## RANDOM SELECTION - A SIMPLE MODEL BASED ON LINEAR BIRTH AND <br> DEATH PROCESSES $\dagger$

## ■ P. Schuster and K. Sigmund $\ddagger$

Institut für Theoretische Chemie und Strahlenchemie and $\ddagger$ Institut für Mathematik, Universität Wien, A-1090 Wien, Austria

Linear birth and death processes are used to derive simple expressions for sequential extinction times and gene fixation probabilities in asexual populations.

1. Introduction. The synthetic neo-Darwinian theory has been challenged by the development of the neutral theory. According to this theory the gene pool of species is also subject to evolutionary change in constant environment and in absence of selection. The basic idea is that a substantial percentage of those mutations not immediately eliminated is selectively neutral and may reach fixation in the population by recurrence and random drift. A recent mathematical discussion of the neutral theory clarifying the notions of average evolution rates and protein polymorphism is found in Ishii et al. (1982).

More and more data favouring the neutral theory have become available during the last two decades (Kimura, 1982). Nevertheless, the neutralist's view has not yet been accepted completely by the majority of biologists. Originally, molecular evolution was studied almost exclusively on diploid organisms. More recently, data have become available also for haploid plants (Yamazaki, 1982) and bacteria (Milkman, 1973), where overdominance is excluded as a variability-maintaining factor. Here, one finds the same phenomena as observed with diploid organisms and predicted by the neutral theory: protein polymorphism and regularities in nucleotide replacement.
In this paper 'fixation' of neutral mutant alleles in asexually replicating populations is described by a simple model system, which is identical with one used for in vitro RNA replication. The analysis makes use of well-known results of linear birth and death processes (Harris, 1963; Jagers, 1975) and derives simple expressions for expectation values of extinction times. The probability for fixation of newly formed mutants is similar to the classical expressions for random drift in population genetics (Crow and Kimura, 1970).

[^0]2. Independent Birth and Death Processes. An appropriate model system consists of $2 n$ parallel reactions, $n$ autocatalytic replication steps and $n$ decay reactions:
\[

$$
\begin{align*}
(B)+I_{i} & \xrightarrow{f_{i}} 2 I_{i} ; i=1,2, \ldots, n  \tag{1}\\
I_{i} & \xrightarrow{d_{i}}(M) ; i=1,2, \ldots, n . \tag{2}
\end{align*}
$$
\]

All $2 n$ reactions proceed under conditions of practical irreversibility. The $n$ replicating elements are denoted by $I_{1}, I_{2}, \ldots I_{n}$. The raw material from which the elements are built, $B$, and the decomposition product, $M$, do not enter as variables into the model system: the amount of $B$ is assumed to be constant or buffered and $M$ is the end product of an irreversible reaction step. We describe the evolution of our system by a set of stochastic variables $X_{1}(t), X_{2}(t), \ldots, X_{n}(t)$, where $X_{i}(t)$ is the number of replicating elements of type $I_{i}$ at the time $t$. The corresponding probability densities are given by

$$
\begin{align*}
P_{x_{i}}^{(i)}(t)=\operatorname{Prob}\left\{X_{i}(t)=x_{i}\right\} ; \quad i & =1,2, \ldots, n  \tag{3}\\
\text { and } x_{i} & =0,1,2, \ldots
\end{align*}
$$

Since we assumed independence, the joint probability density is simply given by the product of the individual probability densities:

$$
\begin{align*}
P_{x_{i}, \ldots, x_{n}}(t) & =\operatorname{Prob}\left\{X_{1}(t)=x_{1}, \ldots, X_{n}(t)=x_{n}\right\} \\
& =P_{x_{1}}^{(1)}(t) \cdot \ldots \cdot P_{x_{n}}^{(n)}(t) \tag{4}
\end{align*}
$$

As is well known, the probabilities satisfy the master equations

$$
\frac{\mathrm{d}}{\mathrm{~d} t} P_{x_{i}}^{(i)}=\left(x_{i}-1\right) f_{i} P_{x_{i}-1}^{(i)}+\left(x_{i}+1\right) d_{i} P_{x_{i-1}}^{(i)}-x_{i}\left(f_{i}+d_{i}\right) P_{x_{i}}^{(i)}
$$

corresponding to the linear birth and death process (see, e.g. Bartholomay, 1958; Jagers 1975).

