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Thlo model systems for hypercyclic organisation constructed from a series of uni- and bimolecular reaction
steps were studied under the condition of unlimited growth by means of qualitative analysis and numerical
integration of the corresponding differential equations. It is shown that both models lead, within wide ranges of
parameter and initial condiüions, to the same characüeristic dynamical behaviour as the elementary hypercycles
and hypercycles with translation introduced in 1978 by Eigen and Schuster

1. Introduction

Catalytic hypercycles were introduced
some years ago (Eigen, 1971) as the simplest
kinetic systems that guarantee coexistence,
mutual stabilization and coherent growth of
self-reproductive units. In absence of catalytic
coupling terms these units would compete,
and selection would lead to the dominance of
a single one. The basic dynamical properties
of hypercycles, the possibilites of their physi
cal realization, and their role in prebiotic
evoluüion have been discussed extensively
(Eigen and Schuster, L977 ,1978 a,b). A rigor-
ous mathematical study of the correspond-
ing systems of differential equations was
presented in another series of papers (Schuster
et al., 1978, 1979 a,b;Hofbauer et al., 1979).
Most of the analysis and numerical work done
so far on this class of nonJinear dynamical
systems was based on a kind of "overall" re-
action kinetics: intermediate complex forma-
tion was treated under the assumptions valid
at the low concentration limit. In particular
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the steady state approximation was applietl to
all concentrations except those of the (mono-
meric) subunits of complexes.

There are several questions aiming at more
quantitative aspects which desewe special
interest, viz.

(1) How far, if at all, are the dynamics of
catalytic hypercycles affected when the
steady state assumptions are dropped?

(2) Do the most important predictions,
such as cooperativity of individual self-
reproductive units or hyperbolic growth of
the combined system of self-reproductive
units (Eigen and Schuster, 1978a) apply to
more complex mechanisms of reproduction
as well?

(3) How wide is the range of concenha'
tions within which more complex systems
may be described accurately enough by simpli
fied models?

Occasional doubts have been expressed
whether systems described more explicitly at
the molecular level could exhibit the charac-
teristic properties found for catalytic hyper-
cycles at all.

In order to answer these questions at least
in part we present here some analytic and
numerical results on two model systems
which describe eatalytic hypercycles at the
level of consecutive "elementaty steps". The
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Fig. 1. A survey of the compounds present in solution
according to model I

individual steps chosen are not elementary in
the same sense as commonly used in thö
kinetics of small molecules, but they do rep-
resent chemical reactions which are exclus-
ively first or second order with respect to the
macromolecules involved. The two models
refer to the simple or "elementary" catalytic
hypercycle, (Eigen and Schuster, 1978a) in-
volving a class of macromolecules only, and
to the hypercycle with translation, which
deals explicitly with both classes, polynucleo-
tides and polypeptides.

2. The simple catalytic hypercycle (model I)

The macromolecules, all belonging to one
class of self-reproductive units, are assumed to
form two kinds of aggregates: binary and
ternary complexes. The different compounds
we expect to be present in solution are sum-
marized in Fig. 1.

Reproduction occurs via a series of con-
secuüive steps involving complex formation,
polymerization and complex dissociation:
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The symbols Än represent the energy-rich
building blocks of the polymers. They are
to be incorporated into the polymeric chains
in reactions of the form of (1b). In case of
polynucleotides the A^'s would be the four
nucleoside triphosphates (ATP, U(T)TP, GTP
and CTP). zfi) it the stoichiometric coeffi-
cient of base "N' in the synthesis of the poly-
mer 1,. Throughout this paper we shall assume
the concentrations of all low molecular weight
compounds to be buffered:

[ Ä r ]  :  [ A l ] o =  c o n s t . ;  ] .  :  1 ' 2 .  . . . '

Hence, these concentrations may be incorpor-
ated into the rate constants ht and need not
be considered explicitly. The f; and ht ate the
rate constants for the complex formation. For
an experimental verification of this condition,
see e.g. the recent article on evolution reac-
tors by Küppers (1979). Only the concentra-
tions of macromolecules and their complexes
will then appear as explicit variables:
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For our model system I we thus obtain
following 3N kinetic equations:

dx,

i: 
i, : f-iti '+ f-iti * h-rzi- f;rcox,

- fi*t*i - hrxili

i t : f i lcox; -f h-rzr-f-i l i

- hrxil i  - hil i

3

24. The steady state assumption

We assume that the rate and equilibrium
constants for complex formation

dyi 
:

dt

the

(2a)

(2b)

(2c)
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where the bars denote equilibrium concentra-
tions, are such that the r, and ); remain
essentially equilibrated, while the dissociation
of the z, is fast enough that the polymeriza-
tion reactions (1b) determine the growth rate
of the rc,

i r :  k ; ! ;=  k rFrxox ,

(6a)

(6b)

(7a)
p = i - 1 + N ö , 1 .

The indices l,j and p arc defined in such
a way that they lead to cyclic coupling:
N - + 1 - > 2 - > . . . - + f [ .

In order to facilitate further dicussion we
introduce total concentrations for each
macromolecular species

x ? : x t + y ; +  2 z r I y , * z 1 i

i : i +  1 - N ö , N  
!  

( 3 )

and their sum

" :  D*?:P(x,*2y,+32,) .

