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Towards a dynamics of social behaviour:
Strategic and genetic models for the evolution
of animal conflicts
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Persistence of behavioural traits in animal societies rather than optimality of reproduc-
tive success is described in terms of the game-theoretic notion of evolutionarily stable
strategy. Game dynamics provides a suitable framework to accomodate for the dynamic
aspects of permanence and uninvadability, to model the evolution of phenotypes with
frequency dependent fitness and to relate the strategic models of sociobiology to the
mechanisms of inheritance in population genetics.

Introduction

Classical ethology provided numerous investigations of animal populations exhibiting
social phenomena based on ‘altruistic’ behaviour. In this non-antropomorphic context,
an act performed by an amimal is called altruistic if it increases the fitness of some other
animul at the cost of its own. Such behaviour was often explained by notions such as
‘group selection’ and ‘benefit of the species’ (for example, see Wynne-Edwards, 1962).
But while there is no logical inconsistency in viewing groups or species as units of
selection, it seems well established that Darwinian evolution acts much more commonly
through selection of the level of individual organisms or eventually genes. The explan-
ation of many altruistic traits in terms of individual selection has, therefore, to be viewed
as a major success of sociobiology.

Roughly speaking, there are three approaches which proved to be fruitful. They may
be designated as genetic, economic and strategic, and attributed to Hamilton (1964),
Trivers (1972) and Maynard Smith (1974), respectively, although the principles go back
to Haldane and Fisher, and arguably to Darwin himself.

(1) The genetic explanation is based on the notion of kin selection. A gene complex
programming altruistic acts which benefit relatives may well spread, since it occurs, with
a certain probability, within the relatives whose reproductive success is increased.

(2) The economic explanation relies on the notion of reciprocal altruism. If the
altruistic act is likely to be returned at some later occasion, then the behaviour may
become established, especially so if there is individual recognition between members of
the population preventing ‘cheaters’.
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(3) The strategic explanation, finally, uses the panoply of game theory to show how
the fitness of an individual may depend on what the other ones are doing. An act which
in certain situations would be called altruistic need not, in other situations, decrease the
reproductive success of the organism performing it.

In this paper, we shall deal exclusively with the third approach stressing its dynamical
aspects. It must, however, be stated at the outset that the game-dynamic approach
described here constitutes only a fraction of the game-theoretical analysis of animal
behaviour. Our discussion is accordingly biased. The theory of games covers many
applications in biological evolution. Some of them do not easily fit into the mould of
ordinary differential equations. For a balanced survey of these topics. we may refer to
a recent book by Maynard Smith (1982).

Our paper consists of two parts. The first one discusses, within the static context of
game theory, the crucial notion of evolutionarily stable strategy (ESS), which centres on
aspects of permanence rather than optimality. The second part uses game dynamics to
obtain broader notions of permanence, to model the evolution of behavioural strategies
and to relate them to genetic mechanisms.

Before we start our discussion of strategic models in sociobiology we have to comment
on the evolutionary aspects of this approach. The actual mathematical models used in
sociobiology as well as those of population genetics discuss the spreading of mutant
genes in populations. The causes of mutations are considered as external factors and not
as part of the system under consideratiom. A proper description of the evolutionary
process, however, is complete only if it includes the mechanism of mutant formation. At
present, such complete theories of evolution exist for polynucleotides in laboratory
systems (for example, see Eigen & Schuster, 1979; Biebricher er al. 1982; Kiippers, 1983)
and eventually for simple viruses (Weissmann, 1974). The replication of bacteria follows
a much more complicated mechanism. Already ten enzymes or more are required for
DNA copying. Although not all the mechanistic details of local mutations and DNA
rearrangements in bacteria are known yet, the basic features of bacterial evolution are
established in principle and we can expect a complete molecular theory to become
available in the not too distant future.

In case of higher, multicellular organisms we encounter new sources of complications
which obscure the relation between mutations and their manifestation in phenotypic
properties. The major problem concerns the unfolding of the genotype: higher organisms
obtain final form and shape through morphogenesis. This is a complicated dynamical
process which is not completely understood at present and to which the genes contribute
markers and other regulatory signals for intercellular communication apart from the
ordinary duties in cell metabolism and cell division. Any complete theory of evolution
of higher organisms hence has to deal explicitely with the influence of mutations on
morphogenesis, which is far outside the bounds of present possibilities. Behavioural
traits are exceedingly complex phenotypic features which apparently cannot be traced
down to single genes. The notion of ‘mutant genes’ leading to changes in behaviour has
to be understood as a metaphor. Mutations actually operate within complicated net-
works of gene actions which are converted into the properties of the phenotype by a
highly complex transformation during morphogenesis.

Evolutionarily stable strategies

The term ‘evolutionarily stable strategy’ was introduced by Maynard Smith and Price
(1973) to describe certain genetically determined traits of animal behaviour which are
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uninvadable by mutants. The basic idea was to describe such evolutionary stability in
terms of the mathematic framework of game theory. This method was subsequently used
to analyse a wide variety of biological conflicts. both within and between species, and can
be rightly considered to be a cornerstone of theoretical biology.

Game theory and biology

Ever since von Neumann and Morgenstern’s (1953) classical treatise first published in
1944. the methods of game theory have been applied to the modelling of all kinds of
conflicts in human societies. The applications to conflicts within animals and plants,
however. date back to the last ten years. There were a few forerunners using game
theoretic notions in biology. but in a context quite different from the one described here.
With the benefit of hindsight it seems astonishing that biological *games’ were neglected
for so long in favour of political, military or economic ones. Indeed, there are at least
two reasons which make human conflicts more difficult to analyze than their ‘natural’
counterparts in biology:
(1) The payoff in human systems is often doubtful. since it is hard to evaluate money,
social prestige, health and other factors on a single utility scale. In the evolutionarily
weighted contests in biology, Darwinian fitness is the ony relevant quantity. Although
this notion presents considerable difficulties for theoretical analysis and empirical
measurement it provides in principle, at least, a scalar estimate of reproductive success.
(2) The ‘rationality axiom’ frequently sets empirical and theoretical game theorists at
odds. The investigation of animal behaviour is unhindered by such an assumption.
Biological conflicts tend to be fairly straightforward, compared with all but the simplest
human conflicts of any real interest. The possibilities for conspiracy, fraud. lunacy, etc.
are greatly reduced

It is interesting to note, however, that the notion of evolutionarily stable strategy in
biological contests is quite close to that of Nash equilibrium strategy for noncooperative
games between rational players (cf. the section on ‘Characterizations of evolutionary
stable strategies (ESS)’ below). In Parker & Hammerstein (1984), this is interpreted as
"quasi-rationality’ of selection. In our view. the convergence of the two concepts is rather
due to the fact that both ‘blind selection’” and ‘rational decision’ lead to adaptative
solutions. After all, rational behaviour itself is a product of selection.

