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on between three specios

Abstract. Following May and Leonard, we discuss some models of compeii
These models exhibit orbits converging to cycles wiluch consist of thiog s

connecting them.

points and three orbiis

1. Introduction. In [4] May and Leonard studied the equations

Xy :.1*1(] X1~ aXy— Bxs),
(]) XQZXZ(l ”BXV‘XQ“(IXT«L

X3:X3(] X ‘"BXQ“X})

on the space R ={x;,xs,x)eR:x;=0,i=1,2, 3} with paramecters 0 <o <1 < and
a + B> 2. Thisis an equation of the Gauss-Lotka~Volterra type modeling competition
between three species 1, 2, 3 whose densities are x4, x2, x3. The four fixed points on the
boundary of R (namely (0,0, 0), e; = (1, 0,0), 2= (C. 1, 0y and e3 = (0, 0, 1)) as well as
the unique fixed point C=(1+a +8) '(1, 1, 1) in the interior are unstable.

May and Leonard showed in their clegant study that such a system exhibits a
general class of solutions with nonperiodic oscillations of bounded amplitude but ever
increasing cycle time; asymptotically, “‘the system cycles from being composed almost
wholly of population 1, to almost wholly 2, to almost wholly 3, back to almost wholly 1,
ete.” [4]. The proof of this statement can be modified and supplemented, however, due
to the fact that the orbits do not converge to the triangle formed by the intersections of
the plane x; + x,+x3 == 1 with the planes x, =0, x; = 0 and x; = 0 respectively, i.e., to
the boundary of the simplex §; spanned by ¢4, ¢, and ¢3.

In § 2 of this note we give such a modified discussion of (1) and describe the w-limit
sets. In § 3 we show that even if the symmetry condition of (1) is dropped, there are
orbits with the same cyclic asymptotic behavior. In § 4, finally, we give an example of an
ecological equation whose orbits have the w-limit described in [4], namely the
boundary of the simplex S;.

2. The model of May and Leonard [4]. Consider first the restriction of (1) to the
plane x3 = 0. In the positive quadrant, x, = 0 on the segment joining (0, 1/«) to (1. 0)
and x; =0 on the segment between (0, 1) and (1/8, 0). These segments are disjoint.
There are three fixed points, namely: (0, 0), which is a source having 1 as double
eigenvalue; (1, 0) which is a sink, with eigenvalues —1 and 1—8; and (0, 1) whichis a
saddle, the eigenvalues being —1 and 1 — «. (A phase portraitissketched in Fig. 1.) Note
the unstable manifold of (0, 1), (a separatrix), which is an orbit 05 with e -limit (0, 1} and
w-limit (1,0j. {The segment between (0, 1) and (1, 0) is not invariant, incidentally.)

Returning to R i we see that there is an orbit o5 in the plane x3 =0 frome; to ey, an
orbit ¢; in the planc x> = 0 from ¢, to e; and an orbit ¢, in the plane x; = 0 from exto ¢,.
Let F denote the union of the three orbit closures (se¢ Fig. 2).

THEOREM 1. Wiih the exception of the fixed point C, every orbit in the interior of R
has Fas e-limit.
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1 X,

FI1G. 1. Computer graph of orbits of (1) in the plane x5 = 0.

Proof. If V =x,;+ x,+x3, then
V=x1+x2+x3—[xf+x%+x§+(a +B)x1X2+ x2x3+ x3%1)]

= V—(x1’ X2, x3)TA(x1’ X2, x3)

Xy

F1G. 2. The union of 01, 04 and 05 is the w-limit of almost every orbit of 11},
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which is symmetric and circulant and has the eigenvalues
Ai=l+a+B>0,
Azz= 1—{a+p)<0.
Thus the quadric
V —{x, x2, Xz)TA(Xx-, X2, X3)=0

is a two-sheeted hyperboloid with center (1+a + 37 '(3, 3, 3) and rotational symmetry
around the axis x; = x; = x3. The origin and the equilibrium point C lie on this axis and
on the quadric. The sheet through (0, 0, 0) contains no other point of R3. The sheet
through C (see Fig. 3) contains also ey, €; and ¢5 and for every point (xy, x3, x3) on this
sheet one has V 23/(1+a+B) with equality iff (x(, x3, xa)=C. If, furthermore,
(x1, x2, x3)€R2, then V =1 with equality iff (xq, x3, x3) is one of the o,.