In our model studies we assume $f_{i}=d_{i}$. This is the case where the deterministic approach based on conventional kinetic equations fails. Indeed, it yields the differential equations $\dot{x}_{i}=\left(f_{i}-d_{i}\right) x_{i}=0$ for which $x_{i}$ remains constant, while the stochastic model eventually leads with probability 1 to extinction, as random fluctuations are going to build up.

In order to treat neutral mutations we study the degenerate case of maximum kinetic equivalence first: $f_{1}=f_{2}=\ldots=f_{n}=f$. Despite the kinetic equivalence, the $n$ replicating elements are distinguishable: we assume the existence of an appropriate analytical technique to separate them. In the case of polynucleotides, sequence analysis provides a tool to distinguish between neutral mutants. The main conclusions will also be valid in systems with distinct $f$ values.

In Section 3 we discuss the sequence of extinction times and in Section 4 the probabilities for random selection of individual molecular species.
3. Sequential Extinction Time. Let us start with the (inessential) assumption that initially, each replicating element is present in a single copy. As is well known (see, e.g. Bartholomay, 1958), the probability that a given line is extinct at time $t$ is

$$
\begin{equation*}
P_{0}(t)=\frac{f t}{1+f t} . \tag{5}
\end{equation*}
$$

Eventual extinction, then, is certain:

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} P_{0}(t)=1 \tag{6}
\end{equation*}
$$

although the expectation value for the number of elements at time $t$ is always equal to the initial number, i.e. 1 .

Let us denote by $T_{k}$ the time up to the extinction of $n-k$ types of replicators. This waiting time $T_{k}$ is the random variable, which we characterize as 'sequential extinction time'. Thus $n$ types of replicators are present between $T_{n}(\equiv 0)$ and $T_{n-1}, n-1$ replicators between $T_{n-1}$ and $T_{n-2}$ etc. Between $T_{1}$ and $T_{0}$ only one kind of replicating element is still existing-the population is now uniform-and finally $T_{0}$ is the moment of extinction.

The probability distribution of $T_{k}$,

$$
\begin{equation*}
H_{k}(t)=\operatorname{Prob}\left\{T_{k}<t\right\} \tag{7}
\end{equation*}
$$

is calculated from the probability of extinction of a given replicator, $P_{0}(t)$. We start with the simplest case, $k=0$. The probability $H_{0}$ is the probability that all replicators have vanished.

$$
\begin{equation*}
H_{0}=P_{0,0, \ldots, 0}=P_{0}^{(1)} \cdot P_{0}^{(2)} \cdot \ldots \cdot P_{0}^{(n)}=\left(\frac{f t}{1+f t}\right)^{n} \tag{8}
\end{equation*}
$$

The event $T_{1}<t$ can happen in several ways: either $I_{1}$ is present and all the other replicators have become extinct, or only $I_{2}$ is present, or only $I_{3}$ etc. $T_{1}<t$, however, is also fulfilled if all replicators have died out:

$$
\begin{equation*}
H_{1}=P_{x_{1} \neq 0,0, \ldots, 0}+P_{0 x_{2} \neq 0, \ldots, 0}+\ldots+P_{0,0 \ldots, x_{n} \neq 0}+H_{0} \tag{9}
\end{equation*}
$$

The probability that a given replicator is still present is obtained easily since existence and non-existence are complementary:

$$
\begin{equation*}
P_{x \neq 0}=1-P_{0}=\frac{\not \subset 1}{1+f t} \tag{10}
\end{equation*}
$$

Thus we find

$$
\begin{equation*}
P_{x_{1} \neq 0,0, \ldots, 0}=P_{0, x_{2} \neq 0, \ldots, 0}=\ldots=P_{0,0, \ldots, x_{n} \neq 0}=\frac{(f t)^{n-1}}{(1+f t)^{n}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{1}=(n+f t) \frac{(f t)^{n-1}}{(1+f t)^{n}} \tag{12}
\end{equation*}
$$

Similarly, we derive all higher probability distributions by the recursion formula

$$
\begin{equation*}
H_{k}=\binom{n}{k} \frac{(f t)^{n-k}}{(1+f t)^{n}}+H_{k-1} \tag{13}
\end{equation*}
$$

which finally yields in the formula

$$
\begin{equation*}
H_{k}=\sum_{j=0}^{k}\binom{n}{j} \frac{(f t)^{n-j}}{(1+f t)^{n}} . \tag{14}
\end{equation*}
$$