Since the time derivatiye of r0; is also ä,y,
(eqn. 5), it also is given by

i l  :  k,F;xox;. (7b)

We thus find that model system I leads
under these assumptions to the differential
equations of the "elementary hypercycle"
(Eigen and Schuster, 1978a $VII,7,c). We
shall return to the question of validity and
usefulness of the steady state assumption in
Section 2C.

28. Model system I with two species (N: 2)

The dynamical system with N: 2is worth
Iooking at more closely since it is small
enough to permit qualitative analysis. We have
to distinguish two different physical situa-
tions, which, apart from some minor detail,
lead to the same general results.

1. The polymers 11 and 12 form iust one
complex .[12. The complete reaction scheme,

(4)

It is easy to verify that they fulfil the follow-
ing differential equations

(5a)

(5b)
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slightly different from eqn. (1),

, f
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thus requires five variables: [/rl = x1;llzl =

x2; llnl : l; Ilurl = zfioltd flp2l : z2,in
order to make translation into a dynamical
system possible. The differential equations
are:

i r= fa!  *  h-f i1- foxlxt-  hfh!

iz= fal t h-24- folc1pcz- hztcz!

y = foqx2I h_f i1* h-227- fal  -  hf l

- kzl - hflh! - hztcz!

ä r=  h f l  t  hg f l  -  h -ßr

äz= hz !  *  hzh l  -  h -zzz .

The equilibrium constants.ü1 and II2 are iden-
tical with those given in eqn. (6) except that
f, has to be replaced by y. The equilibrium
constant for binary complex formation will
be denoted by

F = f o  =  
'

fa i, '; i,
(6a')

In order to facilitate qualitative analysis
we assume some rate and equilibrium con-
stants to be equal:

h r :  h z  =  h o ,  h - t  =  h - 2  =  h o ,  h ,  =  h z  =  k  ( 9 )

and consequently H1: Ilr= fl.
These assumptions certainly are less serious

than they appear at first glance. In the case of
the elementary hypercycle, i, : \xox,
i  =  1 , ,  N  a n d  P :  i -  1  +  N 6 , r ,  o n e
can make a kind of barycentric transforma-
tion which leads to equal rate constants in the
scaled concentration variables (Schuster et al.,
1979b). Thus the dynamical systems with
unequal and equal rate constants are topologi-
cally equivalent, the apparent difference
behryeen them is removable by a non-linear
scaling of the coordinate axes represenfing
the concentrations *,.

We introduce new variables JC = lcr I JCz,
z =  z t *  z z r t =  t c r -  * 2 a n d  l : z t - z s a n d
obtain the following system of differential
equations:

i = 2fat + hdz - Llzf" (x' - t'\ - hox!
(10a)

i : U4f" (x' - E') + hdz - fat - hox! -2ky

ä  : 2ky l  hoxy -haz

i  =ha ( -hoyE

i  =  h , yE -ho ( .

(10b)

(10c)

(10d)

(10e)

From these equations we can immediately
derive differential equations for the sum,
c = xl * *! as in eqns. 3 and 4, and the dif-
ference, A : *? - x9 = g + f, in total con-
centrations:

ö = io1+ il = 2i2t

(cf. eqn. 5b), and

A:*9- i8 :€+f=0.

(11)

(L2)



Equations (11) and (12) show that the sum of
the total concentrations grows steadily, since
y 2 O is trivially fulfilled, whereas the differ-
ence A remains constant. In relative concen-
trations, therefore x?lc andxS/c will gradually
approach each other. We shall show in the
following part that under realistic assump-
tions concerning the rate constants the total
concentration c will indeed grow to infinity*
and hence |rg 

(aZc1 : 0 or x\'x' x2 a.fter long

enough time.
The forthcoming analysis will be based on

the assumption that the variable y is essen-
tially constant. In this case we can separate
the system of five differential equations into
two dynamical systems which will be analysed
one after the other. Although there may be
conditions under which y changes more slowly
than t and f , this will not be true in general.
As we shall see at the end of this analysis a
time dependent function y(f) will not change
any of the conclusions as long as y(t) > 0.
Explicit consideration of "time dependent
rate constants" nevertheless would complicate
the analysis substantially.

By separating eqns. (10) we obtain:
(a) The two-dimensional system describing

internal equilibration.

E:ha ( -h "yE

i  :  n "vz-  ho( .

(L3a)

(13b)

Let us initially assume that y is constant and
set ho! : o and ha : d. Now we subject this
Iinear dynamical system to an orthogonal
linear transformation which immediately re-
veals a linear dependence.

1
E, : :____--_ (dt + a()'  

(at a 4z1tlz

*By "growth to infinity" we shall always undersüand
the behaviour of the mathematical model, which is
not restricted to finite boundary conditions as is the
physical system it describes.

and

L
f , ,  (_a l+  do- 

(a" 4 1z1ttz

leading to

t ' :  ( d  - a ) f '

i ' : - ( o+d ) f ' .

(14)

(15a)

(r.5b)

The system no longer depends on g' änd
solution curves are obtained by simple inte-
gration:

f  '  ( t ) :  lä  .  expl  -  (a+ d) t l

and

(a + d) (g'-  €ä) :  (d - o) (r ;  -  r ' ) .

The latter relation, of course, is identical with
the conCition ! * f : lo + fo. BY go, fo, g;

and fi we denote the values of these variables
at a öertain time f : fo from which integra-
tion started.

