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Abstract
The evolution and maintenance of cooperation in human and
animal societies challenge various disciplines ranging from
evolutionary biology to anthropology, social sciences, and eco-
nomics. In social interactions, cooperators increase the welfare
of the group at some cost to themselves whereas defectors
attempt to free ride and neither provide benefits nor incur costs.
The problem of cooperation becomes even more pronounced
when increasing the number of interacting individuals. Pun-
ishment and voluntary participation have been identified as
possible factors to support cooperation and prevent cheating.
Typically, punishment behavior is unable to gain a foothold in
a population, while volunteering alone can efficiently prevent
deadlocks in states of mutual defection but is unable to stabi-
lize cooperation. The combined effects of the two mechanisms
have surprisingly different consequences in finite and infinite
populations. Here we provide a detailed comparison of the
two scenarios and demonstrate that driven by the inherent
stochasticity of finite populations, the possibility to abstain
from social interactions plays a pivotal role, which paves the
way for the establishment of cooperation and punishment.
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Cooperation is a recurrent theme in nature ranging from mi-
crobial colonies to human societies (Trivers 1971; Axelrod
and Hamilton 1981; Colman 1995; Dugatkin 1997; Nowak
2006b). Yet, the evolution of cooperative behavior that pro-
duces benefits to others at some cost to self is far from obvious
under Darwinian selection. In fact, defectors that avoid the
costs and produce no benefits are better off, while coopera-
tors are doomed and bound to disappear. In evolutionary game
theory such scenarios are captured by public goods games
(Hardin 1968; Kagel and Roth 1995) where cooperators in-
vest into a common good while defectors attempt to exploit
the resource without contributing to it. However, if every-
body defects they forego the public good: everybody would
be better off had they cooperated. This describes a classic
conflict of interest between the individual and the commu-
nity arising in social dilemmas (Dawes 1980; Hauert et al.
2006). The evolution and maintenance of cooperation in large
groups of interacting individuals pose a challenging problem
in evolutionary biology as well as in studies of human in-
teractions (Boyd and Richerson 1988; Hauert and Schuster
1997).

It is well known that cooperation in public good situa-
tions requires positive or negative incentives discriminatingly
directed at individual players (Olson 1965). In particular,
so-called punishment directed by some of the players against
cheaters in their group has proved to stabilize cooperation
(Yamagishi 1986; Fehr and Fischbacher 2004). Such retal-
iatory peer-punishment can be viewed as a form of (direct
or indirect) reciprocation. Clearly, defectors cannot invade a
population of punishers (Boyd and Richerson 1992; Sigmund
et al. 2001; Boyd et al. 2003). But how can punishers
establish themselves in a population of defectors? The
emergence of punishing behavior is viewed as a challenging
problem. Interestingly, it can be resolved if participation
in the public goods interaction is optional rather than
compulsory.

Voluntary participation means the game is extended from
cooperators and defectors to include a third strategic type,
the loners (Hauert et al. 2002b). Participating in public en-
terprises bears considerable risks because whether and how
many participants turn out to be defectors is not known
in advance. Loners are risk averse individuals that refuse
to participate and, instead, rely on fixed autarkic resources.
Recently, the combination of costly punishment and volun-
teering has led to some controversial results in infinite pop-
ulations (Fowler 2005; Brandt et al. 2006) but the issue has
largely been resolved for the dynamics in finite populations
and has revealed new insights relevant for real populations
(Boyd and Mathew 2007; Hauert et al. 2007). Here we pro-
vide a detailed analysis and comparison of the two different
approaches.

Model and Methods

In order to model punishing and abstaining in public goods
games we follow Fowler (2005) and Brandt et al. (2006) and
consider the dynamics of four strategic types: the coopera-
tors x, the defectors y, the loners z, and the punishers w. In
infinite populations (see section “The Replicator Equation”),
x, y, z,w refer to the fraction of the population adopting the re-
spective strategy (x + y + z + w = 1), whereas in finite popu-
lations (see section “The Moran Process”) of size M the capital
letters X, Y,Z,W refer to the number of individuals adopting
the respective strategy (X + Y + Z + W = M). A group of N