Strategies and phenotypes

The shift in the application of game theory from human to animal conflicts entails a shift
in the meaning of the two basic notions of ‘strategy’ and ‘payoff’. ‘Payoff’, as we have
said. now corresponds to Darwinian fitness, i.e. the number of offspring or—in subtler
situations—the number of copies of genes transmitted to the next generation. [For an
elaborate analysis of the notion of fitness we refer to Dawkins (1982).] ‘Strategy’. in the
context of chess. or war games, suggests a nicely calculated sequence of moves. This
aspect of plotting and scheming was replaced by the notion of an innate trait of fighting
behaviour (Maynard Smith & Price, 1973). It was soon realized that this viewpoint was
useful, not only in the analysis of aggressive encounters, but in the modelling of any clash
of interests: in the parent-offspring conflict, for example, concerning the length of the
weaning period. or in the male-female conflict about the respective share in parental
investment (Trivers. 1972). A strategy, thus, became a genetically programmed way
of behaviour in pairwise contests. But such contests form only a small fraction of
‘subgames’ of the struggle for life. Differences in resource allocation, size of the litter,
dispersal rate etc., affect the fitness of an individual in quite another way. In such cases,
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the success is determined, not through playing against a particular opponent, or a series
of opponents, but through ‘playing the ficld’ (see Maynard Smith, 1982).

A strategy, then, is any behavioral phenotype, or may be any phenotype at all. Indeed,
game theory has been successfully applied to desert shrubs in order to discuss the relative
merits of catching rain water by spreading hoizontal roots near the surface, or of taping
ground water by sending a vertical root deep below: the success obviously depends on
what the neighbours are doing (see Riechert & Hammerstein, 1983). From there it is only
a small step to the protective colouring of moths or the familiar features of Mendelian
peas. Thus, any phenotype may be viewed as a ‘strategy’, as long as we wish to analyze
it by game theoretical methods or, to put it less subjectively, as long as its fitness is
frequency dependent, (which means that it depends on the distribution of phenotypes in
the population considered).

On the other hand not every strategy is a phenotype. In particular, a ‘mixed strategy’
—consisting in playing different strategies with preassigned probabilities—need not be
realized as phenotype. In order to avoid confusion, we shall therefore keep the distinc-
tion between phenotype and strategy, even if this implies some modifications in the
standard terminology of ESS theory.

Optimum phenotypes and genetic constraints
It is tempting. and often useful, to view selection as an optimization process. In element-
ary situations, as for example with asexually and independently replicating units, this is
indeed the case (see the section on ‘Asexual inheritance: optimization and the game-
dynamical equation’ below).

The term ‘optimum’, of course, has meaning only with respect to a given environment.
There 1s no reason to expect that under continuously changing conditions, selection
would lead to an optimum response to the instantaneous situation. Furthermore, since
the environment includes all other members of the population, adaptation to an environ-
ment will change this environment. It is easy to exhibit corresponding population
genetical models where the frequency dependent fitness will not, on the average, increase.
This is actually the main theme of this paper.

But even if each phenotype had constant fitness, one could not expect, in general, that
the phenotype with highest fitness would prevail. In particular, if this optimum
phenotype corresponds to a heterozygous genotype, as may easily be the case, then at
least one half of its offspring will be suboptimum. It is true that according to Fisher’s
fundamental theorem, the average fitness will never decrease, and even increase,
provided the composition of the gene pool changes at all. However, the maximum
average fitness of the population may be much lower than the fitness of the optimum
phenotype. Furthermore, a population may be ‘trapped’ in a state where a local, but not
global maximum is attained. Moreover, the fundamental theorem rests upon the
assumption that fitness corresponds to the probability of survival from zygote to adult
stage and that this probability depends on a single genetic locus. For many-loci models
involving recombination, and for fecundity models where reproductive success is a
function of the mating pair, the average fitness will not increase, in general (for example,
see Ewens, 1979).

Selfinterest and optimization
Apart from genetic constraints, there may also be strategic obstacles to an optimization
of the ‘good of the species’, i.e. of the mean fitness of a population. Selection acts through
differential reproductive success of individuals, which may be quite opposed to the
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welfare of the group. Even in human games allowing forethought and deliberation, the
self-interest of two players may in some cases lead without failure to an outcome which
is disastrous for both.

This is best shown by the well known paradigm of the ‘prisoners’ dilemma’. Two
prisoners kept in separate cells are asked to confess a joint crime. If both confess, both
will remain in jail for seven years. If only one confesses, he will instantly be freed, while
the other one gets sentenced to ten years. If none of them confesses, both will be detained
for one year. This latter solution is optimum but it will not be obtained. Each prisoner,
indeed, will confess: it is the better option, no matter what the other one is going to
decide. As a result, both will have to spend seven years in jail. [For a recent application
of the prisoners’ dilemma to the problem of cooperative behaviour in biology see
Axelrod and Hamilton (1981).]

The prisoners’ dilemma is a game between two opponents. Similar results hold for
games where an individual is ‘playing the field’. The best known example, in this respect,
is Harding’s ‘tragedy of the commons’, where the common meadow is ruined by
overexploitation, each villager trying to increase his payoff. [We refer to Masters (1982)
who bases his sociobiological discussion of political institutions on the ‘prisoners’
dilemma’ and the ‘tragedy of the commons’.]

Evolutionarily stable phenotypes

If adaption leads to an equilibrium at all, it will be characterized by stability rather than
optimality. An evolutionarily stable phenotype, in Maynard Smith’s definition, is a
phenotype with the property that if all members of the population share it, no mutant
phenotype could invade the population under the influence of natural selection.

One possible way of formalizing this is the following one (Maynard Smith, 1982). Let
us denote by W(I, J) the fitness of an individual I-phenotype in a population of
J-phenotypes and by p/ + (1 — p)J the mixed population where p is the frequency of
I-phenotypes and 1 — p that of J-phenotypes. A population of I-phenotypes will be
evolutionarily stable if, whenever a small amount of deviant J-phenotypes is introduced,
the old phenotype I fares better than the newcomers J. This means that for all pheno-
types J # I,

W(J, e + (1 — o)) < W, eJ + (1 — o)), (1)

for all ¢ > 0 which are sufficiently small.

It must be mentioned that this definition has to be modified if the population is small.
In such a case, a deviant individual would change the composition of the population by
a notable amount, and not just by some small ¢. This situation has been analysed by
Riley (1979). In our context, we shall always assume large population sizes, thus avoiding
this problem and, moreover, the effects of sampling errors.