Fig. 2. The vector field and the trajectories of the
dynamical system described by eqns. (15); choice of
c o n s t a n t s :  a :  h o y :  2 ,  d  -  h a : 3 ,  u n i t :  [ f - r ] ,
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The trajectories of this dynamical system
(15) simply follow straight lines in the !',
f'-plane (Fig. 2). Each trajectory ends in some
point lying on the {' axis (l': 0). From eqns.
(15) it follows immediately that each point on
this line is a stable fixed point. Consequently,
the system is indifferent to changes in {' and
fluctuations may shift the system stochasti-
cally along the t' axis. In the growing system,
however, fluctuations in population numbers
or concentrations will be of less and less im-
portance with increasing c and after a long
enough period { and f will be negligibly small
compared to .r and z ot c and z, respectively.

Let us visualize now what is going to
happen in case y is not constant. In our sys-
tem y(t) in almost all cases will grow during
the equilibration of the dynamical system
(13). Then a(f) will increase and consequently
the decay of f' will accelerate according to
eqn. (1-5b). I\toreover, the "normal modes"
E' and l' are no longer constant. As seen from
eqn. (L4), they will change during the course
of the reaction. Provided y(f) > 0 the conclu-
sions drawn above are still valid.

(b) The remaining three differential equa-
tions in x, y and z. Returning to the remain-
ing equations we recall that I wiil be always
smaller in absolute value than r provided

x2 * O or x1* 0, respectively. Moreover, there
is no systematic gtowth of t over many orders
of magnitude, as there is for *, y a;;d z. It
seems therefore to be well justified to neglect

!2 relative to xz in eqns. (10) or in other
words to start the system with to : 0 and

lo : 0. Now we make use of the initial
assumption, /a being small enough to guarantee
slow growth, and conclude that the system is
always sufficiently close to the association
equilibria. These are simply determined by
the relations:

ä  =  0 :  h , i y -haz

or (16a)

h.
_ _ : : H =
hd

v:0 :

OT

::
tcy

LlLf"iz - foy

(16b)

These two equations are formally identical

Fig. 3. Distribution of monomers (r), dimers (y) and trimers (z) according to an equilibrium as in eqn, (17) as a
function of total concentration c; choice of constants: F' - L12, H = 2/3, unit: [c-1 l.

f o ^ , Y
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with those of trimer formation:

F ,
v I V ---\ vr

z l T / l - r

H
v J- v ----->- 7
t  I  z l - u

7

In an h: c,f-plot eqn. (20c) will show up as a
concave-downwards function in contrast to
hyperbolic growth, which leads to concave-
upwards solution curves.

It seems to be important to consider the
kinetics of the reaction scheme (8) under
partial release of the constraints imposed by
eqn. (9). In particula.r, we generalize to dif-
ferent values for the rate constants of the
two irreversible reaction steps: h + k2.
Accordingly, we finc

ö :  i | +  i 3 :  ( k1+  h2 \y

and

A:  *?  -  * 3 :  ( h r -  k ) y

(11 ' )

(L2')

The difference in total concentrationS, A,
thus is neither constant nor does it approach
a constant value. Additionally, there is no
easy way to find transformation to intemal
and extemal coordinates as it was in the case
of equal rate constants (see eqns. 10). Never-
theless, we can analyse the asymptotic behav-
iour of the total concentrations:

The equilibrium concentration of free mono-
mer 7 then is obtained as a solution of the
cubic equation:

2 L 1
; 3 + _  i 2 + _ i * _  c : 0 .

3H \HF' !HF'
(18)

A characteristic distribution of monomers.
dimers and trimers varying with increasing
concentration c is shown in Fig. 3.

From eqn. (18) we can easily determine the
low and high concentration limits:

(17a)

(17b)

(19a)

(r.eb)

(20c)

c - " 0 :  i t , c

c.+6: i" ,(#)1

with
/ F' 1' ' '

" v : 2 l 3h l - l
\gu'/

Consequently, we shall observe the following
asymptotic behaviour of growth rates:

c  -  0 :  ö :  2ky  *  ZkF '  c2 (2oa)

c - > 6 :  ö : 2 k y N

Thus, at low enough concentration the system
will start to grow hyperbolically according to
the definition given previously (Eigen and
Schuster, 19?8a). After some transition period
the growth rates will decrease with respect to
the power of c and finally go over into a kind
of "subexponential" growth according to the
asymptotic solution curve

c(t) :  (crs/3 + yt f

#:?, 
and hence/ a*\:\ f a*3.

,u(fi''' *'' (2ob)By integration along the trajectory we find

k ,
tr9 (r) - r? (o) : - Ixl(r) - rB (o)1,

k 2

wherein the initial values of total concentra-
tions are denoted by *? (0) and *9 (0). In
analogy to eqns. (L9) and (2O) xo1 (f ) and 13 (t)
exhibit unlimited growth. Hence, their ratio
approaches asymptotically the constant value

,cg (r) kr
l i m _ : _ .
t ,*  tcSG) h2

2. The polymers \ and. 12 form two physi-
cally distinguishable cornplexes Ip and I21.
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The complete reaction scheme in this case is
identical with that given initially in eqn. (1)
for N : 2 and consequently the correspond-
ing six differential equations follow from
eqn. (2). As with the previous case we sim-
plify the equations by the assumption of
equal rate and equilibrium constants:

h :  f z :  f o ,  f - t :  f * z :  f a ,  h 1 =  h 2 :  h s ,

h - r  :  h - z :  h o  a n d  h , 1 :  l t 2 :  k (9 ' )

and hence

Fr=  Fz :  F  andf l r  :  Hz :  H.