individuals is randomly sampled from the population: cooper-
ators, defectors, and punishers participate in the public goods
interaction, whereas the loners rely on a small but fixed payoff
σ . Loners are not secluded but, for example, collect mush-
rooms instead of joining a hunting party. Cooperators and
punishers invest a fixed amount c into the common good. The
total investments into the common pool are then multiplied by
a factor r and equally divided among all participants, irrespec-
tive of their contributions but excluding the loners. Thus, the
common resource yields a net benefit of BS = rc(nx + nw)/S
to defectors as well as BS − c to cooperators and punish-
ers, where ni indicates the number of participants of type i

in the sample and S = nx + ny + nw ≤ N denotes the effec-
tive number of participants, which varies based on the num-
ber of loners in the sample. If S = 1, the sole participant is
forced to act as a loner and receives σ . Furthermore, punish-
ers impose a fine β onto defectors at a cost γ with β > γ

and, in addition, they also may punish cooperators because
of their negligence and failure to punish defectors (if there
were any) but the fines and costs of punishment are reduced
to αβ and αγ with 0 ≤ α ≤ 1. In this context, cooperators are
often termed second-order free riders because they avoid the
costs of punishment. The loners’ payoff is assumed to satisfy
(r − 1)c > σ > 0 such that loners are better off than groups
of defectors (which score zero) but worse off than groups of
contributors (mixtures of cooperators and punishers) obtaining
(r − 1)c.

The Replicator Equation
The evolutionary process in infinite populations is traditionally
studied using replicator dynamics (Taylor and Jonker 1978;
Hofbauer and Sigmund 1998; Nowak and Sigmund 2004).
The state of the population is determined by the frequencies
of the different types with x + y + z + w = 1, which confines
the state space to the simplex S4. Individuals interact in groups
of size N that are randomly formed according to multino-
mial sampling. Under replicator dynamics, every strategy that
performs better than the population on average increases in
abundance: ẋ = x(Px − P̄ ) etc., where Pi denotes the average
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payoff of strategy i and P̄ = xPx + yPy + zPz + wPw repre-
sents the average population payoff.

According to Brandt et al. (2006), which follows the ap-
proach used in Hauert et al. (2002a), the average payoffs for
each strategy are given by

Px = zN−1σ + B − F (z)c − w(N − 1)G(y)αβ (1a)

Py = zN−1σ + B − w(N − 1)β (1b)

Pz = σ (1c)

Pw = zN−1σ + B−F (z)c −y(N−1)γ −x(N−1)G(y)αγ (1d)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
loner public goods punishment
payoff interaction

with

B = rc
x + w

1 − z

(
1 − 1 − zN

N (1 − z)

)

F (z) = 1 + zN−1(r − 1) − r

N

1 − zN

1 − z

G(y) = 1 − (1 − y)N−2.

Here B denotes the average benefit returned by the public
good, F (z) indicates the effective costs of contributing to the
public good, and G(y) specifies the probability that the failure
of cooperators to punish defectors is recognized by punishers.
This occurs whenever a group consists of at least one coopera-
tor, one defector, and one punisher. Note that F (z) depends on
the abundance of loners because they determine the number of
participants in the public goods interaction and thus the effec-
tive group size S. The resulting effective costs of cooperation
are given by (1 − r/S)c because the fraction r/S of the in-
vestment is returned to the investor. Thus, if loners abound the
typical group size is small and cooperation becomes dominant
whenever r > S, i.e., if cooperative investments have a posi-
tive net return (Hauert et al. 2002a, 2006). However, if S = 1,
which happens with probability zN−1, no interaction partners
are found and the single participant gets the loner’s payoff σ .
We assume that r < N such that defection is the dominant
solution in the absence of loners and punishers.

The dynamics of this system is bi-stable and the evo-
lutionary outcome depends on the initial configuration of the
population: either punishers disappear, which gives rise to end-
less oscillations of cooperators, defectors, and loners (Hauert
et al. 2002b), or a neutral mixture of cooperators and punishers
establishes. In addition, the dynamics is structurally unstable,
and hence cannot be relied upon to yield robust predictions.
Thus, the analysis of the replicator dynamics is insufficient to
draw final conclusions about the relative merits of volunteer-
ing and punishment. For a full analysis, we refer to Brandt
et al. (2006) and use this scenario as a reference point for the
following discussion of the dynamics in finite populations.

