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’Give and it shall be given unto you’. But by whom? Luke (6.38) was
not specific on that point. A helpul action, or a gift, can be returned by the
recipient, in which case one speaks of direct reciprocation. But it can also be
returned by a third party. Alexander (1987) called this ’indirect reciprocity’,
emphasising its reliance on status and reputation.

In a simple model, Nowak and Sigmund (1998) attached a binary score
(good or bad) to each individual in the population. From time to time, two
individuals meet randomly, one as donor, the other as recipient. At some cost
−c to the own payoff, the donor can help the recipient, i.e. increase the re-
cipient’s payoff by a benefit b > c. In that case, the donor’s score will be good
in the eyes of all observers, whereas the score of a ’donor’ refusing to confer
the benefit will be bad. A discriminating strategy of helping only those with
a good score would channel benefits towards those who help, and discourage
defectors. The question is whether such a strategy can evolve in the pop-
ulation, assuming that only strategies yielding a total payoff above average
increase in frequency. This has attracted considerable attention, for two main
reasons. One lies in the potential of indirect reciprocity for explaining the
emergence, among humans, of cooperation between non-relatives. Alexan-
der viewed this as the biological basis of morality; others saw in it a major
motivation for language, gossip being a way of spreading reputations. The
recent advent of e-commerce provides the other reason why understanding
the assessment of reputations matters: the prevalence of anonymous one-shot
interactions in global markets raises the issues of trust-building and moral
hazard (Bolton et al 2002).

While economic experiments have strongly bolstered the concept of indi-
rect reciprocity (see Wedekind and Milinski, 2000), the radically simplified
model of Nowak and Sigmund has raised the skepticism of theoreticians (see
Leimar and Hammerstein 2001). A discriminator who refuses to help re-
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cipients with a bad score receives a bad score, and risks to get no help in
the next round. In this sense, punishing defectors by withholding help is
costly. Can such a trait evolve? Would it not be advantageous to distinguish
justifiable defections (against a bad recipient) from non-justifiable defections
(against a good recipient), and attach a bad score only to the latter? This
would constitute a non-costly form of punishment and greatly alleviate the
discriminators’ task. But such a distinction requires considerable cognitive
capacities. Not only the recipient’s past, but also that of the recipient’s re-
cipients etc must to be taken into account. If information spreads through
rumour, rather than direct observation, the task may be alleviated, but the
likelihood of misperception and manipulation grows. Conceivably, non-costly
punishment cannot be realised; and many experiments show that humans,
anyway, do not shrink from using costly punishment (Fehr and Fischbacher,
2003).

To return to theory, Ohtsuki and Iwasa (2004) analysed all conceivable
strategies based on a binary score (some 4096 at first count) and found
that eight of them are evolutionarily stable: all ’leading eight’ differenti-
ate between justifiable and non-justifiable defection. Nevertheless, the less
sophisticated discrimination mechanism suggested by Nowak and Sigmund
can promote cooperation if it leads to a stable mixture of discriminators and
undiscriminate altruists. After all, a population need not be homogenous,
although this is required for evolutionary stability. But Panchanathan and
Boyd (2003) showed that in the presence of errors (or other causes for un-
intended defections, for instance lack of resources), such a mixture can be
invaded by defectors. This blow was softened by Fishman (2004), who found
that if the game extends over a constant number of rounds, the mixture of
discriminating and undiscriminating altruists can repel defectors. But what
is more likely, a constant number of rounds per lifetime or (as Panchanathan
and Boyd assumed) a constant probability for a further round?

In fact, both assumptions appear unrealistic. Whereas in an experimental
game all players may start at the same time and play their rounds synchro-
nously, it seems plausible to assume that under natural conditions, players
enter the population one by one, at random times, and interact asynchro-
nously. The analysis of this model becomes even simpler, and boosts the
conclusion of Panchanathan and Boyd.

Indeed, let denote by q the probability that a player knows the score of a
randomly chosen co-player (either through direct observation or via gossip,
through acquaintances) and that discriminators are trustful in the sense that
if they have no information, they assume that their recipient’s score is good.
As simple calculation shows that whenever discriminating and undiscriminat-
ing altruists do equally well, defectors do just as well; which means that they
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will take over (see appendix, and figure). This is an extremely robust result,
independent of the probability distribution of the number of rounds (which
could also be constant, or infinite), and holding even if different strategies
have different error probabilities, if discriminators are suspicious rather than
trustful, or if they adopt the strategy of helping whenever the recipient’s
score is good or their own score is bad.

