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The public goods game represents a straightforward generalization of the prisoner’s dilemma
to an arbitrary number of players. Since the dominant strategy is to defect, both classical and
evolutionary game theory predict the asocial outcome that no player contributes to the public
goods. In contrast to the compulsory public goods game, optional participation provides a
natural way to avoid deadlocks in the state of mutual defection. The three resulting
strategiesFcollaboration or defection in the public goods game, as well as not joining at
allFare studied by means of a replicator dynamics, which can be completely analysed in
spite of the fact that the payoff terms are nonlinear. If cooperation is valuable enough, the
dynamics exhibits a rock-scissors-paper type of cycling between the three strategies, leading
to sizeable average levels of cooperation in the population. Thus, voluntary participation
makes cooperation feasible. But for each strategy, the average payoff value remains equal to
the earnings of those not participating in the public goods game.

r 2002 Elsevier Science Ltd. All rights reserved.
Introduction

Most theories on the emergence of cooperation
among selfish individuals are based on kin
selection (Hamilton, 1963), group selection
(Wilson & Sober, 1994) and reciprocal altruism
(Trivers, 1971). In all three models, cooperative
behavior is attained through basic mechanisms
of discrimination enabling individuals to target
their altruistic acts towards certain partners
only.
n
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In this article, we present another mechanism to
achieve sizeable levels of cooperation in a popula-
tion. The following investigation is based on the
public goods game (see Fehr & G.achter, 2002;
Kagel & Roth, 1995) which represents a natural
extension of the prisoner’s dilemma to an arbitrary
number of players (see Boyd & Richerson, 1988;
Dawes, 1980; Hauert & Schuster, 1997).

In a typical public goods game, an experi-
menter gives 20 dollars to each of eight players.
The players may contribute part or all of their
money to some common pool. The experimenter
then triples this amount and divides it equally
among the eight players, irrespective of the
amount of their individual contribution. If all
players contribute maximally, they will end up
r 2002 Elsevier Science Ltd. All rights reserved.
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with 60 dollars each. But each individual is faced
with the temptation to exploit, as a free rider,
the contributions of the co-players. Hence, the
dominating strategy is to invest nothing at all. If
all players do this, they will not increase their
initial capital. In this sense, the ‘‘rational’’
equilibrium solution prescribed to ‘‘homo oeco-
nomicus’’ leads to economic stalemate. In actual
experiments, players tend to invest a lot, how-
ever: typically, in the first round, they invest 10
dollars or more (Fehr & G.achter, 2002).

Public goods games are abundant in human
and animal societies, and can be seen as basic
examples of economic interactions (see e.g.
Binmore, 1994; Dugatkin, 1997).

The Model

We consider a large population of players.
From time to time, N such players are chosen
randomly. Within such a group, players can either
contribute some fixed amount c or nothing at all.
The return of the public good, i.e. the payoff to the
players in the group, depends on the abundance of
cooperators. If nc denotes their number among the
public goods players, the net payoff for coopera-
tors Pc and defectors Pd is given by

Pc ¼ �c þ rc
nc

N
;

Pd ¼ rc
nc

N
;

where r denotes the interest rate on the common
pool. For a public goods game deserving its name,
we must have

1oroN: ð1Þ

The first inequality states that if all do the same,
they are better off cooperating than defecting; the
second inequality states that each individual is
better off defecting than cooperating. Selfish
players will therefore always avoid the cost of
cooperation c; i.e. a collective of selfish players will
never cooperate. Defection is the dominating
strategy. Hence both classical and evolutionary
game theory predict that all players will defect, and
obtain zero payoff.

We now extend the public goods game. In this
optional public goods game, players can decide
whether to participate in the public goods game
or not. [For a similar approach in the prisoner’s
dilemma see Batali & Kitcher (1995); Orbell &
Dawes (1993)]. Individuals unwilling to join the
public goods game are termed loners. These
players prefer to rely on a small but fixed payoff
Pl ¼ sc with

0osor � 1; ð2Þ

such that the members in a group where all
cooperate are better off than loners, but loners
are better off than members in a group of
defectors.