/ x—})v+1:]
,///// 3
—————— L e e — ._.x+y+z’» e e

C t+a+p

O
T

Fi1G. 3. Intersection of the hyperboloid with a plane through the symmetry axis

The points in the interior of R satisfying V' = 0 are just those on the shezt; hence
every orbit in the interior of R enters the set

Q1 ={lxy, x5, \’3)6[%3'113/’(1 tadp)< V=i

and remains inside (with the exception of the fixed point € and one orbit whose o -limit
15 (7).
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With P = x,x,x3 one has
P=P3-(1+a+8)V)

In Q,, P has a local extremum in C. With the exception of one orbit whose w-limit is C,
all other orbits in Q, approach the set where P =0, i.e., the boundary of R 1. This shows
that the orbits of almost all points in R2 approach the set Q:NbdR: and hence have
their w-limits in this set. Such an w-limit W has to be invariant and, by [1}. T;-
connected. This means that for any ¢ >0 and and x, y€ W, there is a chain z,=
Xz, Ze=yin Wwithd(Thzy, z,0)<efori=0, -, n—1.(d is Euclidean metric
and T, denotes the one parameter group of transformations defined by (1).) The fixed
points ey, e; and ¢ cannot be w-limits of orbits in the interior of R since they are
saddles. The only remaining invariant T,-connected set in O:NbdR? is F, which
therefore must be the w-limit.

3. A generalized, unsymmetric model. In [4] May and Leonard state that it is
plausible that qualitative features of (1) will remain true in the more general unsym-
metric case. Here we consider the equations

Yr=x(1-x —ax;—Fx3).
(2} xzzxz(l‘ﬂle—xz-azxz),
*3=1x3(1 —aszx;— Bix;— x3),

with + <@, <1<8; and B;—1>1—q,; (1=i j=3) and show that they have indeed
cycles of ever lengthening period just as in the symmetric case. Note first that the fixed
points on the boundary of R and the phase portrait are just as for (1) {but of course the
orbits 01, 02 and o0, are no longer congruent). Defining F as before, we shall prove
TEEOREM 2. There exists an open set of orbits in the interior of R having F as
w-liinit.
Proof. With V = x,+ x5+ x3 one has

V: V“[X§+x§+x§+(al +BQ)X1X2+(az+B3)_x2x3+('a3+Bl)x3xl]§ V(l — \/)
(because a1+ B,>2 etc. - - - ); hence all orbits enter the set
02:{(x1,xz,x3)€Ri.‘r<X1+xz+x3<1+r}

with some r >0 small enough.

Set 1= 1+B;+a3, $y = 1+B3+a1, 53 = 1+B; +a; and 523—51}{1 —8§2X2 7 83X3.
Wih P=xx,x; one has P = PS. Since s;>3fori=1,2,3, one has S(e;) < 0. Choose
5 >0 such that S(e;) < —s and let

B ={(xy, x2, x3) € Qy: S(x1, x», x3) < -—s}.
since every x € O, N AR has €1, €2 Or €3 as w-limit, we may define
(3) T)=inf{T'z0:x()eBfor T'st=(m+ )T +1}

where m>3/s. For such x there is a T'< Tx)+1 with x{t)eB for T'=t=
{m+1)7T'+1. Thus on the set

I={yeQi:d(x,y)<8(x) for some » c QN n. i}

one can define T just as in (3). T is upper semicontinucus on £, and hence admiits an
upper bound L. Now choose § > 0 so smail that

I[(6)={yeQ::d(y, biR})= &}
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1s contained in [, and let
p=inf{P(y):y e Q,\I(8)}.
Choose € >0 so small that with
Ie)={y € Qs:0<d(y. baR') < ¢}
and
p =sup{Pix):xel(e)}
one has
p'exp (37)<p.