Again we introduce sum and difference
v a r i a b l e s  ) c :  J C r  I  x z , ! :  ! r *  ! z , z :  z r *  z z ,
t  =  Xr  -  Xz , r l  :  l t  -  l z  And (  :  z ,  -  z2 to
obtain the dynamical system:

i : 2fa! * hoz - f" (x' - E')

Again we notice that the system is steadily
growing (y > 0). Lr contrast to the previous
case, however, the difference in total concen-
trations is no longer constant and we have to
do a more involved study in order to be able
to deciCe whether the system is going to
approach a state with controlled total concen-
trations, xl N xl, or not.

The system of six differential equations is
separated in complete analogy to the preced-
ing example: the variables r and y are assumed
to be essentially constant. Now we may treat
the dynamical systems in E,n,(, and x,y,z one
after the other. Thus we obtain:

(a) The rapidly equilibrating three-
dimensional system

E: -a t -bn+c(

i : -aE- (b+d+ l t )n+c l

( :a t+ (b+k)n -c l

-Ilzh" (xy + Eq)

i  =u2 f " ( x , -E ) *hoz - f a t

-Llzh" (xy + fq) - ky

ä = hy + tlzh" (xy + Eq) - haz

i : ha( - Ll2h" (xn + yE\

ö :  i \+  i l=  hy

and

A:r?- i2 : t+ i :nn.

n = hal - fan - Ll2h" (w + yt) - hq (21e)

i  : kn + Llzh,(xn + yE\* ho(. (21f)

As before we may study the sum and differ-
ence of the total concentrations, c and A,
which are determined by the differential
equations:

where for convenience we have already set
Ll2h"y : a, Ll2hox : b, ha : c, fa : d and
k: k. Now we subject thb system to an ortho-
gonal linear transformation, 4 remaining un-
changed,

a ( b + k ) - c b

L
E ' :  _ l c { + a ( l

l a ' +  c ' ) " "
and

l_
l ' :  _  ( - a { + c f )  ( 2 5 )

( a ' t  c ' ) " '

and obtain

(21a)

(21b)

(2Lcl

(2 ld)

(22\

(23)

i , -

i :

; t
J _

n  +  @-  a \ f '
(a2 + c2)r /2

-(b + d + le)q * (a2 I 
"zltrzgt

a b l c ( b + k )
n -@+c) l ' .

(a2 + c2)t/2

(24a)

(24b)

(24c)

(26a)

(26b)

(26c\



The dynamical system, as before, no longer
depends on g' and hence we are dealing with
a two-dimensional linear system which can
be analysed by standard techniques. There is
a strictly stable fixed point in the origin of
the coordinate system, since both eigenvalues
of the Jacobian matrix have negative real
parts

a t b * c * d - r k
\  - -, \ 1  2  -

2

4 ( a d + a k + c d )

( a + b * c + d + l e ) 2 ,

(The condit ionso > A,b )  0,  c > 0,d )  0 and
k > 0 are trivially fulfilled) Moreover, it can
be shown easily that both roots are real since*

4 ( a d +  a k +  c d ) (  ( a +  b *  c r  d + k ) 2 .  Q 8 \

Thus both 4 and f'will decrease exponentially
and approach zero. During that period {'will

t
Fig. 4. Sketch of the vector field of the dynamical
system described by eqns. (26); choice of constants:
a  =  L l2ho l  =  3 ,  b  =  U2hox =  2 ,  c  :  ha :  4 ,  d  =  fa=
3 ,  h  :  2 ,  u n i t :  I f - ' ] .

*Eliminete D by setting b = 0 and obtain a stronger in-

equality which trivially implies ( 28 ) : 4 (ad + ak + cd)<
(i  + d + c + h\2.Now substract 4(ad + ah + cd + ch\
from both sides of the equation. Thereby we find
- 4 c h < ( - a - d  +  c +  k ) ' q . e . d '

9

increase (eqn. 26a) and asymptotically reach
a constant value. A sketch of the vector field
in the \,(' - plane for a typical example is
shown in Fig. 4. Coming back to the initial
question, we are now in a position to give a
definite answer: Since lim ? : 0 and the

decrease of n follows ah exponential func-
tion, the difference in total concentrations
A, which according to eqn. (23) is given by

lzn  dr ;  Ao :  A( t :  fo )  (23 ' \

t

will approach a constant value as in the pre-
vious example.

As in the previous example, time depen-
dent values of the rate constants a(f) and b(t)
will not alter the general conclusions as long
as o ) 0 and b > 0 are fulfilled. This will
always be the case in growing systems where
a(f ) and b(t) arc increasing.

(b) The remaining three differential equa'
tions in x, y and z. We are now in the same
position as before and can study the remain-
ing three equations with the aid of analogous
initial conditions €(0) : ri(0) = l(0) : 0.
Again we apply the equilibrium assumption to
the simptified equations which are supposed
to be a good approximation for the slowly
growing system (k < h) and find

2 :  0:  I lZh, i i  -  ho7

or

h"̂  - H "
2ho

(29a)

y : o : t l 2 f o i 2 - f o y

or (29b)

f \ )
' a  

n l l: I
q r  ; 2' t d

f "A  -  ^  r ,u - u o , J ,
r o

'1'' ('-

a

tcy



1 0

Aparü from numerical factors the equations are
identical with those of the previous example.
Hence, we find again that the system fulfils
relations analogous to trimerization equili-
brium. All conclusions concerning the growih
behaviour of the previous example remain
valid.