For the optional public goods game, there are
thus three behavioral types in the population: (a)
the loners unwilling to join the public goods
game, (b) the cooperators ready to join the
group and to contribute their effort, and (c) the
defectors who join, but do not contribute.
Assuming that groups form randomly, the pay-
offs for the different strategies Pc;Pd and Pl are
then determined by the relative frequencies x; y
and z of the three strategies.

The Equations of Motion

Evolutionary game theory assumes that a
strategy’s payoff determines the growth rate of
its frequency within the population. More
precisely, following (Weibull (1995), Schlag
(1998) and Hofbauer & Sigmund (1998), we
postulate in our model that players using
strategies i ¼ 1;y; n occasionally compare their
payoff with that of a randomly chosen ‘‘model’’
member of the population, and adopt the
strategy of their model with a probability
proportional to the difference between the
model’s payoff and their own, if this is
positive (and with probability 0 otherwise). In
the continuous time model, the evolution of the
frequencies xi of the strategies i is given by

’xi ¼
X

j

xixjðPi � PjÞ ð3Þ

with 1pi; jpn; which reduces to the replicator
equation

’xi ¼ xiðPi � %PÞ; ð4Þ
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where %P ¼
P

xjPj is the average payoff in the
population.

To be precise, we consider a very large, well-
mixed population with three types of players:
loners, cooperators and defectors. From time to
time, sample groups of N players are randomly
chosen and offered to participate in a single
public goods game. Note that in large popula-
tions, the probability that two players ever
encounter again can be neglected. Depending
on their type, players either refuse to participate
or join the public goods game. In the latter case,
they either defect, or cooperate. But, their
strategies are specified beforehand, and do not
depend on the composition of the sampled
group. In particular, we do not consider condi-
tional strategies of the type: cooperate if and
only if the group contains more than two
cooperators, or the like.

Each player is sampled a number of times, and
obtains an average payoff which depends on his
strategy as well as the composition of the entire
population. This composition changes according
to the replicator dynamics [see eqns (3) and (4)].
The intuition behind the dynamics is that
occasionallyFand independently of the sam-
pling of the public goods teamsFa randomly
chosen player A compares his or her payoff with
that of another player B (also randomly chosen,
within the entire population and not limited to
the ‘‘public goods’’ groups to which A belonged),
and adopts the strategy of B; if it yields a higher
payoff, with a probability proportional to the
difference in their payoffs. Opportunities for
updating, i.e. changing the strategy, are sup-
posed to occur much less frequently than
opportunities to play in a public goods group.
We emphasize that there are other reasonable
game dynamics, but for the replicator equation
we can produce a full analysis.

For simplicity and without loss of generality,
we set the cost c of cooperation equal to 1: The
payoff for loners is then given by the constant

Pl ¼ s:

In order to compute the payoff values for
cooperators and defectors, we first derive the
probability that S of the N sampled individuals
are actually willing to join the public goods
game. In the case S ¼ 1 (no co-player shows up)
we assume that the player has no other option
than to play as a loner, and obtains payoff s:
This happens with probability zN�1: For a given
player willing to join the public goods game, the
probability of finding, among the N � 1 other
players in the sample, S � 1 co-players joining
the group (S41), is

N � 1

S � 1

 !
ð1� zÞS�1zN�S:

The probability that m of these players are
cooperators, and S � 1 � m defectors, is

x

x þ y

� �m
y

x þ y

� �S�1�m S � 1

m

 !
:

In that case, the payoff for defectors is rm=S:
Hence the expected payoff for a defector in a
group of S players (S ¼ 2;y; N) is

r

S

XS�1

m¼0

m
x

x þ y

� �m
y

x þ y

� �S�1�m S � 1

m

 !