Setting

$$
A_{j}(t)=\binom{n}{j} \frac{(f t)^{n-j}}{(1+f t)^{n}}
$$

one obtains for its derivative

$$
A_{j}^{\prime}(t)=\frac{f}{(1+f t)^{n+1}}\left[\binom{n}{j}(n-j)(f t)^{n-j-1}-\binom{n}{j} j(f t)^{n-j}\right]
$$

One easily verifies that $H_{k}^{\prime}(t)=A_{k}^{\prime}(t)+A_{k-1}^{\prime}(t)+\ldots+A_{0}^{\prime}(t)$ is a telescopic sum where all terms cancel except the first one. Thus the probability density for $T_{k}$ is given by

$$
\begin{equation*}
H_{k}^{\prime}=(n-k)\binom{n}{k} f^{n-k} \frac{t^{n-k-1}}{(1+f t)^{n+1}} \tag{15}
\end{equation*}
$$

In order to calculate the expectation value of $T_{k}$ we have to evaluate the definite integral (see Gradshteyn and Ryzhik, 1965), $k \geqslant 1$ :

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{n-k}}{(1+f t)^{n+1}} \mathrm{~d} t=f^{-(n-k+1)} \sum_{i=0}^{n-k} \frac{(-1)^{i}}{k+i}\binom{n-k}{i}=\frac{f^{-(n-k+1)}}{k\binom{n}{k}} \tag{16}
\end{equation*}
$$

the analogous integral for $k=0$, however, diverges.
The expectation values for the sequential extinction times $T_{k}$ are thus

$$
\begin{equation*}
E\left\{T_{k}\right\}=\int_{0}^{\infty} H_{k}^{\prime} \cdot t \mathrm{~d} t=\frac{n-k}{k} \cdot \frac{1}{f} ; \quad n \geqslant k \geqslant 1 \tag{17}
\end{equation*}
$$

ar: $E\left\{T_{0}\right\}=\infty$. In the figure we illustrate this series for a concrete numerical example.

Similarly, we compute the variance of the sequential extinction times $T_{k}$ :

$$
\begin{equation*}
D^{2}\left\{T_{k}\right\}=\frac{n(n-k)}{k^{2}(k-1)} \cdot \frac{1}{f^{2}} ; \quad n \geqslant k \geqslant 2 . \tag{18}
\end{equation*}
$$

Note that the variance diverges for $k=0$ and $k=1$.
In the general case, the rate parameters $f_{i}$ are distinct and the initial particle numbers $x_{1}^{0}, \ldots, x_{n}^{0}$ are not all equal to 1 . The expressions for $E\left\{T_{k}\right\}$ become considerably more complicated, but the main conclusion is unaffected: $E\left\{T_{1}\right\}$ is finite and $E\left\{T_{0}\right\}$ is not.

Indeed, the derivative of $\left(1+f_{i} t\right)^{-1}$ is just the opposite of that of $f_{i} t(1+$ $\left.f_{i} t\right)^{-1}$, namely $-f_{i}\left(1+f_{i} t\right)^{-2}$. Now if $x_{1}^{0}=\ldots=x_{n}^{0}=1$, then

$$
H_{0}=\prod_{i}\left(\frac{f_{i} t}{1+f_{i} t}\right)
$$

and its derivative $H_{0}^{\prime}$ is a rational function with leading term $t^{-2}$. Hence $H_{0}^{\prime} t$ is not integrable in $[0,+\infty)$. On the other hand, $H_{1}$ is the sum of $H_{0}$ and expressions of the type

$$
\left(\frac{1}{1+f_{i} t}\right) \prod_{j \neq i}\left(\frac{f_{j} t}{1+f_{j} t}\right)
$$

It is easy to see that $H_{0}^{\prime}$ cancels with the sum of the expressions

$$
\left(\frac{1}{1+f_{i} t}\right)^{\prime} \prod_{j \neq i}\left(\frac{f_{j} t}{1+f_{j} t}\right)
$$

$H_{1}^{\prime}$ then consists of expressions of the type

$$
\left(\frac{1}{1+f_{i^{i}}}\right)\left(\frac{f_{k} t}{1+f_{k} t}\right)^{\prime} \prod_{j \neq i, k}\left(\frac{f_{j} t}{1+f_{j} t}\right)
$$

which are rational functions with leading term $t^{-3}$. Hence $H_{1}^{\prime} t$ is integrable in $[0,+\infty)$. If the initial concentrations $x_{i}^{0}$ are not all equal to 1 , then the expression for $H_{0}$ is like the one given before, except that the terms $\left(f_{i} t\right)$ $\left(1+f_{i} t\right)^{-1}$ are repeated $x_{i}^{0}$ times in the product. If we denote by $T_{1}^{\prime}$ the time until there are only copies of one individual left, the preceding argument
shows that $T_{1}^{\prime}$ is integrable and $T_{0}$ is not. Finally, the time $T_{1}$ until there are only replicating elements of one type left is certainly not larger than $T_{1}^{\prime}$. Hence $T_{1}$ is integrable.