The generalization to different values of
the rate constants h1 arrd /:2 is somewhat
more involved than in the previous example'
The ratio x1lx2, nevertheless, will approach
again the constant value krllt,z asymptotically'

The'three major conclusions than can be
derived from the analysis of these two cases
are:

(1) The system described by model I will
show unreshicted growth (until the resources
are exhausted) for all its components, i.e.
l im c :  -  and hence l imr :  - ,  l imy = *
f , -  f ' *  t . * -
and l imz:  - .

t + *
(2) As a consequence of (1) we find

l,rgg (a/c) = 0 and hence xl T' x\ in the case

bf equal rate constants, k1 - kz : k. For

h + l?2 we obtain

x1  k l
l i m -  = - .
t , *  x \  h2

In both cases, ühe system controls the total
concenhations of its components. This pro-
perty which has been attributed to the ele-
mentary hypercycle as one of its most impor-
tant features, is found again with the more
complex dynamics of model I.

(3) Starting from low concentrations, the
model system will pass through a period of
hyperbolic growth (Eigen and Schuster,
1978a) and then after saturation follow a
kind of parabolic function c : (a + bt)n üritrh
n =  3 .

Although the foregoing results were derived
under the assumption of slow gtowth, the
conclusions are also valid for systems growing
at rates which are too fast to allow approxi-
mate equilibration, as we show by numerical
examples presented in the next section. We

have not yet been able, however, to find a
rigorous analytical proof for the expected
behaviour of systems growing far from internal
equilibration.

2C. Numerical integrations

In order to see whether the assumption
made in the analysis presented in the last
section is properly justified we decided to
perform some numerical calculations. For
that purpose we studied the dynamical system
of eqns. (1-0) with different rate constants /e.
The solution curves of one typical example
are shown in Fig. 5. Systems of higher dimen-
sion (N > 2), to which the analytical treat-
ment is hardly transferable, seemed to be even
more interesting. Therefore we performed
additionally two individual integrations on

Fig. 5(a)

Fig. 5(b)
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t f l  X 1

Fig .  5 (c )

F ig .  5 (d)

Fig. 5. Numerical inüegration of three differential
equations according to eqns. (10 a-c); choice of con'
s t a n t s :  f o  =  2 , ' h o : 2 1 3 ,  f a =  h a : 1 ,  k  =  0 . 1 ;  i n i t i a l
concent ra t ions :  r (0 )  =  1 .  10-3 ,  y (0 )  =  z (O)  =

1 . 10-6, €(0) = f(0). All values throughout this paper

are given in arbitrary concenttation [e] and time
units [f], e.g. the rate constanüs are either of dimen-
sion [f-1] or [f-rc-l] depending on whether they
refel to a unimolecular or bimolecular process. For
praetical purposes any concrete set of units may be
inserted.

Fig. 6. Numerical integtation of nine differential
equations according to eqns. (2) with N = 3; choice
of  cons tan ts :  f1  =  L .0 ,  fz :  L .L ,  Ä  =  0 .9 ,  f - r ;0 .7 ,
f-z = 0.6, /-s = 0.5; h, = 0.2, hz = 0.2, hs = 0.3,
h - ,  : . 0 . 4 ,  h - z  =  0 . 3 ,  h - "  =  O . Z i  k t :  2 . Q ,  k z :  2 , 5 ,
äs : 3.0; iniüial concentrations: *, (0) = *r(0) =

* . (0 )  =  1 .  10-3 ;  / , (0 )  =  y , (0 )  :  y . (0 )  =  z , (0 )  =

z"(O) = zr(0) : 1 ' 10-6. Units: see caption to Fig' 5.
The vertical broken line refers to the critical time of
the "elementary" hypercyele (Eigen and Schuster,
19?8b) ealculated from eqn. (30) under the assump-
tion of internal equilibration. t = t 9
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TABLE 1

Results of numerical integration for model system I
(eqns. (10), ini t ial  condit ions: r(0) :  1 .  10-3,
y ( 0 )  =  1 .  1 0 - u ,  z ( Q l  :  1 .  1 0 - , 6 ;  f ( 0 )  =  l ( 0 )  =  0 ;
rate constants: fo= 2,ho= t j ,  

fa: ha: 1). The values
are given in arbitrar5r concentration [c] and time
units [f ] (see Fig. 5).

r , .  h . 1 o _ . u  . 1 q . " _  b .  1 o 3 b
.  r c l r ) " , .  h

l i m / a - 0
0 .01
0 .1
1 " ,

10
100

0.995c
1 .01
1 .01
1.07
2 .7

L4.2

0.5
0.497
0.496
0.300
0.065
0.007

Fig. 7, Numerical integration of nine differential
equations according to eqns. (2) with N = 3. All
rate constants were taken equal to 1; initial conoen-
t ra t ions :  r , (0 )  =  1  .  10-3 , . rc r (0 )  =  1 .5  .  10-3 ,  ru (Q)  =
2 .  1 0 - 3 ;  y r ( O )  =  y , ( 0 )  =  y r ( 0 )  =  z r ( 0 )  =  z r ( 0 )  =
au(0) : 1 . 10-6. Units: see captioh to Fig. 5. Vertical
broken line: see caption to Fig. 6.

tire model system I with N : 3 and one on
the system with N : 5. The solution curves
are shown in Figs. 6-8.