¼
r

S
ðS � 1Þ

x

x þ y
:

Thus,

Pd ¼ szN�1 þ r
x

1 � z

XN

S¼1

N � 1

S � 1

 !

ð1� zÞS�1zN�S 1�
1

S

� �

¼ szN�1 þ r
x

1 � z

1 �
XN

S¼1

N � 1

S � 1

 !
ð1 � zÞS�1zN�S 1

S

" #

and using
N � 1
S � 1

� �
¼

N

S

� �
S=N leads to

Pd ¼ szN�1 þ r
x

1� z
1 �

1� zN

Nð1� zÞ

� �
: ð5Þ
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Fig. 1. The difference between the payoff of coopera-
tors Pc and defectors Pd is a function of the fraction of
loners z: F ðzÞ ¼ Pd � Pc: If almost everybody is participat-
ing in the public goods game (z-0) then F ðzÞ40 holds and
it pays to defect. However, for interest rates r42; if the
proportion z of loners increases, it eventually pays to
cooperate (F ðzÞo0) and the social dilemma disappearsFat
least for a while. F ðzÞ has either no or a unique root in the
interval ð0; 1Þ:
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In a group with S � 1 co-players playing the
public goods game, switching from cooperation
to defection yields 1� r=S: Hence,

Pd � Pc ¼
XN

S¼2

1 �
r

S

	 
 N � 1

S � 1

 !
ð1 � zÞS�1zN�S:

Using the same arguments as before, we obtain

Pd � Pc ¼ 1 þ ðr � 1ÞzN�1 �
r

N

1� zN

1 � z
¼: F ðzÞ:

ð6Þ

The advantage of defectors over cooperators
depends only on the fraction of individuals
actually willing to play, i.e. on the fraction of
loners z: At the same time, it is independent of
the loner’s payoff s:

The sign of Pd � Pc in fact determines whether
it pays to switch from cooperation to defection
or vice versa, FðzÞ ¼ 0 being the equilibrium
condition. We claim that for rp2; F has no root,
and for r42 exactly one root #z in the interval
ð0; 1Þ: In order to show this, we consider the
function GðzÞ ¼ F ðzÞð1 � zÞ which has the same
roots as F ðzÞ in ð0; 1Þ and note that (a) Gð0Þ ¼
1� r=N40; (b) Gð1Þ ¼ 0; (c) GðzÞ^ð2 � rÞ
ðN � 1Þð1� zÞ2 for z-1; such that in a neigh-
borhood of z ¼ 1 GðzÞ is negative for r42; and
(d) G00ðzÞ ¼ zN�3ðN � 1ÞððN � 2Þðr � 1Þ � zðNr�
N � rÞÞ changes sign at most once in ð0; 1Þ: Thus,
for r42 [which by eqn (1) implies N42] there
exists a threshold value of the loners frequency #z

above which cooperators fare better than defec-
tors (see Fig. 1).

The average population payoff %P can now be
rewritten using the condition y ¼ 1 � x � z:

%P ¼ xPc þ yPd þ zPl

¼ xðPc � PdÞ þ zðs� PdÞ þ Pd

¼ � xðPd � PcÞ þ ð1 � zÞðPd � sÞ þ s:

Substituting eqns (5) and (6) then yields

%P ¼ s� ð1� zÞs� ðr � 1Þx½ 	ð1� zN�1Þ: ð7Þ

The Dynamics

Let us now analyse the replicator dynamics.
The corners of the simplex S3 ¼ fðx; y; zÞ :
x; y; zX0;x þ y þ z ¼ 1g; i.e. the vectors ei of
the standard basis (i ¼ c; d; l in a straightforward
notation), are obviously fixed points. There are
no other fixed points on the boundary of S3: In
fact, the edge eced consists of an orbit leading
from ec (cooperators only) to ed (defectors only),
the edge edel is an orbit leading to the state
consisting of loners only, and the orbit elec closes
this heteroclinic cycle of rock-scissors-paper type
on the boundary.