The Moran Process
In finite populations, the Moran process (Moran 1962) cap-
tures the evolutionary dynamics in three elementary steps:
birth, death, and replacement. An individual is randomly se-
lected for reproduction with a probability proportional to its
payoff or fitness and produces a clonal offspring. Then, a ran-
domly chosen individual (independent of fitness) is eliminated
and replaced by the offspring. Thus, individuals with a higher
fitness have better chances to reproduce but they can still be
eliminated due to random drift. The overall population size is
kept constant. On the basis of this process, the fixation prob-
ability of a single mutant in a homogeneous resident popula-
tion, i.e., the probability that eventually the entire population
adopts the mutant strategy, can be determined. Traditionally,
the Moran process was considered for constant fitness values
assigned to residents and mutants. Only recently this approach
was extended to include frequency-dependent fitness (Nowak
et al. 2004; Nowak 2006a). In this framework, the fitness of
an individual consists of two components 1 − s + sP : a static
baseline fitness, which is normalized to one, and a dynamic
component P , which depends on interactions with other mem-
bers of the population. The selection strength s determines the
relative contribution of the frequency-dependent component
to the overall fitness, i.e., s measures the importance of the
game for overall success.

In the present context, the Moran process can be
equivalently interpreted as an imitation process where a
randomly selected individual adopts the strategy of a random
member of the population, which is chosen with a probability
proportional to its fitness. In this case mutations do not refer
to genetic changes but rather to random experimenting with
different behavioral patterns.

Previous studies (Nowak et al. 2004; Taylor et al. 2004;
Imhof et al. 2005; Traulsen et al. 2005) considered pairwise
interactions among two or three strategic types. In the
present case, new challenges arise because of the arbitrary
interaction group size N : when sampling the interaction
group, drawing one member affects the probabilities to select
each strategic type in subsequent draws of the remaining
members. In a population of size M = X + Y + Z + W

where X, Y,Z, and W refer to the number of cooperators,
defectors, loners, and punishers, respectively, the group
formation process is given by a multivariate hypergeometric
distribution such that the probability to interact in a group of
nx cooperators, ny defectors, nz loners, and nw punishers with
nx + ny + nz + nw = N (nx + ny + nw = S) becomes

H (X, nx, Y, ny, Z, nz,W, nw) =
(

x

nx

)(
y

ny

)(
z

nz

)(
w

nw

)
(

M

N

) . (2)
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Using equation (2), the average effective interaction group
size S and its composition can be derived to obtain the
following average payoffs in finite populations:

PX =
(

Z
N−1

)
(

M−1
N−1

)σ + B − F (Z)c − W

M − 1
(N − 1)G(Y )αβ (3a)

PY =
(

Z
N−1

)
(

M−1
N−1

)σ + B − W

M − 1
(N − 1)β (3b)

PZ = σ (3c)

PW =
(

Z
N−1

)
(

M−1
N−1

)σ +B−F (Z)c − Y

M−1
(N−1)γ − X

M−1
(N−1)G(Y )αγ

(3d)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
loner public goods punishment
payoff interaction

with

B = rc
X + W

M − Z − 1

(
1 − 1

N (M − Z)

×
(

M − (Z − N + 1)

(
Z

N−1

)
(

M−1
N−1

)
))

F (Z) = 1 − r

N

M − N

M − Z − 1
+

(
Z

N−1

)
(

M−1
N−1

)
×

(
r

N

Z + 1

M − Z − 1
+ r

M − Z − 2

M − Z − 1
− 1

)

G(Y ) = 1 − M − 1

M − Y − 1

(
M−Y−1

N−1

)
(

M−1
N−1

) .

In analogy to equation (1), B denotes the average return from
the public good to defectors and F (Z) indicates the payoff dif-
ference between contributors (cooperators and punishers) and
defectors before punishment. As before, G(Y ) is the proba-
bility that the second-order free riders (cooperators) are found
out and punished for their negligence. If S = 1, which happens
with probability ( Z

N−1 )/(M−1
N−1 ), the single participant gets the

loner payoff σ . In the limit M → ∞, equation (3) recovers
equation (1) when converting strategy numbers into fractions
using X → xM etc.

In order to study finite populations analytically, we con-
sider the limit of rare mutations, µ � 1/M2 (Imhof et al. 2005;
Fudenberg et al. 2006). In this limit, the population generally
consists of a single type (in each generation µM mutants are
produced and, typically, it takes less than M generations for
a successful mutant to reach fixation). Occasionally, a mutant
appears and either disappears again or takes over the entire
population before the next mutant appears. This restricts the
evolutionary process to the edges of the simplex S4 where at

most two strategic types are present at any one point in time.
For this setting we derive the probabilities to find the system in
either one of the four homogeneous states with all cooperators,
defectors, loners, or punishers. This determines the relative
time the system spends in each of the four corners of S4.