After $T_{1}$, one type of replicating element has been selected. It will eventually die out, but since the random interval $\left[T_{1}, T_{0}\right]$ during which the ensemble is homogeneous has a length whose expectation value is infinite, we may interpret this as 'fixation' of the corresponding type, in analogy to the diploid case.
4. Probabilities for Random Selection. If all $f_{i}$ are equal and the ensemble consists initially of one copy of each type, the probability that a given type is selected as the 'last survivor' is, of course, $1 / n$. If the $f_{i}$ are distinct, the probability that at time $t$ copies of type $I_{i}$ survive while all others have vanished is

$$
\begin{equation*}
\left(\frac{1}{1+f_{i} t}\right) \prod_{j \neq i}\left(\frac{f_{j} t}{1+f_{j} t}\right)=\frac{1}{f_{i} t} \prod_{j=1}^{n}\left(\frac{f_{j} t}{1+f_{j} t}\right) \tag{19}
\end{equation*}
$$

The probability that type $I_{i}$ is exclusive survivor at time $t$, under the condition that fixation has occurred, is

$$
\begin{equation*}
\frac{1}{f_{i} t}\left\{\sum_{j} \frac{1}{f_{j} t}\right\}^{-1} \tag{20}
\end{equation*}
$$

which is independent of $t$. Hence the probability for the eventual fixation of $I_{i}$ is just the same expression, namely

$$
\begin{equation*}
\frac{f_{i}^{-1}}{f_{1}^{-1}+\ldots+f_{n}^{-1}} \tag{21}
\end{equation*}
$$

Now if the initial ensemble consists of $x_{j}^{0}$ copies of $I_{j}$ (for $j=1, \ldots, n$ ), the probability for the fixation of $I_{i}$ is

$$
\begin{equation*}
\frac{x_{i}^{0} f_{i}^{-1}}{\sum_{i=1}^{n} x_{j}^{0} f_{j}^{-1}} \tag{22}
\end{equation*}
$$

In particular, if a mutation occurs in a homogeneous ensemble of $x$ copies, and if this mutation is neutral in the sense that it does not affect the rate $f$, then the probability of its fixation is $1 / x$. This is similar to the classical result, where the probability of fixation of a neutral mutation in a population of $x$ diploid individuals is $1 / 2 x$ (see, e.g. Kimura, 1982, p. 20).


Figure 1. The distribution of sequential extinction times, $E\left\{T_{k}\right\}$, for $n=20$.

## LITERATURE

Bartholomay, A. F. 1958. "On the Linear Birth and Death Processes of Biology as Markoff Chains." Bull. math. Biophys. 20, 97-118.
Crow, J. F. and M. Kimura. 1970. An Introduction to Population Genetics Theory. New York: Harper \& Row.
Gradshteyn, I. S. and I. Ryzhik. 1965. Table of Integrals, Series and Products. New York: Academic Press, p. 292.
Harris, P. E. 1963. The Theory of Branching Processes. Berlin: Springer.
Ishii, K., H. Matsuda and N. Ogita. 1982. "A Mathematical Model of Biological Evolution." J. math. Biol. 14, 327-353.
Jagers, P. 1975. Branching Processes with Biological Application. London: Wiley.
Kimura, M. 1982. Molecular Evolution, Protein Polymorphism and the Neutral Theory. Berlin: Springer.
Milkman, R. 1973. "Electrophoretic Variation in E. coli from Natural Sources." Science 182, 1024-1026.
Yamazaki, T. 1982. "Genic Variability in Natural Populations of the Haploid Plant, Conocephalum conicum. In Molecular Evolution, Protein Polymorphism and the Neutral Theory, Ed. M. Kimura, pp. 123-134. Berlin: Springer.


[^0]:    $\dagger$ This work was supported financially by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung, Project Nos. 3502 and 4506.