By letting ¢ — 0 we obtain from inequality (1) that

w(J, ) < W(I, I), 2

for all J, which means that no individual fares better against a population of I-pheno-
types, than the I-phenotype itself. The converse is not true in general: (2) does not imply

().

Evolutionarily stable states

Now we restrict our attention to those biological games which satisfy the following two
assumptions:
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(1) They consist in one or repeated pairwise contests, rather than in ‘playing the field’.
This implies that the payoff W is an affine function of its second variable, 1.e. that for
any three phenotypes E, [ and J and any p € (0, 1):

W(E, pJ + (1 — p)I) = pW(E, J) + (I — p)W(E. I). (3)

Indeed the probability that an individual E-phenotype matches up against a J-
phenotype. in the mixed population pJ + (1 — p)/, isjust p: and its payoft, in this case,
is W(E, J). Here, we have tacitly assumed random matching of opponents. In some
situations—e.g. games against relatives—this will be not valid. [For a discussion of this
case we refer to Hines and Maynard Smith (1979).]

(2) There are only finitely many phenotypes E,, ..., E,. This assumption may look
innocuous. But there are situations where it is quite misleading, even as an approxi-
mation. As an example, we mention the so called *war of attrition’, a contest where the
prize goes to the player who invests more time—or energy—than his opponent. The set
of strategies consists of a continuum of waiting times and its discretization may be as
ill-advised as the replacement, say, of the bell shaped probability density of body sizes
by a finite subdivision.

The loss of generality entailed by these two assumptions is compensated in a way by
an increase in mathematical convenience. We may now describe the game in normal
form, with the help of a payoff matrix.

By x; we denote the frequency of the phenotype E; in the population. The point
x = (x,...,x,)describes the state of the population. Since the x;s are frequencies, x lies
on the unit simplex S, = {x = (x,...,x,):x; = 0, Zx; = 1}. By g, we denote the
average payoff, i.e. the expected change in fitness, for an E-individual matched against
an E-opponent. The n x n-matrix A = (a;) is called the payoff matrix. The average
payoff for the phenotypes E; is

(Ax)i = allxl + + aznxn = aikxk' (4)

={>~]

If x and y describe two populations, then the average payoff for a y-member opposed
to an x-member is

Vil Xis (5)

y-Ax = y(Ax), + ... + y,(Ax), = ZZ

and in particular, the average payoff for contests within the x-population is

O(x) = x*Ax = x(Ax), + ... x,(Ax), = Z Z Xty X, (6)
ko
There is an alternative interpretation of distributions of strategies. In game theory. E|
to E, are viewed as ‘pure strategies’. They correspond to the corners e, of the unit simplex
S,. By e; we denote the ith unit vector: all components are 0 except the ith one which is
1. We may interpret now a point x € S, as a ‘mixed strategy’ which consists in playing
E, with probability x, (i = 1,...,#n). The expression y - Ax is the payoff of a p-strategist
playing against an x-strategist. In the sequel, we shall make use of both interpretations.
Points of §, will correspond, according to the context, either to strategies or to states of
the population.
Under our assumptions, the phenotype E, is evolutionarily stable iff

e Afee, + (I — ¢g)e) < e;- Alee, + (1 — gle)), N

forall j # iand all ¢ > 0 which are sufficiently small.
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One may extend this definition, just as one extends the notion of a pure strategy to that
of a mixed one. A strategy (or state) p € S, is evolutionarily stable (or an ESYS) iff for all
ye S, withy # p,

yoAy + (1 —ep) < p-Aley + (1 — )p), ®)

for all ¢ > 0 which are sufficiently small, i.c smaller than some appropriate o).

Characterizations of evolutionarily stable strategies (ESS)
Equation (8) may be written as

(1 —e)p-Ap — y-Ap) + e(p-Ay — y-Ay) > 0. )

This implies that p is an ESS iff the following two conditions are satisfied:
(1) equilibrium condition

y-Ap < p-Ap forall yeS,; (10)
(2) stability condition
if yes,, y#p and Yy Ap = p-Ap, then y-Ay < p-Ay.
(I

This is the original definition from Maynard Smith (1974). The equilibrium condition
states that the strategy p is a best reply against itself. It corresponds to the notion of Nash
equilibrium familiar to game theorists. In Dawkin’s (1982) terms ‘an ESS ... can be
crudely encapsulated as a strategy that is successful when competing with copies of itself”.
This property alone, however, does not guarantee uninvadability, since it permits that
another strategy y is an alternative best reply to p. In facts, if p is ‘properly mixed’, i.e.
if p, > 0 for all i, then any y € S, is a best reply. The stability condition states that in
such a case, p fares better, against y, than y against itself. The same argument leads to
the following characterization: a phenotype E, is evolutionarily stable iff
(1) equilibrium condition

a, > a, forall k; (12)
(2) stability condition
if a, = a, for k # i then a; > au. (13)

A third equivalent definition of ESS, probably the most useful for computations, is the
following one (Hofbauer et al., 1979): p € S, is an ESS iff

pAx > x-Ax (14)

for all x # p in some neighbourhood U of p in S,.

There are examples of games admitting no ESS, or several ones. If there is an ESS in
the interior of S,, however, then it is the only ESS. Indeed, in such a case expression (14)
must be valid for all x # p.

The ‘hawk—dove’ game and mixed strategies
Let us now consider the famous ‘hawk—dove’ game, a model devised by Maynard Smith
and Price (1973) to explain the prevalence of ritual fighting in innerspecific conflicts. We
do not attempt to repeat here the considerable amount of work done on this model
(Maynard Smith, 1972; 1974; 1982; Zeeman, 1979; Schuster et al., 1981), but describe it
in its most rudimentary form in order to elaborate the distinction between mixed
strategies and mixed populations.
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We shall assume that there are two phenotypes. E, (‘hawk’) escalates until flight of the
opponent or injury decides the outcome. E, (‘dove’) is only prepared to fight in a ritual
way, without risking or inflicting injury. The prize of the contest corresponds to a gain
G in fitness, while an injury reduces fitness by | C|*. The effort expanded in a ritual contest
costs |E|. A natural and self-explantory order relation among these parameters is

G>02E>C.

Then a,, is (G + C)/2—each ‘hawk’ has the same chance to win or to get injured; a,, is
(G + E)/2 since only one of the ‘doves’ can win, ay, is G and a,, is 0—the ‘dove’ retreats
when it meets a ‘hawk’. Furthermore we restrict our discussion to the case |C| > G. Thus

G+ C
> G
A = .
G+ E
0 2

Clearly, no phenotype is evolutionarily stable. A population of ‘doves’ can be invaded
by ‘hawks’ and vice versa.