Dynamics Along Edges
In order to analyze the dynamics along the edges of S4, using
equation (2) or equation (3) yields the payoffs in a population
that consists of only two strategic types. For example, if the
population consists of X cooperators and Y = M − X defec-
tors, then the average payoffs to cooperators PXY and defectors
PYX are given by

PXY =
N−1∑
k=0

H (X − 1, k,M − X,N − 1 − k, 0, 0, 0, 0)

×
(

k + 1

N
r − 1

)
c

= rc

N

(
1 + X − 1

M − 1
(N − 1)

)
− c

PYX =
N−1∑
k=0

H (X, k,M − 1 − X,N − 1 − k, 0, 0, 0, 0)

×
(

k

N
rc

)

= rc

N

X

M − 1
(N − 1).

Note that for the calculation of the payoff to cooperators, there
are only X − 1 cooperators left in the reservoir when sampling
its N − 1 coplayers and the reservoir size is M − 1. Similarly,
the payoffs Pij of strategic type i competing against type j

can be derived for all other possible pairings:

PXW = PWX = (r − 1)c

PZX = PZY = PZW = σ

PXZ = PWZ = (r − 1)c −
(

Z

N−1

)
(

M−1
N−1

) ((r − 1)c − σ )

PYZ =
(

Z

N−1

)
(

M−1
N−1

)σ

PYW = W

M − 1
(N − 1)

( rc

N
− β

)
PWY = rc

N

(
1 + W − 1

M − 1
(N − 1)

)

−c − M − W

M − 1
(N − 1)γ.
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The above payoffs together with the selection strength s deter-
mine the transition probability that the number of individuals
mi of type i increases by one, T +

ij , or decreases by one, T −
ij

(and the corresponding change in the count mj = M − mi of
type j individuals):

T +
ij = mi(1 −s+sPij )

M(1−s)+s(miPij +(M−mi)Pji)

M−mi

M
(4a)

T −
ij = (M−mi)(1−s+sPji)

M(1−s)+s(miPij +(M−mi)Pji)

mi

M
. (4b)

Note that this requires that the overall fitness of all types is
always positive (1 − s + sPij ≥ 0), which can be ensured by
adding a suitable constant to all payoff values or by putting an
upper limit on the selection strength s. The maximal selection
strength is given by smax = 1/(1 − min Pij ) for all strategic
types i, j under consideration.

The transition probabilities T +
ij and T −

ij define a master
equation which describes the time evolution of the state of the
system. From the master equation, the fixation probability ρij

of a single mutant strategy of type i in a resident population of
type j can be derived (Karlin and Taylor 1975; Nowak et al.
2004):

ρij = 1

1 + ∑M−1
k=1

∏k
mi=1

T −
ij

T +
ij

= 1

1 + ∑M−1
k=1

∏k
mi=1

1−s+sPji

1−s+sPij

. (5)

Finally, the fixation probabilities ρij define the transition prob-
abilities of a Markov process between the four different ho-
mogeneous states of the population. The transition matrix A
is given by

A =




1 − ρyx − ρzx − ρwx ρxy ρxz ρxw

ρyx 1 − ρxy − ρzy − ρwy ρyz ρyw

ρzx ρzy 1 − ρxz − ρyz − ρwz ρzw

ρwx ρwy ρwz 1 − ρxw − ρyw − ρzw


 . (6)

The stationary distribution is given by the normalized right
eigenvector of A to the largest eigenvalue (which is one be-
cause AT is a stochastic matrix). This returns the probability
to find the system in one of the four homogeneous states and
concludes the analysis of the dynamics along the edges of S4.

Results

The analysis of the dynamics is restricted to the limiting cases
of infinite populations (M → ∞) or rare mutations (µ → 0)

but the general dynamics can be explored with simulations
such as provided by the VirtualLabs (Hauert 2007) or De Silva
(2008). Before discussing the effects of finite population sizes
on cooperation in voluntary public goods games with punish-
ment, we analyze the effects and efficiency of the two mecha-
nisms of volunteering and punishment separately.