In order to analyse the dynamics in the
interior, it is useful to show that the replicator
equation, defined on the simplex S3; can be
rewritten in the form of a Hamiltonian system,
and thus admits an invariant of motion. Indeed,
defining as a new variable f ¼ x=ðx þ yÞ; i.e. the
fraction of cooperators among the individuals
actually participating in the public goods game,
we obtain

’f ¼
y ’x � x ’y

ðx þ yÞ2
¼

xy

ðx þ yÞ2
ðPc � Pd Þ:

This, as well as substituting eqn (7) into the
replicator equation ’z ¼ zðs� %PÞ; yields

’f ¼ �f ð1� f ÞF ðzÞ; ð8Þ

’z ¼ s� f ðr � 1Þ½ 	zð1� zÞð1 � zN�1Þ ð9Þ
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Fig. 2. The three corners ec; ed ; el of S3 are saddle
points (but el is not hyperbolic) and the boundary bd S3

represents a rock-scissors-paper type heteroclinic cycle. For
small interest rates, ro2; no fixed point exists in int S3 and
all orbits converge to el : But el is not Lyapunov stable.
Parameters: N ¼ 5; r ¼ 1:8; s ¼ 0:5:
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with ðf ; zÞ on the unit square ð0; 1Þ2: Dividing
the right-hand side by the function f ð1� f Þz
ð1 � zÞð1 � zN�1Þ; which is positive on the unit
square, corresponds to a change in velocity
which does not affect the orbits. This yields

’f ¼
�F ðzÞ

zð1� zÞð1 � zN�1Þ
¼: �gðzÞ;

’z ¼
s� f ðr � 1Þ

f ð1 � f Þ
¼: lð f Þ:

Introducing H :¼ G þ L; where GðzÞ and Lð f Þ
are primitives of gðzÞ and lð f Þ:

GðzÞ ¼ 1�
r

N

	 

log z þ

r

2
� 1

	 

logð1� zÞ þ RðzÞ;

ð10Þ

Lð f Þ ¼ s log f þ ðr � 1� sÞ log ð1� f Þ ð11Þ

with RðzÞ bounded on ½0; 1	; we obtain the
Hamiltonian system

’f ¼ �
@H

@z
;

’z ¼
@H

@f
:

The actual dynamics of the system depends on
whether the condition Pd ¼ Pc can be satisfied in
the interior S3; and hence on the interest rate r:
For rp2 there are no fixed points except
the corners and all trajectories in int S3 are
homoclinic orbits of el : Thus, the system will
display intermittently brief bursts of coopera-
tion, but always ends up with no one willing to
participate in the public goods game, as shown
in Fig. 2.

For r42; eqn (2) implies that there exists a
unique fixed point Q ¼ ð #x; #y; #zÞ in int S3 such
that F ð#zÞ ¼ 0 and:

#x ¼
s

r � 1
ð1� #zÞ ð12Þ

as well as

#y ¼ 1�
s

r � 1

	 

ð1� #zÞ ð13Þ
which follows from Pd ¼ Pl : Due to the fact that
the system is conservative, and the Hamiltonian
H attains a strict (global) maximum at ðs=
ðr � 1Þ; #zÞ; the interior equilibrium Q is a center,
i.e. it is neutrally stable and surrounded by
closed orbits (see Fig 3). Actually, all interior
orbits are closed: eqn (10) shows that GðzÞ-
�N for z-0; 1 if 2oroN; and eqn (11) implies
that Lðf Þ-�N as f-0; 1 if sor � 1: There-
fore, H-�N uniformly near the boundary of
½0; 1	2 and hence all level sets of H are closed
curves. In particular, no interior orbit converges
to the non-hyperbolic equilibrium el :