But there is a way out. It is based on an approach due to Mohtashemi
and Mui (2004), who assumed in their model that whenever a donor provides
help, the donor’s set of acquaintances is added to the recipient’s. We need not
be so specific but only assume that a player’s network of acquaintances grows
with age. Then the probability qn that a player in round n is informed about
the recipient’s image grows with n, i.e. qn > qn−1. It is easy to check that
whenever the average level of information is sufficiently high, there exists
a mixture of discriminating and undiscriminating altruists which is stable
against defectors (see appendix, and figure).

We can, incidentally, also use the opposite condition qn < qn−1, if we
correspondingly suppose that the discriminators are distrustful, and refuse
to help in the absence of information. We do not claim that this is a reason
why persons whose social circle shrinks (the very old, for instance) tend to
become suspicious. But both mechanisms, intriguingly, imply that people
should become more tightfisted with age.
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Electronic appendix

Let us denote by x, y and z the relative frequencies of indiscrimate altruists,
defectors and discriminators in the population, by 1 − r the probability of
an unintended defection, by g the frequency of players with a good score
(which, if the population is sufficiently large, can be taken to be stationary
throughout one individual’s lifetime), and by q the probability that a player
knows the score of a randomly chosen co-player (either through direct obser-
vation or via gossip). Let us also assume, for convenience, that each player,
in each round, interacts once as a donor and once as a recipient (always with
different co-players, of course). Finally, let us posit that discriminators are
trustful in the sense that if they have no information, they assume that their
recipient’s score is good. The payoff in the n-th round (n > 1) for an indis-
criminate altruist is Px(n) = −cr + brx + br(1 − q)z + br2qz, for a defector
Py(n) = brx + br(1− q)z, and for a discriminator

Pz(n) = −cr(1− q + qg) + brx + br(1− q)z + br2qz(1− q + qg).

The last term in the sum, for instance, is obtained as follows: the discrim-
inating recipient meets with probability z another discriminator, who, with
probability q, knows the recipient’s score. If that score is good, the recipient
receives the payoff b with probability r (since 1−r is the probability that the
intended donation fails). The score is good if the recipient, in the previous
round, succeeded in an intended donation (probability r), either not knowing
the co-player’s score (probability 1− q), or else knowing the co-player’s score
(probability q), which was good (probability g).

A straightforward computation shows that

Pz(n)− Py(n) = [Px(n)− Py(n)](1− q + qg).

The same relation holds for the first round, and hence also for the total payoff
values Px, Py and Pz. The replicator dynamics on the unit simplex S3 is given
by ẋ = x(Px − P̄ ) etc, where P̄ = xPx + yPy + zPz is the average payoff in
the population. The fixed points are the corners of S3 (where the population
consists of one type only) and all the points on the segment with z = c/brq.
Initial states with lower z-value will converge to the equilibrium with y = 1
(defectors only). Initial states with larger z converge to the equilibrium with
y = 0 and z = c/brq. There, an arbitrarily small random perturbation can
send the state to a lower z-value. Hence defectors will always become fixed
in the population.

But if we assume that the probability to know a co-player’s score is not
a constant, but depends on age and is denoted by qn in round n, then

Pz(n) = −cr(1− qn + qng) + brx + br(1− q)z + br2qz(1− qn−1 + qn−1g),
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where q, now, is the average of the qn (i.e. if wn is the probability to be in
round n, then q =

∑
wnqn). If qn > qn−1 for all n, then q > s :=

∑
wnqn−1.

We note that

Pz(n)− Py(n) = Px(n)− Py(n) + r(1− g)[cqn − zbrqqn−1]

and hence
Pz(n)− Px(n) = r(1− g)(cqn − zbrqqn−1).

For the total payoffs Px,Py, and Pz we obtain

Px(zcr) = Pz(zcr)

for zcr := c/brs (we note that zcr > c/brq, and assume in the following that
c < brs, i.e. zcr < 1).

The relation Px(n)−Py(n) = −cr+br2qz implies that for z = zcr one has
Px(n)−Py(n) = cr(q− s)/s for n > 1 (and = −cr for n = 1). It follows that
for sufficiently small w1 (i.e. a sufficiently large likelihood of having more
than one round)

Px(zcr) > Py(zcr).

Hence there exists a mixture of discriminating and indiscriminating altruists
only, Fxz = (1 − zcr, 0, zcr), which cannot be invaded by the defectors. The
resulting replicator equation is bistable: one attractor consists of defectors
only, the other of a mixture of discriminating and indiscriminating altruists.
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