First of all we easily recognize the hyper-

Fig. 8. Numerical integration of 15 differential equa-
tions according to .eqns. (i) with N = 5. All rate
constants were taken equal to 1; initial concentra-
t ions :  r , (0 )  =  1 .1  .  10-3 ,  * r (0 )  =  1 .2  .  10-3 ,  ru (0)  =
1 .3  .  10-3 ,  r . (0 )  =  1 .4  .  10-3 ,  r , (0 )  =  1 .5  .  10-3 ,
J r (O ' )  =  y r (0 )  :  zs (O)=  1 .  10-6 .Un i ts :see
caption to Fig. 5, Vertical broken line: see caption
to Fig. 6.

ur, is a measure for the critical time at which the
"burst" in the ln c/t diagramm (Fig. 5) occurs. The
concrete numerical value was taken at the point
where c = 1.
bThis ratio is taken as a measure for the distance ühe
system is off equilibrium. In a fully equilibrated
mixture we have y/x2 = F',
cCalculated from eqn. (2Oa): tg. = [c(0) .2hF'1-r.

bolic phase of growth in all the ln r, ln x0 and
ln c vs. f plots: exponential functions $rould
appear as straight lines, and hence concave-
upward functions indicate gXowth which is
faster than exponential and belongs, by defini-
tion (Eigen and Schuster, 1978a), to the hy-
perbolic range. Such curvature appears in the
initial period of all plots shown in Figs. 5-8.
After a rather sharp "burst" at some time (q,
see Fig. 5 and Table 1) the curves level off
and approach a concave-downward, monoton-
ously increasing function which is character,
istic for "subexponential" gxowth.

The system with N : 2 as described by
eqns. (10) was studied under extensive varia-
tion of the rate constant /a, which determines
the rate of the irreversible reaction step (1b).
Figure 5 shows the solution curves for one
concrete example. In order to test the range
of validity of the "close to equilibrium"
assumptibn in slowly growing systems we
compare the critical times, tA, calculated



from the differential eqn. (20a)* and the
instant of sudden growth, 11, determined by
numerical integration (Table 1). Deviations
from "internal equilibrium" in the range of
high concentrations can be estimated pro-
perly by a comparison of ihe asymptotic
value of the ratio y/xz and the equilibrium
constant F'. Both measures provide essentially
the same picture: the systems with k : 0.01,
0.1and L.0 grow sufficiently close to "internal
equilibrium". At larger values of /a the devia-
tions become substantiuJ (k : 10 and 100 in
Table 1); the qualitative behaviour of the
solution curves, however, remains the same.

Solution curves for the system with N : 3
and lV -- 5 were obtained by integration of
eqns. (2) and are shown in Figs. 6-8. Although
for technical reasons the integration could not
be followed into the range of high concentra-
tions as far as in the previous example it is
quite evident that the curve for ln 11 levels
off much more strongly than those for ln r!
or ln c (Fig. 6). This agtees well with the
analytical results since 11 is expected to grow
asymptotically with t whereas rc! and c should
approach (a + bt)3. In the intermediate range
the variables tr, may undergo a few oscilla-
tions; one is easily recognized in the plot of
ln 11 in Fig. 6.

It is interesting to note that the same
behaviour is observed in systems with a
distribution of rate constants (Fig. 6) as in
those where all constants have been put to
equal values (Figs. 7 and 8). The ratios
hilf-i andh,lh-iused for the calculation shown
in Fig. 6 lie between 3 and 15, while the two
other cases were all equal to 1. Nevertheless,
the predictions of the last section are fulfilled
although the system does not meet the con-
ditions of slow growth at all. It seems that the
general characteristics of growth will be
observed over a wide range of conditions
whether the system is close to internal equili-
brium or not.

In a previous paper (Eigen and Schuster,
1978a) we derived a simple expression for the
*f$ is the time at which the insüability 

,tj& " 
= -

1 3

position of the instability occurring in elemen-
tary hypercycles under the assumption of
intemal equilibration :

(30)

This relation was found to predict approxi-
mate values for the critical times at which
instabilities occur in different systems growing
far from internal equilibrium. Due to syste-
matic errors the predicted values were always
somewhat too small by about 30%. Interest-
ingly enough eqn. (30) leads to useful predic-
tions of the "burst" at the end of the hyper-
bolic range of growth in the systems studied
here (see Figs. 6-8) provided the "steady
state rate constants" as derived in eqn. (7),
h'; : kiF;, are applied' Again the predictions
yield somewhat too short initial periods, as
they should from previous arguments. It is
worth noticing that the predictions are sub-
stantially more accurate for the curves shown
in Figs. 7 and 8 than in Fig. 6, Indeed those
two systems should grow closer to internal
equilibrium than the Fig. 6 case on the basis
of the h,lf , and k;lh-, values discussed above.

3. The h5rpereycle with translation (model II)

The second model system studied corre-
sponds to the hypercycle with translation as
introduced by Eigen and Schuster (1978a). It
is much more complicated than the first
model, because it deals explicitly with macro-
molecules of two classes:

(1) Self-reproductive units with properties
similar to those of polynucleotides; and

(2) Catalytically active polymers which
like polypeptides are obtained from molecules
of the first class by a translation mechanism
allowing for a unique assignment.