The unique ESS of the population p = (p,, p,) is a mixture of p, ‘hawks’ and
p, = 1 — p, ‘doves’, with

E—-G
= . 15
P E+ C (15)
This follows from the fact that
(p—x)*Ax = Y(G — E + (E+ O)x,) (16)

is positive for all x = (x,, x,) with x, # p,. Note that this state is not optimal. The
average fitness

x*Ax = WG + E — 2Ex, +;E + O)x))

1s largest for x;, = E/(C + FE). A numerical example is shown in Fig. 1.

What happens if we introduce a third phenotype E;, which plays the mixed strategy
corresponding to the ESS: pe, + p,e,? (For simplicity, we set £ = 0). The payoff
matrix now is

G+ C GG + O)]
G - @7
2 2C

G GG + O)

A = sl AN
0 > °C (17)

GG + C) GIC - G) GG+ C)

. 2C 2C 20|

Conditions (12) and (13) show that E; is evolutionarily stable and cannot be
replaced by neither E, nor E, phenotype. The corresponding state e;, however, is not an
ESS, and neither is p,e; + p,e,, in this extended game: condition (11) is not satisfied

* We measure all parameters on the same value scale. Hence, gains like G are positive and losses like C or
F negative quantities.
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Average pay—off (@)

Fig. 1. The ‘hawk—dove’ game G = 4, C = 14, E = 1. @, and a, are the [frequency
dependent payoffs for ‘hawks’ and ‘doves’. while ® is the average payoff for the total
population consisting of x, ‘hawks' and x, = 1 — x| ‘doves’

(cf. also the section ‘Some examples’). Indeed, e, is not protected against the mixture and
vice versa.

We may consider other ‘mixed’ phenotypes corresponding to mixed strategies
x e, + x,e, which are not the ESS in the hawk -dove game (i.e. x, # p,). Such pheno-
types are not evolutionarily stable: the population could be invaded, either by ‘hawks’,
or by ‘doves’. Furthermore, such‘mixed’ strategies could not invade E. All this is easy
to check. ‘

Continuing along these lines, one could analyze populations with several phenotypes
corresponding to different mixtures of the ‘hawk’ and the ‘dove’ strategies. There is no
reason, however, to stop at a finite number of such phenotypes. In the most natural set
up, all possible mixed strategies would correspond to phenotypes competing with each
other, but we prefer to stick to a finite set of phenotypes here and shall not pursue this
question any further, refering instead, to Zeeman, (1981) and Akin, (1983).

How plausible, anyway, are phenotypes corresponding to mixed strategies? This is a
delicate problem to which Maynard Smith (1982) devotes several chapters. His con-
clusion is roughly that such phenotypes are most important when ‘playing the field’, e.g.
in the ‘sex ratio’ game, but probably of rather minor importance in the pairwise contests
we are considering here.

On the other hand, does one find mixed states of the population which are evolution-
arily stable? Again, this is not an easy matter. Mixed states are of course extremely
common, but we are looking for strategic equilibria, consisting of several phenotypes for
which the frequency dependent fitness values are equal. This is obviously difficult to
verify. The safest empirical evidence, at present, seems to be found in Hamilton’s, (1979)
investigation of figwasps.



264 P. Schuster & K. Sigmund

Asvmmetric contests

So far we have considered contests which are symmetric. in the sense that both
opponents play the same role. Many conflicts are asymmetric however: within the same
species we have conflicts between males and females, between young and old. between
owners and intruders of a habitat. and so on. The methods apply equally well to
interspecific conflicts, e.g. between predators and preys. If we assume again that the
contests are pairwise and the numbers of phenotypes finite. we are led to bimatrix games.

Thus let E£,..... E, denote the phenotypes of population X, and F,..... F, those of
population Y. By x, we denote the frequency of E,. and by v, that of F;. Hence, xisa point
in S, and yin S,,. If an E-individual is matched against an F-individual, the payoff will
be a; for the former and b, for the latter. Thus the game is described by two payoff
matrices A = (a,) and B = (b,). If the population X is in the state x and the population
Y in the state p. then x- Ay and y - Bx are the respective average payofls. If the
phenotype E is stable in contests against the population y, then it must do as well as all
competing phenotypes. Thus ¢,- Ay = e, - Ay for k = 1,...,n. But what if equaltity
holds? There is nothing. then. to prevent E, from invading. Thus, in contrast to the
symmetric case. we cannot allow several “best replys’. This leads to the following
definition. A pair of phenotypes (E,, F,) is said to be evolutionarily stable iff

a;

< a, for k #1i (18)

!
and
b < b, for kK #j (19)

Similarly, a pair of states (or strategies) (p. ) with p € S, and ¢ € §,,, is said to be
evolutionarlily stable if

prAg > x-Aq forall xeS,., x #p (20)
and
q-Bp >y Bp forall yeS,, ¥y #4q (21)

[t is easy to see that such a pair ( p, g) must consist of pure strategies. Thus, in contrast
to the symmetric case. a mixed strategy can never be evolutionarily stable. This has been
shown for a considerably wider class of asymmetric games by Selten (1980). It also
reflects on symmetric contests since it is often quite possible that a small, seemingly
irrelevant difference can break the symmetry between the opponents and transform the
originally symmetric contest into an asymmetric one (Maynard Smith, 1976; Hammer-
stein, 1979). This could explain why mixed strategies are rather rare in pairwise contests.
On the other hand, if the population X interacts, not only with the other population Y,
but also with itself, then mixed ESSs become possible again (Taylor, 1979; Schuster
et al., 1981a, b)

Nash equilibria and the “coyness—philandering’ game
A pair of strategies (p, ) (with p € S,, ¢ € S,)) is called a Nash equilibrium pair if
P Agq = x* Agq, Vx e S,

(22)
q-Bp = y-Bp. vy esS,.

Nash equilibria play an import role in classical game theory, since for rational players
there is no reason to depart from the strategies p and ¢, as long as their opponent sticks
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to it. We shall presently see, however, that in biological games. Nash equilibria are not
invasion proof.