Volunteering in Public Goods Games
In infinite populations, the dynamics in voluntary public goods
interactions without punishment is characterized by a rock–
scissors–paper-type dominance of the three strategic types to
cooperate, to defect, and to abstain (loners). This cyclic dom-
inance is reflected in the heteroclinic cycle along the bound-
aries of the simplex S3. For N > 2 the interior of S3 contains a
unique fixed point Q, which is surrounded by closed periodic
orbits [see Figure 1(a) and Hauert et al. 2002a for a detailed
analysis]. For our purposes it is important to note that only the
homogeneous states with all cooperators and all defectors are
hyperbolic saddle points but the loner’s corner ez is not and
is neutrally stable to first order. The intuitive reason is that a
single cooperator does not affect the payoffs in the population
(nor does a single defector) because this cooperator will never
find an interaction partner. It takes at least two cooperators
to invade the loner population. As a consequence, the motion
along the trajectory slows down in the vicinity of ez, which
can be easily verified (De Silva 2008; Hauert 2007).

In finite populations it seems natural to assume that the
system is most likely found in a state with all loners. Inter-
estingly, however, this is not the case [see Figures 1(b) and
(c)]. Instead, in the limit of rare mutations, the system spends
significantly less time in the defector corner and similar time
in the cooperator and loner corners. Intuitively this can be
understood by noting that the average population payoff is at
its maximum if everybody cooperates and at its minimum if

everybody defects. The fitness difference between a mutant
defector and a resident cooperator tends to be much smaller
than the fitness difference between a mutant loner and a resi-
dent defector. Hence, the mutant defector is more likely to be
eliminated by random drift than the mutant loner and conse-
quentially the system spends more time in the cooperator state
than in the defector state. Under weak selection, the population
may even cooperate most of the time. Simulations confirm this
result even for higher mutation rates.
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Figure 1.
Voluntary participation in public goods games as a mechanism to promote cooperation in infinite and finite populations. (a) Evolutionary dynamics in infinite
populations. The cyclic dominance of the strategies cooperate, defect and loner lead to a heteroclynic cycle along the boundaries of S3 and an interior fixed
point Q that is surrounded by closed periodic orbits (N > 2). (b) In finite populations the population spends most of the time in the cooperator (28.3%), defector
(12.7%), and loner (22.9%) corners, as compared to < 10−3% in states in the center of S3. The densities are color coded on a logarithmic scale with black
indicating low, gray intermediate, and white high densities. (c) In the limit of rare mutations the dynamics is restricted to the boundary of S3. The probabilities
to find the system in homogeneous states with all cooperators (solid), defectors (dashed), or loners (dotted) are shown as a function of the selection strength s.
The dashed vertical line indicates the selection strength used in (b). In the limit of neutral evolution (s → 0) the strategic differences disappear and all three
states are equally likely. For s > 0 the system spends the least time in the defector state and significantly more time in the cooperator or loner states. Under weak
selection the system even spends most of its time in the cooperative state. Simulation results of the average fraction of each strategic type confirm the analysis
(gray shaded dots). Parameters: N = 5, r = 3, c = 1, σ = 1; (b) M = 100, mutation rate µ = 10−3, s = 0.05; (c) M = 100, µ = 10−3, smax = 0.714.

Punishment in Public Goods Games
In infinite populations, punishment in compulsory public
goods interactions (in the absence of loners) produces a bi-
stable situation: depending on the initial configuration, the
system either evolves to an asocial state where everybody de-
fects or into a state where cooperation is enforced by punish-
ment [see Figure 2(a)]. Along the boundary of the simplex S3

the bi-stability is reflected by an unstable fixed point P on the
edge between punishers and defectors. The edge between co-
operators and punishers consists of fixed points and those with
w > wc = (N − r)/(βN (N − 1)) are stable Nash equilibria.

In this case, changes that arise due to stochasticity in finite
populations are equally surprising [see Figures 2(b) and (c)].
In the limit of rare mutations [Figure 2(c)], the system spends
most of the time in states where everybody defects. Only for
very weak selection or efficient punishment (γ � β), pun-
ishers manage to enforce cooperation. This outcome changes
with increasing mutation rate [Figure 2(b)]. For mutation rates
of the order of 1/M , punishers prevail. The intuitive reason for
these differences is the slow drift dynamics along the neutral
cooperator–punisher edge. This leaves ample time for defec-
tors to appear through mutation. As long as w > wc, mutant
defectors actually promote punishment and push the system
closer toward the punisher state. Thus, punishment can be
stable provided that the punishers are challenged sufficiently
often.