Variations of the three parameters N; r; s
allow to position Q anywhere in the interior of
the simplex (see Fig. 4). Note that in general all
three parameters must be adjusted to place Q in
a particular location. According to eqns (12) and
(13), the fixed point Q lies on the line

x ¼
s

r � 1 � s
y ð14Þ

independent of the group size N: For increasing
N; Q moves towards the corner el and in the
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Fig. 3. For r42; the three corners ec; ed ; el are again
saddle points and bd S3 represents a heteroclinic cycle. In
int S3 a single fixed point Q appears. It is a center
surrounded by closed orbits (see text). Parameters:
N ¼ 5; r ¼ 3; s ¼ 1:

e l e d

e c

Nσ

rQ

Fig. 4. The position of the center Q in S3 depends on
the values of the parameters N; r and s: The intersection of
the three lines corresponds to N ¼ 5; r ¼ 3; s ¼ 1: Each line
indicates the displacement of the center when varying a
single parameter. Increasing the number of potential
participants N shifts the center along the solid line in the
direction indicated by the arrow, i.e. towards the corner el :
Similarly, increasing s shifts the center upwards on the
dashed line z ¼ #z and increasing r moves the center to the
right, along the dash–dotted line. For r-2; the center
approaches the corner el :

e l e d

e c

Q

Fig. 5. In the limiting case r ¼ N; the edge eced is a line
of fixed points, stable on ecQ (closed circles) and unstable
on Qed (open circles). Random drift and occasional
appearances of the missing loner strategy will eventually
drive the system close to the corner ec with almost
everybody cooperating. Parameters: N ¼ 3; r ¼ 3; s ¼ 1:
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limit N-N homoclinic orbits issuing from and
leading to el are obtained.

For the limiting cases r ¼ N; s ¼ r � 1 and
s ¼ 0; Q approaches the edges eced ; elec or eled ;
respectively. In particular, for r ¼ N; coopera-
tion becomes stable in the sense that, while the
state can fluctuate along the edge z ¼ 0 by
random drift, any small fluctuation introducing
the missing loners will be offset in such a way
that the loners vanish again and the number of
cooperators is larger than previously (see Fig. 5).

Although the time averages of the state
variables over an orbit of period T ; defined as

%v ¼ ð1=TÞ
R T

0 v dt; depend on the initial condi-
tions, the following relations hold for every
orbit. First, the average fraction of cooperators
among playing individuals corresponds to its
value at the equilibrium point Q:

%x

%x þ %y
¼

s
r � 1

: ð15Þ

This means that the time average lies on the solid
line in Fig. 4 which connects Q and el : Second,
the average of the fraction of cooperators among
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participants in public goods games %f corresponds
to the fraction of the averages:

%f ¼
s

r � 1
: ð16Þ

Surprisingly, perhaps, increasing r always favors
defection, i.e. it decreases the fraction f of
cooperators among those actually engaging in
the public goods game.

According to numerical calculations, the time
average lies on the line segment Qel and
converges to el as the closed orbit approaches
the boundary of S3: We can offer only a heuristic
explanation of this observation: The closer the
periodic orbit is to the boundary the more time it
will spend near the degenerate equilibrium el

(both eigenvalues zero) where motion is much
slower than close to the hyperbolic equilibria ec

and ed :
Let us show how eqn (15) is deduced

by integrating eqn (9). Remembering that, by
definition, x ¼ f ð1� zÞ; and dividing both sides
of eqn (9) by z ð1� zN�1Þ; we getZ T

0

sð1 � zÞ � ðr � 1Þ x½ 	 dt

¼
Z T

0

’z dt

z ð1� zN�1Þ
¼ pðzÞ zðTÞ

zð0Þ





pðzÞ being a primitive of ½zð1� zN�1Þ	�1: Since
the orbits are closed, the last term vanishes and
the proportionality between %x and 1� %z; i.e. %x þ
%y follows. The time average (16) follows in
the same way after dividing eqn (9) by
zð1 � zÞð1� zN�1Þ:

Due to the properties of the replicator
equation, the time averages of the payoffs for
the three different strategies are equal and reduce
to the payoff of loners s:

%Pc ¼ %Pd ¼ %Pl ¼ s:

Thus, in the long run, no one does better or
worse than the loners.