Indeed, let us consider another famous example. the ‘coyness—philandering’ game by
Dawkins (1976). Let us suppose that the successful raising of an offspring increases the
fitness of both parents by G. The parental investment |C| will be entirely borne by the
female if the male deserts. Otherwise, it is shared equally. The female strategy to counter
male desertion is ‘coyness’, i.e. the insistence upon a long engagement period, which costs
|E] to both partners. Again we measure all parameters on the same value scale and have
G > 0: C. E < 0. There are two phenotypes in the male population X, namely E,
(‘philandering’) and E, (‘faithful’) and two phenotypes in the female population Y,
namely F, (coy’) and F, (‘fast’). The payoff matrices are

C
0 G 0 G+-2—+E
A = C cl B = (24)
Gy T E Gy G+ C G+%

No pair of phenotypes is evolutionarily stable, and no state of the population is an ESS
(we have only to check the pure states). There exists a unique pair of mixed strategies
p and ¢ in Nash equilibrium, given by

E ~ C

P= 1T 49 TXE+ Gy (25)

E+ C+ G
(with p = (P, P2) €S2 § =341, 42) € S,) provided |E| < G < |C| < 2(G + E).
This equilibrium is not stable, however. If a fluctuation decreases, say, the amount of
philandering males, then the payoff for the males will not change: each phenotype still
has the same payoff, which depends only on the female population. One cannot expect
the frequency of philanderers to return to p,. The payoff for the female population will
actually increase: but ‘fast’ females gain more than ‘coy’ ones, since their risk of being
deserted decreases. It is only when the amount of ‘fast’ females increases that the male
payoffs change. Again, they increase: but ‘philanderers” gain more than the ‘faithful’
males: hence, more ‘philanderers’; hence more “coy’ females; hence, less ‘philanderers’,
and so on. This looks like an oscillating system. The static approach of game theory is
no longer sufficient to deal with this situation.

Game dynamics

Evolution is dynamic, and hence any evolutionary model must present dynamical
aspects. For the study of equilibria and persistence, however, such aspects may well
remain implicit, as they do in the game theoretical approach. Indeed, a straight appli-
cation of the inventory of dynamical systems used in popullation genetics may be quite
off the point, in certain situations. In particular, ESS theory is essentially phenotypic
rather than genotypic. It is, incidentally, quite interesting that a major part of socio-
biology—a science which reputedly delivers everything, including humanity, into the
cluches of selfish genes—derives its interest from taking a strategic rather than genetic
point of view.

The present state of knowledge does not allow anything definite to be said about the
genetic mechanism behind a given behavioural trait; and to tie such a trait arbitrarily to
some hypothetical genotype may well confuse things. The Mendelian machinery could
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override the frequency-dependent regulation at the strategic level which one wants to
investigate. To avoid such interference, it will therefore be quite appropriate to assume
asexual reproduction at least as a first approximation. Most game-theoretical models in
biology concern sexual populations, of course: but this may eventually lead to irrelevant
complications based not on a necessary constraint but on speculations about the
inheritance of behaviour.

Asexual inheritance: optimization and the game-dynamical equation
Let us consider a population with n phenotypes. The point x(f) € S, denotes the state of
the population at time ¢. Asexual reproduction means ‘like begets like’. The better the
phenotype E, is adapted. the higher its rate of relative increase

1. 1 dx;

X, Y= x; dt
If the fitness of the phenotype E; is given by a constant 4;, then the average fitness of a
population in state x is given by ®(x) = 4,x, + ... + 4,x,. [tis natural to assume that
the rate of relative increase of E, is given by the difference between the fitness 4; of E;
and the average fitness ®(x). Thus the equation

X = x{4 — Ox), i=1,...,n, (26)

restricted to the invariant set S,, will describe the evolution of the distribution of
phenotypes in the population.

This equation plays an important role in the theory of Eigen and Schuster (1979) on
prebiotic evolution. The population, in this case, consists of # types of selfreplicating
macromolecules, RNA or DNA, in a flow reactor. It can easily be shown that the average
‘fitness’, i.e. the mean reproduction rate, increases monotonically. Indeed, the time
derivative of @ is just the variance of the ‘fitness’ in the molecular population. The
molecular types with less than average fitness will be eliminated, and the average fitness
thereby increased. In the limit, only the molecules with the highest fitness will remain.
In populations with asexual replication and frequency independent fitness, selection is a
global optimization process.

The above results are valid for ‘error-free’ replication. In more detailed studies (Eigen,
1971; Thompson & McBride, 1974; Jones et al., 1976; Swetina and Schuster, 1982)
mutations were taken into account. In this case, the average fitness @ is not, in general,
optimized. However, the state reaches a unique stable equilibrium, and this implies that
there exists some (Ljapunov) function which increases monotonically. Actually, Jones
(1978) displayed a function of this type which is closely related to the average fitness.

Let us now return to the ‘error-free’ case, but assume that the fitness of phenotype E,
is frequency dependent, i.e. a function of x. More precisely, let us assume that it is given
by the game theoretical payoff (Ax), as derived in the section on ‘Evolutionary stable
states’ above. The average fitness then is

O(x) = x-Ax

according to equation (6). To be correct, (Ax), and x - Ax are not to be viewed as fitness
but as increase in fitness resulting from the conflict. The differential equation (27) given
below, however, is invariant to the addition of constants to the columns of A and hence
remains unchanged when we replace differential fitness by total fitness.
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The equation of ‘game dynamics’

x, = x{(Ax), — D(x)}, i=1,...,n, (27)
restricted to the invariant set S, (the unit simplex) describes the evolution of the
distribution of phenotypes (Taylor & Jonker, 1978). In writing down a differential
equation for game dynamics we made two implicit assumptions: (1) complete mixing of
generations and (2) infinitely large population size. By infinitely large we mean in this
context so large that fluctuations can be neglected.

Equation (27) plays a central role for many models of selection in fields as diverse as
prebiotic evolution, population genetics and mathematical ecology (see Schuster &
Sigmund, 1983). Its usefulness in sociobiology is a new facet of its widespread applic-
ability. )

In general, the average fitness ® will not increase monotonically. Maxima of ® need
not coincide with fixed points of equation (27). Moreover, the dynamics of equation (27)
may admit limit cycles, i.e. persistent oscillations (examples are discussed in Hofbauer
et al., 1980), and strange attrators, i.e. seemingly chaotic, highly irregular oscillations
with extreme sensitivity to the choice of initial conditions (see Hofbauer, 1981, Arneodo
et al., 1980). Every game theoretical equilibrium, i.e. every point p on S, which satisfies
equation (10) is a fixed point of equation (27), and every ESS, furthermore, 1s asymp-
totically stable in the sense that every state which 1s sufficiently close by will converge
towards it (Taylor & Jonker, 1978; Hofbauer ef al., 1979; Zeeman, 1980).

Thus, small perturbations of evolutionarily stable states will be offset by the dynamics
of the evolution. The converse, however, is not true: there are asymptotically stable fixed
points of equation (27) which cannot be found as an ESS by the game theoretical
approach (Hofbauer ez al., 1979; Zeeman, 1979).

Some examples

In a special case, namely when a; = a; holds for all i and j, the average fitness ® will
always increase. Games whose payoff matrix satisfies this condition are called partner-
ship games: both players always share the outcome fairly.Indeed, it can easily be checked
that the rate of increase of ® corresponds, again, to the variation of the fitness in the
population. Tt is, of course, no surprise that in partnership games, in contrast to the
‘prisoners dilemma’ and the like, an optimization principle holds.