Volunteering and Punishment in Public Goods Games
In infinite populations, the combined effects of voluntary par-
ticipation and punishment opportunities in public goods inter-

actions lead to different conclusions based on different mod-
eling techniques. Fowler (2005) reported that loners pave the
way for punishers to establish cooperation, whereas Brandt
et al. (2006) demonstrated that bi-stable situations arise, in
which the initial configuration determines whether the evo-
lutionary end state corresponds to endless cycles of cooper-
ators, defectors, and loners or whether a neutral mixture of
cooperators and punishers evolves (everybody cooperates, no
punishment). Moreover, the dynamics is structurally unstable,
because neither the periodic orbits nor the fixed points are iso-
lated. These differences arise because the former approach fa-
vors punishers in a twofold way. First, a single punisher (or co-
operator), being the only participant in the public goods game,
can profit from the public good instead of being reduced to the
loner’s payoff and second, punishers punish cooperators even
if there were no defectors in the interaction group. It seems
that the latter approach presents a more convincing analysis.

Interestingly, however, finite population sizes change
the odds in favor of punishers. In the limit of rare mutations,
the system spends most of the time in the homogeneous state
with all punishers (see Figure 3). This effect becomes more
pronounced for larger population sizes such that for M = 1000
the system typically spends more than 80% of the time in the
punisher state. These results are supported by simulation data
for small mutation rates. Thus, the original intuition of Fowler
(2005) is vindicated in finite populations. However, in contrast
to Fowler (2005), punishing second-order free riders (α > 0)
turns out to have only marginal effects (Hauert et al. 2007).

In larger populations, the effects of random fluctuations
become weaker and deterministic drift becomes increasingly
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Figure 2.
Punishment opportunities in public goods games as a mechanism to promote cooperation in infinite and finite populations. (a) In infinite populations the dynamics
is bi-stable and, depending on the initial configuration, the evolutionary end state is either a homogeneous population with all defectors or a neutral mixture of
cooperators and punishers. The size of the basins of attraction are essentially determined by the location of the fixed point P along the punisher–defector edge.
(b) In finite populations the population spends slightly more time in the punisher corner (29.7%) than in the defector corner (28.4%) and significantly less in the
cooperator corner (11.9%), as compared to less than 10−4% in states in the center of S3. The densities are color coded on a logarithmic scale with black indicating
low, gray intermediate, and white high densities. (c) In the limit of rare mutations the dynamics is restricted to the boundary of S3. The probability to find the
system in homogeneous states with all cooperators (solid), defectors (dashed), or punishers (dash-dotted) is shown as a function of the selection strength s. The
analysis is confirmed by simulation results of the average fraction of each strategic type (gray shaded dots) and the dashed vertical line indicates the selection
strength used in (b). The population is usually found in a state with all defectors except for weak selection where punishers manage to get the upper hand [c.f.
(b)]. Increasing the efficacy of punishment, i.e., increasing β, supports punishment directly by increasing the time spent in the punisher state as well as indirectly
by reducing the maximal selection strength. Parameters: N = 5, r = 3, c = 1, γ = 0.3, β = 1, α = 0.1; (b) M = 100, mutation rate µ = 10−3, s = 0.05; (c)
M = 100, µ = 10−3, smax = 0.385.
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Figure 3.
Punishment and abstaining in public goods games in finite populations. In the limit of rare mutations, the dynamics is restricted to the boundary of S4.
The average fractions of cooperators (solid), defectors (dashed), loners (dotted), or punishers (dash-dotted) are shown as a function of the selection strength
for different population sizes M . Simulations where the fitness is determined through a single random interaction confirm the results (gray shaded dots).
The mutation rate µ is the same for all M and thus effects of mutations increases and deviations become larger when increasing the population size. The
analytical approximations are expected to hold for µ < 1/M2 but the qualitative predictions remain valid for larger mutation rates [µ = 1/M in (c)]. Parameters:
N = 5, r = 3, c = 1, σ = 1, γ = 0.3, β = 1, α = 0.1, smax = 0.385; Simulations: µ = 10−3; (a) sampling times, T > 108, (b, c) T > 106.

important (Traulsen et al. 2005). Therefore, strong selection
has much stronger effects in large populations. In tiny popu-
lations with M = 10 individuals, strong selection leads to ap-
proximately the same result as ten times weaker selection for
M = 100 and a hundred times weaker selection for M = 1000
(see Figure 3), which suggests that the relevant quantity char-
acterizing the evolutionary process is given by sM . This is in
agreement with other results for frequency-dependent selec-

tion (Traulsen et al. 2006). Similarly, the product of population
size and difference in fitness of two genotypes denotes the rele-
vant evolutionary parameter in population genetics (Crow and
Kimura 1970).