The polymers are assumed to form various
types of binary and ternary complexes, as
shown in Fig. 9. Polymer synthesis occurs via
a series of consecutive steps involving complex

/  N  \ _ ,
t3 :  E tc(o) l  - ' '  E:  (  D a; ' l

\  i =  1  /
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Fig. 9, A survey of the compounds present in solu-
tion according to model II.

formation, polymerization, translation and
complex dissociation:

E N + I l E* . I, (31a)

E* ' 1 , EN - 2It (31b)

As in the previous section the symbols Ä^
refer to the energy-rich building blocks for
the synthesis of polynucleotidelike polymers
(ATP, U(T)TP, GTP and CTP). By B* we de-
note suitably activated amino acids which are
ready for polypeptide synthesis via translation
of polynucleotides; in present-day cells they
would be one of the aminoacyl-t-RNA's. The
symbols z^(i) arrd ur0l denote the stoichio-
metric coefficients appearing in the equations
for the synthesis of the polymers I, and Ei,
respectively. Again we assume the low mole-
cular weight materials to be buffered.

[Ax] :  [Är]  o :  coost. ,  )r :  7,2. .  .

[ B r ]  :  [ B u l o  :  c o n s t . ,  P :  L , 2 . . .

and their concentrations thus will not appear
explicitly in the differential equations.

Consequently the set of variables for the
individual macromolecules and their com-
plexes with which we have to deal is:

l l i f  :  tc i ,  fErf  :  ei ,  [ I r .  Er1 = 4,

[ E o ' I i I =  y i

and

l E r ' 21 , f : z i ;

and

i : L , 2 . . . . . . N

p  = i - 1 + N 6 , r .

Model system II is thus described by a system
of 5N differential equations:

* r  :  f - rd i *  h -pr *  I - rz i -  k ,x ,  -  f , x re ,

-hrxreo - Irxilt (32a)

öi  :  f -rdr!  h- i t i -  f i rc ier-  h,x,e, (32b)

ä i :  h i x ; * f i x c ; e ; - f - i d . ,  ( 3 2 c )

I i  \
- l

:'_l
"" I L  =  1 , 2 , . . . . . N

p =  i - 1 * N ö l l

iEpr i  
1
I=d zLL 
I

+)z l1)A^

(31d)



itt -  h$ iQp  +  l - r z r -  h - i t i -  g i l i

- lrxit i (32d)

ä i  :  g i l i I  l r x ; y i - l - r z ,

i  =  L ,2 , . . . . ,N ; i : i +  1 -Nö rN

and

p :  i -  1+Nör r .

(32e)
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3A. The steady state resurnption

As with model system I we assume thaü
polymer synthesis is a fairly slow process and
ttrat at low enough concentrations binary and
tertiary complexes will be present only at
small, süationary concenhations. By low
enough we mean fulfilment of the inequality

cy ,cp4  F ; t ,  H i t  ,  L1 ' ;  i :  t , 2 , .  .  .  .  ,N

where .Fi', Ifl'and .Ll'denote reciproeal equili-
brium constants for complex formaüion:As with model I

defined in such a
cyclic coupling.

It is useful to
trations

and hence we have

N
. \'\

cN = Qr9ili

and

N
.  \ \  ,
c p :  . 4 r R $ i

the indices i, j and p are
way that they introduce

define the total concen-

(36a)

(36b)

p : i - 1 + N 6 1 1

t c?  :  x t+  d i+  y r *  2z i

for the self-reproductive units and

(33a)

e ?  :  e r +  d i +  Y j +  z i ; i =  i +  1 - N 6 r l '  ( 3 3 b )

for the catalytically active polymers. Addition-
ally, we define total concentrations for whole
classes of macromolecules, namely total poly-
nucleotide and total polypeptide concentra-
tions, through

N N
s\ \a ,,

"n 
: 

,4{? and 
"r: ,4rn?. (34)

The time derivatives of these quantities fulfil

(35a)i? : g,v,

ö! : h;x; (35b)

where the bars denote equilibrium concen-
trations.

We apply steady state assumptions to the
concentrations of the complexes

ä i  : 0 ,  * :  0

and

2 r  = 0 ,  i = L r 2 r . . . . r N

and obtain 2N differential equations for the
remaining variables

i i  :  g iH iep* r ,  P  :  i -1  +  Nöt t

and

(38a)

öi : hix, (38b)

We find that model system II approaches
asymptotically the equations proposed.pre-

(37a)

(37b)

(37c)
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viously for the low concentration limit of the
hypercycle with translation (Eigen and
Schuster, 1978a).

In contrast to model system I, the number
of variables in model II cannot easily be re-
duced to two or three by well-justified physi
cal arguments. Therefore we dispense with a
discussion of various attempts to perform
qualitative analysis and instead present three
examples of numerical integtation:

38. Numerical integrations

Solutions for the 15 differential equations
corresponding to eqns. (32) with N: 3 were

obtained by numerical integration. In order
to reduce the enormous variability intro-
duced by the possibility of choosing 24 rate
constants we set them all equal to 1. This
choice offers the advantage that all complexes
are present at amounts comparable to the
free polymer concentrations if these were set
equal to 1 unit. All processes then occur at
comparable rates and have an influence upon
the solution vectors.

fhree different initial conditions were
studied:

(1) The initial polynucleotide concentra-
tions are greater than the initial polypeptide
concentrationso crv (0)

t h  X 1 ln er

tn  x i tn e!



ln c*

77

0

- z

Fig. 10. Numerical integration of 15 differential equations according to eqns. (32) with N = 3. All rate constants
were  taken equa l  to  1 ;  in i t ia l  concent ra t ions :  r , (O)=  0 .  10 ,  r r (0 )=  0 .12 ,  r3 (0)=  Q '74 ;  e , (O)=  9 .0 '  10-3 ,

e" (O)=  1 .1  '  10-3 ,  e3(0) :  1 .3  '  10-3 .  Un i ts :  see  capt ion  to  F ig .  5 .