The ESS of the ‘hawk—dove’ game, p = pe, + (I — p,)e; with p, = (E — G)/
(E + C) as described by equation (15) is globally stable. In the extended ‘hawk—dove’
game given by Expression (17) with the phenotype E; corresponding to this ESS, there
exists a line F of fixed points through e; and p (see Fig. 2).

All orbits converge to F, remaining on the constant level curves of the function

Qx) = xzxfplxz . (28)

There is an argument (Hofbauer, private communication) that random drift will cause
the state to approach e,, leading to fixation of the phenotype E;. Indeed the constant
level curves of Q are concave. If the state of the population has approached some fixed
point ¢ on F, and if a random perturbation sends it away, then the differential equation
will lead it back to some point ¢' on F. The probability that ¢" is between ¢ and e, is
slightly larger than 1/2 (see Fig. 2). In this way, a sequence of small fluctuations will drive
the state towards e,. This, however, depends upon the assumption of fluctuations with
radial symmetry.
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ey

€ €2

Fig. 2. Strategies e, and e- correspond 1o “hawk’ and ‘dove’ phenotypes, ey to a phenotype

plaving a mixed strategy, acting as “hawk with probability p, and as “dove with probability

p-(where p, and p- are given by the ESSp = (pye, + pres) of the ‘hawk—dove’ game). The

line from e, to p consists of fixed points. Random drift might lead the state of the population,
through fluctuations along the line. closer to e,

We recall from equation (17) that phenotype E; is not evolutionarily stable. A more
stricting example for such a situation is obtained with

0 10 1
A =110 0 1 (29)
1 11

(see Fig. 3). E, is stable against invasion by E, alone, or by E, alone, but not if both

phenotypes invade simultaneously.

& =2

Fig. 3. The game-dvnamical equation (27) with matrix given by (29)
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€3

e €z
Fig. 4. The game-dynamical equation (27) with matrix given by (30)

Another interesting example due to Zeeman (1981) is given by the matrix

0 6 —4
A=|-30 5 (30)
~1 3 0

In this case, equation (27) admits two asymptotically stable equilibria, namely
e, = (1,0,0)and m = (1/3, 1/3, 1/3) (see Fig. 4). The former point is easily checked to
be an ESS. Hence the latter one, which lies in the interior of S;, cannot be an ESS.

Permanence and uninvadability in terms of dvnamical systems
As mentioned before, the orbits of a game-dynamical equation (27) need not converge
to an ESS. They may converge to an equilibrium which is asymptotically stable but not
an evolutionarily stable strategy in the sense of game theory, or they may settle to a
persistent oscillatory regime, or exhibit chaotic behaviour. In the two latter cases it can
be shown that the time averages of the phenotype frequencies converge to an equilibrium
value (see Schuster er al., 1981a).

Of course, one cannot hope to measure such time averages directly, since they would
have to include a large number of generations. If the population is subdivided into many
such populations (or demes) which oscillate out of phase with each other, then the mean
value (at a given instant) of the phenotype frequencies of the different demes gives a
plausible estimate of their time-averages and hence of the quilibrium.

The game dynamical approach suggests two eventualities:

(1) the existence of equilibria which, although not ‘evolutionarily stable’, are neverthe-
less relevant and persistent features of the model. either because they are asymptotically
stable and hence perturbation-proof, or because they correspond to the time averages of
regular or irregular oscillations, and

(2) the existence of asymptotic regimes which, although not static, are nevertheless
robust features of the system.



270 P. Schuster & K. Sigmund

Whether such phenomena occur in situations of biological interest is still open, but the
possibility shold be kept in mind.

In any case it is not difficult to describe, within the framework of population dynamics,
the notions of permanence and uninvadability in a non-static way which generalizes the
concept of evolutionary stability. Roughly speaking, the »n phenotypes E| to E, are
permanent if there is some minimum level ¢ > 0 such that, if initially all phenotypes are
present, i.e.if x;(0) > 0 forall i, then after some time their frequencies x;(¢) will be larger
than ¢. These frequencies could oscillate or converge: the only relevant property, in this
context, is that random fluctuations which are small and occur rarely are not able to wipe
out some of the phenotypes.

The society can be termed uninvadable, with respect to some further phenotypes E, |
to E,_,, if it is permanent and if all initial conditions with sufficiently low frequencies
x,.,(0) 10 x,,,(0) lead to the ultimate vanishing of these phenotypes. Permanence and
uninvadability, in this sense. mean protectedness against disturbance from within and
from without. We refer to Schuster and Sigmund (1984) for a more detailed discussion
of these notions and their applicability to models of biological evolution.

Dynamics for asymmetric games
Let us turn now to asymmetric contests, i.e. to games described by two payoff matrices
A and B (see the section on ‘Asymmetric contests’ above). The same argument which led
to the game-dynamical equation (27) now yields the differential equation

X, = x[(Ap), — x - Ayl i=1,..., n,
((Ay) an
v, = yI(Bx), — y- Bx], j=1....m

describing the evolution of the population states x(1) € S, and y(r) € S, (see Schuster
et al., 1981b).

If one of the populations contains only one phenotype, equation (31) reduces to
equation (26) and hence to an optimization problem.

In the general case, selection leads usually to the fixation of one genotype in each
population. This reflects the fact that there exist no mixed ESS for asymmetric games.
In the case n = m, however, it may also happen that the frequencies oscillate periodic-
ally. This is the case, for example, in the ‘coyness-philandering’ game of Dawkins
(Schuster & Sigmund, 1981; see also the section on the “Nash equilibria and the coyness—
philandering game’ above). Again, the time averages converge Lo the game-theoretic
equilibrium, which is not evolutionarily stable.

Discrete game dynamics

Difference equations are the appropriate tool to study infinite populations with distinct
generations. Thus, they apply to situations in which premise (1) for the validity of
equation (27) is not fulfilled. Often, blending of generation is prevented by the action of
some internal or external pacemakers for the reproductive cycle. An obvious example for
the latter case is the periodicity of seasons.

