithful males within the male population. Similarly, let the alleles B'
and B, determine female behaviour and let Qo, Q, and Q, be the probabilities that the
female genotypes Br Br, Br B, and BrB,, respectively. are fast. Then, if 4 is the frequency
o f  8 , ,

P : q2(Qo + Q. - 2Q,) + 2q(Q, - Q) + 2,
is the frequency of fast females, It is easy, now, to compute the 'payoffs' a) and a2 for
faithful and philandering males, respectively, as function of B and the 'payoffs' a, and
a, for fast and coy females, respectively, as function of ä. If one assumes that the payoff
corresponds to ferti l i ty, one can check that Hardy Weinberg relations hold. Simple
computations lead to the differential equations

i Lp(l - p)lp(Po * P, - 2P,) + P, - Prl(a, - ar)

s :  Lq(r  -  q) lq(Qo *  Q,  -  2Q) + Q,  -  Q. l (a ,  -  a , ) .
The strategic component-i.e. the terms depending on the payoff matrices-reduce to
the factors at - az and a, - ar. This facilitates the analysis of the gene frequencies. We
shall only describe the interesting case of 'overdominance'. If P0 - P, and P. - P,have
the same sign, as well as Qo - Q, and Q, - Q,, then the orbit in the 'state-space' (p, q)
will be periodic (see Fig. 6). There are four possible oscillatory regimes, depending on
init ial conditons, but the time averages of the strategies wil l quickly converge to the
equil ibrium values obtained in Equation (25) by simple game theoretic considerations.
This may well be a typical situation: complicated features on the 'microscopic' level of
gene frequencies yield a simple result on the 'macroscopic' level of phenotypes. (For a
detailed discussion see also Bomze et al., 1983). Asymmetric conflicts between two
different species can also be modelled in similar ways. The first paper in this direction,
which apparently found only little attention in the literature, seems to be due to

o o . s r

Fig. 6. A possible dynamicsfor the'coyns.s5*phfionderirg'game. The genefrequences p and
q governing male and.fbmale behaviour oscillate endlesslv, but the corresponding payofls
converge, in the time average, to the game theoretic equilibrium (25) (see Bomze et al.,

1983, t'or details)

o o
O o
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Stewart (1971) and investigates dimorphism in two coevolving populations of predators

and prey. His 'game' between cats which can stalk or watch and mice which can run or

freeze. is similar in structure to the'coyness-philandering'game. In its emphasis on game

theoretic aspects it is a remarkable forerunner of ESS theory: it also offers an analysis

of dynamical models based on sexual and asexual genetics, which fully agrees with the

Nash equil ibrium solution obtained from strategic considerations alone.

Results of this type strongly suggest that one may confidently stick to the phenotypic

level. as long as there is no solid candidate for the underlying genotypic mechanism.

Concluding remarks

The considerations concerning the role of intrinsic constraints on the evolutionary

optimization process can be subsumed with the help of Fig. 7. The mean reproductive

success in populations of independently and asexually reproducing individuals is opti-

mized though evolution. This wil l be modified by two mechanisms:
(a) The rules of Mendelian genetics restrict the dynamics of selection onto the Hardy -

Weinberg surface or onto a'near Hardy Weinberg'submanifold (see Ewens, 1979).

Other distributions of genotypes are evolutionarily unstable for genetic reasons.

(b) Direct interactions of replicating elements lead to constraints on the optimization

process. The result is a displacement of the evolutionarily stable distribution from that

which is characterized by the maximal reproductive success.
In populations in which both constraints are in operation, the genetic and the strategic

one, we observe a superposition of both effects. In the sexual models considered so far,

many cases (e.g. dominance) lead to situations which are indistinguishable from the

corresponding asexual ones. This justif ies a posteriori the various static or dynamic

asexual models.
Of course the situations analysed so far are characterized by oversimplification. One

could introduce further complications without end, but often without gaining lurther

insights.
Basically, the game dynamical models incorporate features of highly developed fields,

namely population genetics and game theory. A further emphasis on genetic aspects
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Fig. 7. Constraints on optimization. The genetic mechanism of se.rual reproduction leads to
relations between gene and genotype .frequencies (e.g. the Hardy-Weinberg equation). This
reduces the state space of genot-Vpe .frequencies to a subset of lower dimension. FrequencT'

dependent Jitness parameters preclude optimization through strategic constraints
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leads to intricate frequency dependent population genetics. and a stressing of game

theoretic aspects to the subtle constructions of extensive games and subgames (see Selten.

1983). In its present state, game dynamics is a compromise between these two directions,

trading elaborate sophistication in one or the other direction for broadranged compati-

bil i ty between both aspects. It aims at acquiring an intuit ive insight into biological

conflicts. without too many technical details.
It seems very diff icult to derive from field data valid estimates for the parameters

involved in the payoffmatrix. Some remarkable results have been obtained, however [we
refer  to  Maynard Smith (1982) and Riechert  and Hammerste in (1983) for  surveysl .

Moreover. it has been shown in several cases that the dynamics consist of a few types

only. which are valid for wide ranges of the parameters. Thus, diverse sexual and asexual

models of variations of the 'hawk-dove' confl ict lead to a very small number of possible

outcomes (see Schuster et at., 1981a. ä). It seems possible, in such cases, to relate (at least

qrnlitatively) empirical data with some of the few theoretically possible cases.

Finally, we mention that the assumption of genetical determination of behaviour can

be relaxed. In particular. the effect of learning can be incorporated into the game

theoretical models [for example. see Harley (1981) and the notion of 'developmentally

stable strategy'DSS by Dawkins (1980)1. It seems possible. therefore, that the dynamical

approach sketched in this paper can be adapted to the modell ing of complex behaviour

in highly developed social structures (for example. see Wilson. 1975. Masters. 1983).
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