Discussion

The oscillations, and thus the recurrent
increase in cooperation, are due to the fact that
a public goods game needs not always be a social
dilemma. In a public goods game, those players
who are defecting are always better off than
those players who are cooperating. Nevertheless,
if the group size S of participating players is less
than the interest rate r; it pays the individual
player to switch from defection to cooperation.
If players have the option of an asocial ‘‘fallback
solution’’, they can refuse to join the public
goods game. If enough players refuse to join, the
group becomes so small that the game is no
longer a social dilemma. But then, the higher
payoff obtained by the cooperators in the public
goods game causes more players to join, and
larger groups of public goods players create the
temptation to defect, i.e. the social dilemma.
This requires r42; a condition which is similar
to the condition that in the Prisoner’s dilemma
game, the benefit exceeds twice the cost: this
condition is essential for the stability of the
Pavlov strategy (Nowak & Sigmund, 1995). It
may be argued that this condition can also be
found in Hamilton’s rule for kinship selection.
Here, the cost-to-benefit ratio should exceed the
degree of relatedness between donor and reci-
pient, but under ‘‘normal’’ conditions (no
inbreeding, etc.) this relatedness is at most 1=2:

The proposed model for an optional public
goods game represents one of the rare cases
where a highly nonlinear system of replicator
equations can be fully analysed by purely
analytical means. For small interest rates, rp2;
homoclinic orbits are observed starting in and
returning to el ; i.e. the state where no one
participates in the public goods game. For r42
a fixed point occurs in the interior of the simplex
S3: By reducing the replicator equations to a
Hamiltonian system, we see that Q is actually
a center and that in int S3 only closed orbits
appear. From this follow various conditions on
the time averages of the frequencies and payoffs
of the three strategies. For example, the average
ratio of cooperators and defectors corresponds
to the ratio of the averages and is independent of
the initial configuration and the group size N: It
turns out to be impossible to increase coopera-
tion by increasing the interest rate rFon the
contrary, it favors defection and lowers %x= %y: In
order to promote cooperation, one should rather
increase the loner’s payoff s or reduce the group
size N: Note that in the latter case %x= %y still
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increases even when keeping the profits for each
invested dollar constant (r=N ¼ const). The fact
that cooperation is favored in smaller groups
agrees with other theoretical as well as experi-
mental results (Bonacich et al., 1976; Boyd &
Richerson, 1988; Milinski et al., 1990; Hauert &
Schuster, 1998).

We stress that the dynamics obtained in this
simple and, we believe, natural model is highly
degenerate: it has a center, an invariant of
motion, a heteroclinic cycle, a non-hyperbolic
fixed point, and an even number of Nash
equilibria. All these properties are non-generic
under the usual assumptions. But as we show in
Hauert et al. (2002), a wide variety of adaptive
mechanisms, corresponding to many different
types of evolutionary game dynamics, lead to
persistent oscillations in the frequencies of the
three strategies.

The option to drop out from a public goods
game, i.e. a social and economic enterprise,
avoids deadlocks in states of mutual defection
and economic stalemate. As a prerequisite, the
possible gainFi.e. the ‘‘interest’’ rFhas to be
quite large. The enterprise must offer a con-
siderable advantage. In simple societies, such
situations may occur in big game hunting or in
war. Small groups of volunteers are known to be
efficient for difficult tasks. This must have been
known to military people for ages. We only
quote Marbot, an officer of Napoleon: ‘‘To face
immense perils, volunteers are infinitely prefer-
able to bodies of men under orders.’’ Success
attracts larger groups of participants, but growth
may inherently spell decline. This mechanism
leads to oscillations in the composition of the
population. However, the average effect on the
individual’s payoff is just the same as if this
possibility did not exist and all members of the
population were loners.
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