The most straight-forward candidate for discrete-game dynamics of symmetric con-
tests is the equation

x| = x(Ax),(x*Ax)"", i=1....,n (32)

Here x" = (x/.....0 x/) denotes the state of the population in the next generation. It is
somewhat disturbing that this class of difference equations, in contrast to the differential
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equations discussed above, does not seem to fit ESS theory very well. Indeed, equation
(32) behaves rather badly in several cases. We consider as an example the ‘hypercycle’
game with n = 3 given by

01 0
A =|0 0 1] (33)
1 0 0

It has m = (1/3, 1/3, 1/3) as an ESS. The fixed point m is not asymptotically stable,
however. This is surprising, since the continuous analogue of expression (32), namely

x, = (x+Ax)" x[(Ax), — x* Ax] (34)

has the same trajectories as the game-dynamical equation (27). For asymmetric games,
the difference equation

x| = (x-Ap) 'x(Ap),

) » (35)
¥, = (¥ Bx)" y(Bx),
corresponds to the differential equation
X = (x-Ap) 'x[(Ay), — x- Ay,
(36)

3, = (v Bx) 'y[(Bx), — y- Bx],

which need no longer be equivalent to equation (31). In particular, the inner fixed point
(p, q) of the ‘coyness-philandering’ game is now asymptotically stable (Hofbauer, see
Maynard Smith, 1982, appendix J). This may be viewed either as a misleading trick of
the dynamics—after all, (p, ¢) is not an ESS—or as a remarkable vindication of
Dawkins early claim (1976) that the strategies do converge to (p, 9). Of course, there are
no empirical dates to decide which of the two equations (31) or (36) is more correct.

An interesting approach has been proposed by Eshel and Akin (1983). It consists in
assuming that the sign of X, (or, in the discrete case, of x] — x;) is that of the difference
(Ay), — x - Ay, without writing down an explicit equation like equation (31) or (36). The
dynamics, then, is only incompletely specified, but should reflect the basic traits of the
model; surely, the last word on difference equations, differential equations and ESS has
not been said yet.

So far, we have accepted the simplification that ‘like begets like’. More sophisticated
discussions have to take account of the Mendelian mechanism of inheritance.

Sexual models
Although the strategic and the genetic point of view are to some degree disjoint, it is
nevertheless of interest to check their compatibility, even if this requests assumptions
which are quite hypothetical.

It is obvious that a genetic constraint can prevent the population from attaining an
ESS. In particular, an evolutionarily stable phenotype which is only realized by a
heterozygote genotype can never become fixed. Such a case of ‘overdominance’ leads to
different predictions of game theory and population genetics. So far only one locus
models have been studied (Maynard Smith, 1981; Eshel, 1982; Hines, 1980; Bomze et al.,
1983). In this case it was always overdominance which led to divergences from ESS
results. In many-locus models one may expect other genetic constraints as well.
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Let us consider first the frequency independent case. We assume that there are & alleles
A, to A, in the gene pool. Their frequencies are denoted by p, to p,. The fitness of the
genotype A;A; is given by some constant w; which corresponds to the probability of
survival from the zygote to the adult stage. Introducing the laws of Mendelian genetics
we obtain the classical selection equation of Fisher for the evolution of the gene
distribution

b = pt{(Wp)i — (D(P)}’ i=1...,k (37

The differential equation is invariant on S,, W = (w;) is the ‘viability matrix’ and
®(p) = p - Wp represents the average fitness in a randomly mating population with the
gene distribution p = (p,...,p). This equation is a special case of equation (27).
Precisely, it corresponds formally to the (game) dynamical version of a partnership game
since w; = w;. Accordingly, the average fitness @ increases monotonically. Selection can
be visualized as optimization of the mean reproductive success. There is nevertheless an
important difference with respect to the nature of the optimization process in equation
(37) and in the asexual case described by equation (26). In the latter case optimization
was global on S,. Here, selection does not lead in general to a global optimum of ®.
Consider for example the particularly simple case n = 2. The average fitness is of the
form

O = (w, — 2w, + sz)P% + 2wy, — wa)p + Wi

In case w;; > w,, and w,, > w,,, ® has a minimum on the interval 0 < p, < | and
hence, there are two optima coinciding with the pure states p, = 0 and p, = 1. Depend-
ing on the initial conditions either allele A, or allele A, will be selected.

We turn now to the frequency dependent case and consider equations which combine
the game theoretical model with popultion genetics. It will be appropriate to carry out
the analysis on two levels, the phenotypic and the genotypic one. We shall assume that
the population consists of n phenotypes E, to E, and that each genotype A,A, corre-
sponds to one of those phenotypes, or possibly to a probability distribution p(ij) =
(P (), - - pa(i)), where p,(ij) is the frequency of 4,4, —individuals of phenotype E,.
The converse, however, need not be true: as it happens in the case of dominance, two
or more genotypes may give rise to the same phenotype.

The payoff is given as before by the n x n-matrix A. Now we have to specify how its
is related to reproductive success. This is a rather delicate point which cannot be decided
without a closer inspection of the situation to be modelled. Two alternative simple cases
are:

(1) The payoff is independent of sex, and the number of offspring of a given couple
is proportional to the product of parental payoffs. This situation corresponds to fights
which are not sex-specific, like contests for food. Maynard Smith (1981) considered such
a model.

(2) The expression of the genotype is sex-specific although the relevant genes are
carried by both sexes. The number of offspring of a given couple again is proportional
to contributions from both parents. The parent who carries the silent genes now contri-
butes a constant factor. Such a model is appropriate for fights within the male popu-
lation, e.g. contests for females, breeding grounds or other ressources. A detailed
discussion of this approach can be found in Hofbauer et al. (1982).

In any case one is led to fecundity models. To set up the corresponding (discrete or
continuous) equations for the time evolution of genotype or phenotype frequencies is
immediate, but the analysis of the resulting systems is in general difficult.
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Fig. 5. A diagram describing a typical evolution of genotypes AA. Aa and aa (correspond-

ing to the corners e, , e, ;) if the reproductive success depends on differential fecundity. The

state of the population converges very quickly to a ‘Hardy— Weinberg' parabola, and evolves

through frequency-dependent selection along the parabola towards an equilibrium P [ for
details. see Hofbauer et al. (1982)]

In some cases. however, the investigation is simplified by the fact that a Hardy-
Weinberg equilibrium gets established: in case (1) if the model is discrete (nonoverlap-
ping generations) and in case (2) if it is continuous (generations blending into each other.
see Fig. 5). Thus the frequency of genotype A A, is given by the product of the frequen-
cies of the corresponding genes A, and A,. (More generally. it often happens that the
mating system—random or assortative—leads to relations between the genotype fre-
quencies). This allows to reduce the problem to the time evolution of gene frequencies.
The corresponding equations are similar to equation (37). except that the w, are now
polynomials in p, to p,. The average fitness will not increase in general.

An analysis of two-strategy games (see Maynard Smith, 1981: Hofbauer et al., 1982;
Eshel. 1982) shows, essentially, that if the genetic constraints allow the ESS to be realized
at all, then it will asymptotically be reached indeed. If, for example, one of the alleles is
dominant. then the outcome predicted by the simple game theoretic considerations of the
section on ‘The ‘hawk—dove" game and mixed strategies” above will also be obtained by
the genetic model. (It is worth mentioning in this context that Birger. 1983, using a
model of Sheppard. 1965, has shown that dominance may be established, if the selection
pressue is sufficiently high, by the action of a secondary gene locus. Thus the genetic
mechanism itself may evolve towards a suppression of the genotypic obstacles to
phenotypic adaptation).

