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RANDOM SELECTION — A SIMPLE MODEL
t BASED ON LINEAR BIRTH AND
DEATH PROCESSESY
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Institut fiir Mathematik,
i Universitdt Wien,
: A-1090 Wien, Austria

Linear birth and death processes are used to derive simple expressions for sequential
extinction times and gene fixation probabilities in asexual populations.
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1. Introduction. The synthetic neo-Darwinian theory has been challenged
by the development of the neutral theory. According to this theory the
gene pool of species is also subject to evolutionary change in constant
environment and in absence of selection. The basic idea is that a substantial
percentage of those mutations not immediately eliminated is selectively
neutral and may reach fixation in the population by recurrence and random
drift. A recent mathematical discussion of the neutral theory clarifying the
notions of average evolution rates and protein polymorphism is found in
Ishii er al. (1982).

More and more data favouring the neutral theory have become available

during the last two decades (Kimura, 1982). Nevertheless, the neutralist’s
view has not yet been accepted completely by the majority of biologists.
Originally, molecular evolution was studied almost exclusively on diploid
organisms. More recently, data have become available also for haploid plants
(Yamazaki, 1982) and bacteria (Milkman, 1973), where overdominance
is excluded as a variability-maintaining factor. Here, one finds the same
phenomena as observed with diploid organisms and predicted by the neutral
- theory: protein polymorphism and regularities in nucleotide replacement.
' In this paper ‘fixation’ of neutral mutant alleles in asexually replicating
populations is described by a simple model system, which is identical with
one used for in vitro RNA replication. The analysis makes use of well-known
results of linear birth and death processes (Harris, 1963; Jagers, 1975) and
derives simple expressions for expectation values of extinction times. The
probability for fixation of newly formed mutants is similar to the classical ex-
pressions for random drift in population genetics (Crow and Kimura, 1970).

1This work was supported financially by the Austrian Fonds zur Forderung der Wissenschaftlichen
Forschung, Project Nos. 3502 and 4506.
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12 P. SCHUSTER AND K. SIGMUND

2. Independent Birth and Death Processes. An appropriate model system
consists of 21 parallel reactions, n autocatalytic replication steps and »
decay reactions:

(B)+[i__>fi b A A Lo o (1)
et e ) (2)

All 21 reactions proceed under conditions of practical irreversibility. The
n replicating elements are denoted by I;, L, . . . [,. The raw material from
which the elements are built, B, and the decomposition product, #, do not
enter as variables into the model system: the amount of B is assumed to
be constant or buffered and M is the end product of an irreversible reaction
step. We describe the evolution of our system by a set of stochastic variables
Bkt o Kkl by o vis adiuld ), hETE X:(¢) is the number of replicating elements of
type I; at the time ¢. The corresponding probability densities are given by

PO() =Prob{ X)) =x};  1=1,2,....n

ande s ) 1o 2o v -

(3)

Since we assumed independence, the joint probability density is simply
given by the product of the individual probability densities:

P, . x,(t) =Prob{Xi(6) =x;, ..., &, (1) =x,}
=P R (4)

As is well known, the probabilities satisfy the master equations

o
EP,S’,? = (x; — DAPEL, + (o + DAPY — x(f; + d)PS)
corresponding to the linear birth and death process (see, e.g. Bartholomay,
1958; Jagers 1975). ,

In our model studies we assume f; = d;. This is the case where the deter-
ministic approach based on conventional kinetic equations fails. Indeed,
it yields the differential equations x; = (f; — d;))x; = 0 for which x; remains
constant, while the stochastic model eventually leads with probability 1 to
extinction, as random fluctuations are going to build up.

In order to treat neutral mutations we study the degenerate case of maxi-
mum kinetic equivalence first: fy = fob=...=f, = 1. Despite the kinetic
equivalence, the n replicating elements are distinguishable: we assume the ex-
istence of an appropriate analytical technique to separate them. In the case
of polynucleotides, sequence analysis provides a tool to distinguish between
neutral mutants. The main conclusions will also be valid in systems with
distinct f values.
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In Section 3 we discuss the sequence of extinction times and in Section 4
the probabilities for random selection of individual molecular species.

3. Sequential Extinction Time. Let us start with the (inessential) assump-
tion that initially, each replicating element is present in a single copy. As
is well known (see, e.g. Bartholomay, 1958), the probability that a given
line is extinct at time 7 is

It

Py(t) = 5 )

o(?) L+7t (3)
Eventual extinction, then, is certain:

lim Py(z) =1, (6)

1> oo

although the expectation value for the number of elements at time ¢ is
always equal to the initial number, i.e. 1.

Let us denote by 7, the time up to the extinction of n — k types of
replicators. This waiting time 7, is the random variable, which we char-
acterize as ‘sequential extinction time’. Thus »n types of replicators are
present between 7,, (£0) and 7,,_;, n — 1 replicators between 7,_; and
T,_, etc. Between T; and T, only one kind of replicating element is still
existing—the population is now uniform—and finally 7 is the moment of
extinction.