We claim now tha* the orbit of every x € [{¢) has F as w-limit. For this, it suffices to
check that Plxiry ~0. for 1 - +00. Indeed. while there might be time-intervals [z, ]
during which P{xi: increases, their length £ must be smaller han L, and hence

Plx(t2)) = Pl exp (3L1).

Atthe end of such an interval, the orbit enters B and stays there for a time at least equal
to mL'+1.So for t3=1t,+mL'+ 1 one has

Plx(tah =Plx () exp (~s(ml'+ 1)
= Plx(1;)) exp (—s).

Teus P(x{r)) can never grow too much (in partic. iar, x(t) can never leave 7(5)) and
wvery period of growth is subsequently compensate.i. so that Pix(13}-> 0. The rest of the
proof is similar to that of Theorem 1.

4. A related model with constraints of “copn. ant organization” [2]. We now
briefly discuss a class of equations reflecting cyclic competition whose phase portrait
looks just like the one described in [4]. These equations belong to the class of equations
with constant organization which is studied as a model for the selforganization of
macromoiecules (see [2], [3], and [5]).

Consider in R? the equations

X1 =x1(x; +ax,+ Bx;— M),
(4) XQZX2(BX1+X:+Q’X3_AM).

x'3=x;(ax1+Bx2+x3-M),
where M =x,(x,+ax,+ Bxa)+x2(Bx1+ x3+ axs)+x3(ax, +Bx>+x3). We shall
consider the case 0<a <1<g, a+g <2, Apart from the origin (which is a source)
there are three fixed points« n the boundary of R2, namely e, ¢; and e;. They are saddle
points with eigenvalues ~1, 8~1>0, a =1 <0. There is just one more fixed point in
R, namely C = (3, 1,3) with eigenvalues =1 and $2-a -8 :ti\/g(B —a)), which is a
saddle point. (Three more fi.ed noints of (4) lie outside R?).

With V=x;+x:+x;0nel s

V=M(1-V)
and so every orbit in R (with the exception of the origin) converges to the invariant
simplex

SJ:{(Xl,Xp_,x_x)ERj I,\’1+X2+,"3= l}
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With F = 3 xsx4 one has
P Pl(l+o+B)V~3M]
e Pl +a+ Bxi x4+ x3) - 3xd + x5+ x5+ (a+ B)x xo+ xyxs+ X333 1))
o Pi(l +« ‘i‘ﬁ;‘(i - ‘/) ‘/ 4‘%(& +B —‘2)((11 ~ x;)2+(X2_‘X3)2+(X3 -~ Xl}?ﬂ
On Saone has V=1, and a + B <2 implies that P =0, with equality iff (x,, x2. x3)is C
or lies on the boundary. Hence we obtain
TrroreM 3. The orbit of almost every point in the interior of R} has as w-limit the
bound::#y of Ss, formed by the poinis e, ez, €5 and the three segments (Which are orbits)
joining them.
(The exceptional points are C and its stable manifold, which consists of the two
orbits on the line x; = x; = x3 having C as w-limit.) See Fig. 4 for a sketch of the phase
portrait

Xy

Fi1G. 4. The boundary of the simplex is the w-limit of almost every orbit of (4).

In the limiting case a + B =2 for (1), which was studied in [4, § 3], S5 consists of
closed orbits defined by x1x,x3 = const., and every orbit in the interior of R? has one of
these closed orbits as w-limit.

For a more general discussion and comparison with related dynamical systems we

refer to [5].
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