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Linear birth and death processes are used to derive simple expressions for sequentiai

extinction times and gene fixation probabilities in asexual populations'

l. Introductiot't. The synthetic neo-Darwinian theory has been challenged

by the deveiopment of the neutral theory. According to this theory the

gene pooi of species is aiso subject to evolutionary change in constant

environment and in absence of selection. The basic idea is that a substantial

percentage of those mutations not immediately eliminated is seiectiveiy

neutral and may leach fixation in the population by recurrence and random

drift. A recent mathematical discussion of the neutral theory clarifying the

notions of average evoliltion rates and protein polymorphism is found in

Ishii er al. (1982).
More and more data favouring the neutral theory have become avaiiabie

during the last two decades (Kimura, 1982). Nevertheless, the neutraiist's

view has not yet been accepted completely by the majority of biologists'

originally, molecular evolution was studied almost exclusively on diploid

organisms. More recently, data have become available also for hapioid plants

(Yamazaki, lg82) and bacteria (Milkman, 1973), wirere overdominance

is excluded as a variability-maintaining factor. Here, one finds the same

phenomena as observed with diploicl organisms and predicted by the neutral

th.ory, protein polymorphism and regularities in nucleotide replacement'

In this paper 'fixation' of neutral mutant alleles in asexually replicating

populations is described by a simple model system, which is identical with

one used far in yifro RNA replication. The analysis makes use of well-known

results of l inear birth and death processes (Harris, 1963; Jagers, 1975) and

derives simple expressions for expectation values of extinction times' The

probabil ity for f ixation of newly formed mutants is simiiar to the classical ex-

pressions for random drift in population genetics (Crow and Kimura, 1970)'

f This u'ork was supported financially by the Austrian Fonds zur Förderung der Wissenschaftlichen

Forschung, Project Nos. 3502 and 4506.
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2. Indepenclent Bir-tlt ancl Death Processes. An appropriate model system

consists of 2n parallel reactions, rz autocatalytic replication steps and n
decay reactions:

(B)+  1 - r ' - - *21 , t  i _ -1 ,2 , .  , t ' r

(M) ;  i  - -  I , 2 , . .  .  , t t .

AII 2rt reactions proceed under conditions of practical irreversibii i ty. The

re repiicating elements are denoted by Ir, fz, . , . L' The raw material from

wlriclr the elements are built, B, and the decomposition product, ll'1, do not

elter as variabies into the model system: the amount of B is assumed to

be constant or buffered and M is the end product of an irreversibie reaction

step. We describe the evolution of our system by a set of stochastic variables

xr(t), xr(t), . . . , x,(t), where xij) is the number of replicating elements of

type I; at the time /. The corresponding probability densities are given by

rd i , )Q) :Prob{x { t ) : x ; } ;  i : 7 ,2 ' " ' , n  (3 )
andxr :0 ,  1 ,2 , . .

Since we assumed independence, the joint probability density is simply

given by the product of the individual probability densities:

P* i , . . . , x t ' ( r ) :  P rob{  X{ t ) :  x r ,  - .  .  ,Xn( r ) : x r }

: pf;r1r; p!:)ttl.

As is well known, the probabilities satisfy the master equations

Ä

ir:') 
: (xi - Drtp!')-, * (xi + Ddt4!-r- x;Vi + d)P:i)

corresponding to the iinear birth and death process (see, e.g. Bartholomay,

1958; Jagers 1975).
In our model studies we assume rt: d;. This is the case where the deter-

ministic approach based on conventional kinetic equations fails. Indeed,

it yields the differential equations *i : (fi - d)xt : 0 for which x; reffiäinS

constant, while the stochastic model eventually ieads with probability 1 to

extinction, as random fluctuations are going to build up'

In order to treat neutral mutations we study the degenerate case of maxi-

mum kinet ic equivalence f i rst :  f i :  fz :  .  .  .  :  fn:  / .  Despi te the k inet ic

equivalence, the n replicating elements are distinguishable: we assume the ex-

istence of an appropriate analytical technique to separate them. In the case

of polylucleotides, sequence analysis provides a tool to distinguish between

neutral mutants. The main conclusions wil l also be valid in systems with

distinct / values.
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In Section 3 we discuss the sequence of extinction times and in Section
the probabil it ies for random selection of individual molecular species.

3. Sequential Extinctiort Tinrc. Let us start with the (inessential) assump-
tion that initially, each replicating element is present in a single copy. As

is well known (see, e.g. Bartholomay, 1958), the probabil ity that a given

line is extinct at t ime r is

Po(r): =+I+ f t

Eventual extinction, then, is certain:

,In ".tt) 
: 1,

although the expectation value for the number
always equal to the init ial numbet, i.e. l.

(s)

Let us denote by Tr the time up to the extinction of n - k types of
replicators. This waiting time Tp is the random variabie, which we char-
acteize as 'sequential extinction time'. Thus ru types of replicators are
present between f (=0) and Tn-l, n - I replicators between Ir-1 and
Tn-2 etc. Between T1 and ln6 only one kind of replicating element is still
existing-the population is now uniform-and finally Is is the moment of
extinction.

The probability distribution of Tp,

l l

(6)

of elements at time / is
.r , .  : : : , f

Hr(t):  Prob{ Tr 1t},

is calculated from the probability of extinction of a given repiicator, PoU).
We start with the simplest case, k : 0. The probability äo is the probability
that all replicators have vanished.