One may similarly investigate genetic models for asymmetric contests. In Bomze et al.
(1983); the ‘coyness—philandering’ model is discussed at some length. We briefly sketch
it, as an illustration. Let us assume that two alleles A, and A, determine the male
behaviour, and that P,, P, and P, are the probabilites that the male genotypes ALA L,
AA, and A,A,, respectively, are faithful. Then. if p denotes the frequency of A,.

b = p*P, + P, — 2P) + 2p(P, — P,) + P,
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is the frequency of faithful males within the male population. Similarly, let the alleles B,
and B, determine female behaviour and let Q,, O, and @, be the probabilities that the
female genotypes B, B,, B, B, and B,B,, respectively, are fast. Then, if ¢ is the frequency
of B,

B = qz(Qo + 0, — 200 + 2¢(Q — @) + O»

is the frequency of fast females, It is easy, now, to compute the ‘payoffs’ a, and a, for
faithful and philandering males, respectively, as function of § and the ‘payoffs’ z, and
a, for fast and coy females, respectively, as function of b. If one assumes that the payoff
corresponds to fertility, one can check that Hardy—Weinberg relations hold. Simple
computations lead to the differential equations

p = 3p(l — p)[p(P, + P, — 2P)) + P, — P,](a, — )
g = 390 — @g(Qo + O, — 205) + Q1 — Ol(o — ay).

The strategic component—i.¢. the terms depending on the payoff matrices—reduce to
the factors @, — @, and «; — «,. This facilitates the analysis of the gene frequencies. We
shall only describe the interesting case of ‘overdominance’. If P, — P,and P, — P, have
the same sign, as well as @, — Q,and Q, — Q,, then the orbit in the ‘state-space’ (p, g)
will be periodic (see Fig. 6). There are four possible oscillatory regimes, depending on
initial conditons, but the time averages of the strategies will quickly converge to the
equilibrium values obtained in Equation (25) by simple game theoretic considerations.
This may well be a typical situation: complicated features on the ‘microscopic’ level of
gene frequencies yield a simple result on the ‘macroscopic’ level of phenotypes. (For a
detailed discussion see also Bomze et al., 1983). Asymmetric conflicts between two
different species can also be modelled in similar ways. The first paper in this direction,
which apparently found only little attention in the literature, seems to be due to

ul

~

0 05 i
p
Fig. 6. A possible dynamics for the ‘coyness—philandering’ game. The gene frequences p and
q governing male and female behaviour oscillate endlessly, but the corresponding payoffs

converge, in the time average, to the game theoretic equilibrium (25) (see Bomze et al.,
1983, for details)
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Stewart (1971) and investigates dimorphism in two coevolving populations of predators
and prey. His ‘game’ between cats which can stalk or watch and mice which can run or
freeze, is similar in structure to the ‘coyness—philandering’ game. In its emphasis on game
theoretic aspects it is a remarkable forerunner of ESS theory: it also offers an analysis
of dynamical models based on sexual and asexual genetics, which fully agrees with the
Nash equilibrium solution obtained from strategic considerations alone.

Results of this type strongly suggest that one may confidently stick to the phenotypic
level, as long as there is no solid candidate for the underlying genotypic mechanism.

Concluding remarks
The considerations concerning the role of intrinsic constraints on the evolutionary
optimization process can be subsumed with the help of Fig. 7. The mean reproductive
success in populations of independently and asexually reproducing individuals is opti-
mized though evolution. This will be modified by two mechanisms:
(a) The rules of Mendelian genetics restrict the dynamics of selection onto the Hardy—
Weinberg surface or onto a ‘near Hardy—Weinberg’ submanifold (see Ewens, 1979).
Other distributions of genotypes are evolutionarily unstable for genetic reasons.
(b) Direct interactions of replicating elements lead to constraints on the optimization
process. The result is a displacement of the evolutionarily stable distribution from that
which is characterized by the maximal reproductive success.

In populations in which both constraints are in operation, the genetic and the strategic
one, we observe a superposition of both effects. In the sexual models considered so far,
many cases (e.g. dominance) lead to situations which are indistinguishable from the
corresponding asexual ones. This justifies a posteriori the various static or dynamic
asexual models.

Of course the situations analysed so far are characterized by oversimplification. One
could introduce further complications without end, but often without gaining further
insights.

Basically, the game dynamical models incorporate features of highly developed fields,
namely population genetics and game theory. A further emphasis on genetic aspects

Genetic constraint
Asexual Sexual
=9 replication replication

> O =

228,
5 2099 Global optimization Restriction to H-W surface
= ao g ; .
c |§258 of & Optimization of &
o]
S Cela
=
L
(o]
kS
e |l..2
= ol -
b2 88 8w Restriction to H-W surface
8 %g 8 No optimization of & No optimization of &

2§58

w o ‘E:‘ [

4

Fig. 7. Constraints on optimization. The genetic mechanism of sexual reproduction leads to

relations between gene and genotype frequencies (e.g. the Hardy—Weinberg equation). This

reduces the state space of genotype frequencies to a subset of lower dimension. Frequency
dependent fitness parameters preclude optimization through strategic constraints
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leads to intricate frequency dependent population genetics, and a stressing of game
theoretic aspects to the subtle constructions of extensive games and subgames (see Selten.
1983). In its present state, game dynamics is a compromise between these two directions,
trading elaborate sophistication in one or the other direction for broadranged compati-
bility between both aspects. It aims at acquiring an intuitive insight into biological
conflicts, without too many technical details.

It seems very difficult to derive from field data valid estimates for the parameters
involved in the payoff matrix. Some remarkable results have been obtained, however [we
refer to Maynard Smith (1982) and Riechert and Hammerstein (1983) for surveys].
Moreover, it has been shown in several cases that the dynamics consist of a few types
only. which are valid for wide ranges of the parameters. Thus. diverse sexual and asexual
models of variations of the ‘hawk-dove’ conflict lead to a very small number of possible
outcomes (see Schuster et al., 1981a, b). It seems possible, in such cases, to relate (at least
qualitatively) empirical data with some of the few theoretically possible cases.

Finally. we mention that the assumption of genetical determination of behaviour can
be relaxed. In particular, the effect of learning can be incorporated into the game
theoretical models [for example, see Harley (1981) and the notion of ‘developmentally
stable strategy’ DSS by Dawkins (1980)]. It seems possible, therefore, that the dynamical
approach sketched in this paper can be adapted to the modelling of complex behaviour
in highly developed social structures (for example. see Wilson. 1975, Masters, 1983).
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