Conclusions

In Nowak (2006b), five mechanisms have been proposed for
the evolution of cooperation: direct reciprocity (Trivers 1971;
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Axelrod 1984; Lindgren 1991; Nowak and Sigmund 1993),
indirect reciprocity (Nowak and Sigmund 1998, 2005), kin se-
lection (Hamilton 1964; Grafen 1985; Queller 1985), group
selection (Maynard Smith 1964; Fletcher and Zwick 2004;
Traulsen and Nowak 2006), and graph selection (Nowak and
May 1992; Hauert 2001; Ohtsuki et al. 2006). Costly punish-
ment (Yamagishi 1986; Clutton-Brock and Parker 1995; Fehr
and Gächter 2002; Fehr and Rockenbach 2003; Rockenbach
and Milinski 2006) can be viewed as a special form of direct or
indirect reciprocity. If you punish a person who has defected
against you, then direct reciprocity is at work. If you punish a
person who has defected against others (Fehr and Fischbacher
2004) then indirect reciprocity is used.

Voluntary participation and the opportunity to punish de-
fectors have been identified as potent mechanisms to promote
and stabilize cooperation in public goods interactions in size-
able groups. The dynamics of model systems that combine both
mechanisms have recently been analyzed for infinite popula-
tions (Fowler 2005; Brandt et al. 2006) as well as for finite
populations (Hauert et al. 2007). This approach does not re-
quire group selection (Boyd et al. 2003) or spatial structure
(Brandt et al. 2003; Nakamaru and Iwasa 2006) to establish
cooperation and punishment. In agreement with earlier results
(Nowak et al. 2004; Imhof et al. 2005; Traulsen et al. 2005),
the stochastic components of the dynamics in finite popula-
tions produce qualitatively different results and requirements
to modify intuitions, which are based on infinite dynamics.

In voluntary public goods interactions, i.e., in the absence
of punishers, mutation and selection in finite populations sup-
ports cooperation such that the system spends most of the time
either in the state with all cooperators or in the state with all
loners. This contrasts with expectations from infinite popu-
lations where loners should dominate because the dynamics
slows down near the loner’s corner. Instead, in the limit of rare
mutations, the system spends roughly 40% of the time in the
cooperator state as compared to 50% in the loner state and
only 10% in states with all defectors. Conversely, in compul-
sory public goods games with punishment, i.e. in the absence
of loners, finite populations tend to reduce cooperation such
that the system spends little time in the cooperator or punisher
states but most of the time in the state with all defectors (typi-
cally more than 80%). Only if fines are very high or punishment
very cheap, punishers can rule the world. In that case, individ-
uals will do whatever it takes to avoid punishment and just as
Boyd and Richerson (1992) have put it: punishment can sta-
bilize cooperation—or anything else. However, this does not
explain the evolution of punishment behavior itself.

The dynamics changes considerably when considering the
joint effects of voluntary participation and punishment oppor-
tunities. In infinite populations this leads to bi-stable dynamics
where the evolutionary outcome depends on the initial config-
uration. However, in finite populations, volunteering creates

an evolutionary pathway for establishing punishment behav-
ior. The state with all loners acts as a junction where the system
switches to the cooperative state or the punishing state with
equal probabilities (Boyd and Mathew 2007; Hauert et al.
2007). In both cases, cooperative behavior emerges because
whenever the groups of participants are small, there is some
probability that they consist, through sheer chance, mostly of
cooperators or punishers. In each case, the group is highly
successful, and will find many imitators. The difference is that
in a population consisting of mostly cooperators, defectors
will thrive, and the rock–scissors–paper cycle will repeat it-
self. If the population consists mostly of punishers, it is much
more stable, and can only get undermined by the slow pro-
cess of nonpunishing cooperators invading through random
drift. Thus, finite populations promote the establishment of
punishment. This emphasizes the pivotal role of loners in the
evolutionary process. The possibility to abstain from public
enterprises not only prevents economic stalemate by provid-
ing an escape hatch out of states of mutual defection but it
also paves the way for establishing punishment mechanisms
that are capable of largely stabilizing cooperation in sizeable
groups. Cooperation (and punishment) is more likely to occur
and persist if interactions are voluntary rather than compulsory.
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