(7)

(8)

The event Trlt can happen in several ways: eitherlr is present and all the
other replicators have become extinct, or only 12 is present, or only ^i'3 etc.
Tt {f, however, is also fulfilled if all replicators have died out:

Ht:  Pt t+o,o, . . . ,0  + Pox2+o, . . . ,0  + * Po,o... ,*n+o * Ho. (9)

The probability that a given replicator is still present is obtained easily since
existence and non-existence are complementary:

.ft4

Ho:  Po ,0 , . . . ,0  :P$ t ) '  4 ' l '
/  r t  \ n'P[d: t ;= )
\ t  

- r  
J I  /

D  - 1 - D -
t x * o  -  r  r o -

l+ f t
(  l 0 )



and

( f t ] r - l
H r :@* f t \  

w " ' /  ( 12 )
'  ' " '  ( l  +  fün

Similarly, we derive all higher probability distributions by the recursion

formula

H,,: (r)f#*H,-,,
which finally yieids in the formuia
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Thus we find

P x 1 + 4 0 , 0 , . . . , 0

k

Ht:Z
/ =0

Setting

AiU) _

one obtains for its derivative

f  f  /n \
Ai@, ( I+f t )" . t  1\ i /

("\ (ft)"-i

\ i)rr*r,t

(n-i) (f11,- i-r - () iV,) '- ,1.

(11)

I
: " 1 r1)

\ t  /

( ft\n-l

( t  + f t ) '

(  13)

(14)

;  (16)

One easily verifies that HLU) : ALG) + Ai,-t(r) + . . . + A'oG)is a telescopic

sum where all terms cancel except the first one. Thus the probability density

for 71' is given by

/ n\ - 1n-k-t
Hi, :@-k)( ' "1r"-o (15)

\k l '  0+p1+t '

In order to calculate the expectation value of 71, we have to evaluate the

definite integral (see Gradshteyn and Ryzhik, 1965), k2I:

74n-x+r)
[* 

'nn 
= d,t : f--{nk+l) Y 

(-l)t (" 
- o) -

Js  (1  + f t ) " " '  , äk+ i  \  t  / r("r)

,

l- *.

the analogous integral for &? 0,-however, diverges.
The expectation values for thd sequential extinction times 1L are thus
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n2k2 , -7 (17)

>,- k2 2. (  18)

n-k  1
-  a  - i

'  ^ ,
K T

atd EtTol : oo. In the figure we illustrate this series for a concrete numerical
example.

Similarly, we compute the variance of the sequential extinction times Ze:
'|

' = ;  l ' l
J

Note that the variance diverges for k : 0 and k : l.
In the general case, the rate parameters fi are distinct and the initial

particle numbers xf , . , xl are not all equal to 1. The expressions for
EtTk] become considerably more complicated, but the main conclusion
is unaffected: E{Zr} ls f inite and E[ZoJ is not.

Indeed, the derivative of (I + fit)-r is just the opposite of that of f.r(i +

fit)- ', namely -f(t + rti l-2. Now if xf : . . . : xl: I, then

and its derivative f1[, is
is not integrable in [0,
expressions of the type

/ l \n
\ l+ f ; t ) i+ t

It is easy to see that H'ocancels with the

(;o) s

Ho:fI e-\

a rational function with leading term t-2.Ilence H'ot
ao"). On the other hand, /1r is the sum of ^I/s and

(-i!-\
\t * rt')

sum of the expressions

(-n-\
\t + fit I

Hi then consists of expressions of the type

/.+\ (-a_\'n (+-\,
\r +f;/ \r + rot f i i in yr + rp f 

'

wlrich are rational functions with leading term /-3. Hence Hit is integrable
in [0, -1-"o). If the initial concentrations xf are not all equal to 1, then the
expression for ^I/6 is like the one given before, except that the terms (lf)
(l + rtü-r are repeated x;0 times in the product.'If we denote by { the time
until there are only copies of one individual left, the preceding argument
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shows tirat Ii is integrable and Ie is

are only replicating elements of one
not. Finally, t l ie t ime 11 unti l there

tvpe left is certainly not larger than

?"i. Hence T1 is integrable.
After 11. one type of replicati lrg element has beeu selected' It wil l eventu-

aliy die out, but since the random interval [I,. %] during whicir the er-r-

sembie is homogeneous |as a length whose expectation vaiue is infinite'

we may interpret this as 'fixation' of the corresponding type, in anaiogy

to the diploid case'

4. Probabitities for Ranclont Selectiott. If all fi ate equai and the ensemble

consists ilitially of one copy of each type, the probability that a given

type is selected as the 'last suwivol' is, of coutse, lln' If the fi are distinct'

tirl probabiiity tirat at time f copies of type -I; survive white all others have

vanished is

(#) EGr):i*G+,)(  1e)

The probability that type { is the exclusive survivor at time f' under the

condition that fixation has occurred, is

(20)

which is independent of /. Hence the probability for the eventual fixation

of -I; is just the same expression, nameiy

f - l
J I

f r - t1 "  '+ f ; ' '

Now if the initial ensemble consists of x;0 copies

the probability for the fixation of 'I; is

x?rt-' (22)
n

\- .9 f.-r

; ,  

t ' t

11 particular, if a mutation occurs in a homogeneous ensemble of x copies'

and if this mutation is neutral in the sense tirat it does not affect the rate /'

then the probabil ity of its f ixation is 1/x. This is similar to the classical

result. where ttie pÄbability of fixation of a neutral tlutation in a popgla-

t ion of  x diploid indiv iduals is 1l2x (see. e.g.  Kimura, 1982, p.  20).
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Figure 1 . The distribution of sequentiai extinction times, EtTrl, for n : 20.
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