(2) the initial polynucleotide and polypep-
tide concentrations are about equal, c*(0) t
cp(0),  (Fig. 11);  and

(3) the initial polypeptide concentrations
are greater than the initial polynucleotide
concenhations, cp(0)
Within these limits the individual concenfua-
tions were assumed to differ somewhat.

AII total concentrations (*0,, €0;, c.ry &trd
cr) were found to grow monotonically and
did not approach constant values within
the time ranges of integration. This result
is consistent with eqns. (35) and (36) (al-
though it does not follow automatically from
them since *, and y, might approach zero) and
shows that the hypercycle with translation
behaves very similarly to model I as far as the
general growth property is concerned.

The long term behaviour does not depend
markedly on initial concenfuations, as we see
from Figs. 10-11 and, even more clearly,
from the numerical values shown in Table 2.
Moreover, we recognize three other imporbant
facts:

(1) The polynucleotide concenürations (r;,
r!. and crv ) go through a period of hyperbolic
growth, although this may be during a rela-

tively short time span only, as e.g. in Fig. 10.
Comparing the solution curves for three dif-
ferent initial conditions (Fig. 10-12) we
observe large differences with respect to this
initial phase of growth.

(2) The polypeptide concentrations show a
more complicated time development: drastic
changes and oscillations in free concentrations,
8t, may occur for some choices of initial
values. An example is the behaviour of e, in
Fig. L2. At long times, however, the free
protein concentrations approach a constant
value lying close to lri,tt u, t 3 in all three
examples studied.

(3) Internal equilibration between species
(xt * x, N lctr €r 1' €z N e3, etc,) is approached
rapidly. The hypercycle with translation thus
fulfils the requirement of controlling indivi-
dual concentrations, as does the simpler
model system I.

The problem of internal equilibration
should be briefly looked at from another point
of view. In a fully equilibrated system the
ratios of concentrations in eqn. (37) are the
equilibrium constants. Under noncquilibrium
conditions they may be different. In Fig. 13
we show the time dependence of some of
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TABLE 2

Results of numerical integration for model system II after f = 900 time units. The values
are given in arbitrary concentration units [c] (see Fig' 6).

Initial conditions

cry(0) > cp(0)
(see Fig. 10)

cry(0) t  cp(0)
(see Fig. 11)

cN(o)  < cP(o)
(see Fig. 12)

.r, (900)
*,  (900)
*,  (900)
rl (eoo)
*i (e00)
r! (e00)
c"  (900)
e,  (900)
e,  (900)
e.  (900)
el  (e00)
eo, (900)
e', (900)
cp (900)

2 .10  .  10?
2.09 .  10 '
2.09 . 70'
1.77 .  10s
1 .77  .  105
1 .76  .  10s
5 .30  .  105
3.00
2.98
2.99
8.88 .  103
8.87 .  10*
8.89 .  101
2 .66  .  10s

7 .76 .  LO 'z
1 .76  .  10 '
1 .76 .  r0 '
1 .25  .  10s
1 .25  .  10s
1 .25  .  10s
3 .76  .  105
2.99
2.99
2.98
6 . 3 1 . 1 0 "
6 . 3 0 .  1 0 4
6 .31  .  104
1 .89  .  10s

1.95 .  10 '
2.03 .  10 '?
2 .03 '  10 ,
1 .59  .  10s
1 .60  .  10s
1 .67  .  105
4.86 .  10s
2.86
2.99
3 . !2
8.02 .  10*
8.38 .  104
8 .03 . .  104
2 .44 .  70s

t-l
2.0

F i g .  l s . P l o t s o f t h e f u n c t i o n s . F ' i ( t ) ( - + - + - ) , F / ' r ( f ) ( - . - . - ) a n d L ' , ( t ) ( - ) w h i c h c h a r a c t e r i z e t h e
deviation of the bystem from internal equilibrium (eqns. (39)). The values are taken from the numerical integra-
t ion described in Fig. 10. Units: [c- ' ] ,  [ t ] .
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these ratios. At the end of the hyperbolic
phase of growbh the functions

2t

whole grows further following a parabolic
function of the type c : (a -r bt)n (L < n ( - ).
The change in growth behaviour is caused by
a saturation phenomenon: prior to the transi-
tion most of the molecules are present as free
molecules, whereas afterwards most are bound
in complexes.

(2) Irrespective of the ihange in growth
behaviour the relative amounts of all species
integrated in the hypercycle are controlled.
Thus, the species do not compete with one
another. This kind of "equilibration" be-
tween species is observed in systems close to
or far from thermodynamic equilibrium with
respect to complex forrnation. The problem
of internal "equilibration" during the various
stages of growth is not yet fully understood.
It deserves further interest and will be treated
in a forthcoming study.
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