The probability distribution of T,

Hy(t) = Prob{ T, <1}, ' (7)

is calculated from the probability of extinction of a given replicator, Py(?).
We start with the simplest case, k¥ = 0. The probability H, is the probability
that all replicators have vanished.

isE e
H:P :P(l)lP(2)....lP(n): 2 8
o = 1o,0,...,0 0 0 0 1+ 7t (8)
The event 7} <t can happen in several ways: either /; is present and all the
other replicators have become extinct, or only 7, is present, or only /5 etc.
T, <t, however, is also fulfilled if all replicators have died out:

Hy = Py ino0,...,0 T'Poxy20,.50 T vt P x0T Ho )

The probability that a given replicator is still present is obtained easily since
existence and non-existence are complementary:

Px*o-:]—Po:l_i_fl.- (10)
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Thus we find

Pils60..0 i & R i RO~ s m (11)
and
n—I1
Iy S g 5% (f) (12)
(1 +ff)"
Similarly, we derive all higher probability distributions by the recursion
formula
n (fl‘)"—k
H, = sy ke Bl 13
k <k>(1+ft)" k—1 (13)

which finally yields in the formula

k / n—
2y (”) olfiYsqss (14)

S\ a+pr

Setting
HLf%s (fayed
e <z> 1+ 7y

one obtains for its derivative

e s f i1 ctilieed b el
T [( >(” e <f>](m JJ'

One easily verifies that Hy(f) = Ay (t) + Aj_y (£) + . .. + Ao(2) is a telescopic
sum where all terms cancel except the first one. Thus the probability density
for Ty, is given by

n l‘n—k—l
HIL=(n—k)<k> f"_"(*H—m—nﬁ (15)

In order to calculate the expectation value of 7, we have to evaluate the
definite integral (see Gradshteyn and Ryzhik, 1965), k = 1:

[n—k n—k (__1)1 (7’1 224 k> _f—{n—k+1) :
L SN

By
k
k
the analogous integral for k= 0, however, diverges.

0 (1 +ff)n+l i=0 K i
The expectation values for the sequential extinction times 7}, are thus

(16)
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-

1
P (17)
T

ar:d E{Ty} = o°. In the figure we illustrate this series for a concrete numerical

EUH=/:H;wm=

example.
Similarly, we compute the variance of the sequential extinction times 7 :

2 =gy -1
DA T = e sty Sl (18)

Note that the variance diverges for k = 0 and k = 1.

In the general case, the rate parameters f; are distinct and the initial
particle numbers x?, . . ., x? are not all equal to 1. The expressions for
E{T,} become considerably more complicated, but the main conclusion
is unaffected: E{T;} is finite and E{7;} is not.

Indeed, the derivative of (1 + f;£)7! is just the opposite of that of f;#(1 +
)7L, namely —(1 + f;r) 2. Now if x{ = . . . = x? = I, then

Ho:H < i >

i Lt

and its derivative H is a rational function with leading term #~2. Hence Hy?
is not integrable in [0, +<0). On the other hand, H; is the sum of H, and

expressions of the type
1 1 Jit
PEg F P gupe

It is easy to see that Hy cancels with the sum of the expressions

1% £t
<1+f,-r> ,.I;,I<1+];t>'

H; then consists of expressions of the type

| % fit
<l+ﬁ> <1+ﬁﬁ>j££-<l+ﬁJ’

which are rational functions with leading term #73. Hence H;t is integrable
in [0, +o0). If the initial concentrations x? are not all equal to 1, then the
expression for H, is like the one given before, except that the terms (fif)
(1 + f;r)7! are repeated x? times in the product.'If we denote by 77 the time
until there are only copies of one individual left, the preceding argument
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shows that 7, is integrable and T, is not. Finally, the time 7} until there
are only replicating elements of one type left is certainly not larger than
T;. Hence T, is integrable.

After 7. one type of replicating element has been selected. It will eventu-
ally die out, but since the random interval [Ty, T,] during which the en-
semble is homogeneous has a length whose expectation value 1s infinite,
we may interpret this as ‘fixation’ of the corresponding type, in analogy
to the diploid case.

4. Probabilities for Random Selection. 1f all f; are equal and the ensemble
consists initially of one copy of each type, the probability that a given
type is selected as the ‘last survivor’ is, of course, 1/n. If the f; are distinct,
the probability that at time ¢ copies of type I survive while all others have

vanished is
1 f]'.[ :—1_ n ];'t
<1+fff> Jg<1+ﬁf> fit E(}lﬂ;r)' S

The probability that type f is the exclusive survivor at time ¢, under the
condition that fixation has occurred, is

=1

(20)

b

sl 1

fit | fit

which is independent of z. Hence the probability for the eventual fixation
of I is just the same expression, namely

fi_l

> = ] (21)
fi s . . F1 !
Now if the initial ensemble consists of x,-o copies of I (forj = | EaaaE R
the probability for the fixation of I is
0p-1
S (22)

: :

01
2 Xj ﬁ
j=1

In particular, if a mutation occurs in a homogeneous ensemble of x copies,
and if this mutation is neutral in the sense that it does not affect the rate f,
then the probability of its fixation is 1/x. This is similar to the classical
result, where the probability of fixation of a neutral mutation in a popula-
tion of x diploid individuals is 1/2x (see, e.g. Kimura, 1982, p. 20).
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Figure 1. The distribution of sequential extinction times, £{7}}, for n = 20.
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