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Abstract. We analyze the replicator equation for two games closely related

with the social dilemma occurring in public goods situations. In one case,

players can punish defectors in their group. In the other case, they can choose
not to take part in the game. In both cases, interactions are not pairwise

and payoffs non-linear. Nevertheless, the qualitative dynamics can be fully

analyzed. The games offer potential solutions for the problem of the emergence
of cooperation in sizeable groups of non-related individuals – a basic question

in evolutionary biology and economics.

1. Introduction. The replicator equation describes important dynamics occurring
in many parts of biomathematics. Let us assume that a (ideally, infinitely large)
population consists of n distinct types, and that the frequency of type i at time t is
given by xi(t). The state of the population is thus described by a point x in the unit
simplex Sn spanned by the standard basis vectors ei, i = 1, ..., n. If Fi(x) describes
the average payoff (or fitness, or reproductive success) of type i in a population
whose composition is given by x, then the replicator equation postulates that

ẋi = xi(Fi(x)− F̄ (x)) (1)

where F̄ (x) :=
∑

xiFi(x) is the average payoff within the population. The state
space Sn as well as its boundary faces are left invariant by the dynamics.

This type of equation occurs in many problems in mathematical ecology, epidemi-
ology, immunology, evolutionary biology and economics [11]. Most examples which
have been analyzed deal only with the case of linear functions Fi(x) =

∑
aijxj .
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This is a reasonable assumption if the interactions within the population are pair-
wise. However, important types of interactions occur in larger groups, and are
described by non-linear terms.

In this paper we survey two such examples which are of great interest for the
evolution of cooperation, an essential problem in biology and economics. They deal
with public goods. Such public goods are crucial, indeed defining elements for every
society: sheltering, foraging, hunting, or defense are often collective enterprizes. In
many such situations, it is possible that individuals profit from the public good
without contributing to it in full measure. Such ’defectors’ do better than coopera-
tors within every group. Selection should therefore eliminate the cooperators, and
the public good should vanish.

Economists, psychologists and students of animal behaviour have studied such
situations in experiments with humans [4, 13, 3]. To give a simple example, each
member of a group of six players (who do not know each other and will not meet
again) is given ten dollars and offered the possibility to invest some part of the
money in a common pool. The players are told that the experimenter will triple
the total amount in the pool, and distribute it equally among all players, irrespective
of their contributions. If all players contribute fully, each earns thirty dollars. But
note that all contributors receive only half of their own investments. Hence players
are tempted to withhold their contribution. But if all decline to contribute, there
is no pool to share. Such a public goods game describes neatly the social dilemma
caused by the discrepancy between individual and social welfare [2]. In reality,
many players contribute; but experiments show that if the game is repeated for a
few rounds, the contributions will decline and eventually stop.

More generally, we shall consider games where each individual in a group of N
players has the option to cooperate or to defect. Cooperation means to contribute
a certain amount c to the common pool. The sum of all contributions is multiplied
by a certain factor r, and divided equally among all N players. If nc of the players
cooperate, then the payoff for a defector will be

Pd = rc
nc

N
, (2)

whereas the payoff for a cooperator will be

Pc = Pd − c (3)

because the cooperator bears the burden of the contribution. It is obvious that the
replicator dynamics implies that the frequency of cooperators converges to 0. This
is also, of course, the prediction from classical game theory, which is based on the
assumption that players are selfish individuals trying rationally to maximize their
own income.

There have been many attempts to explain why, in spite of this result, collab-
oration prevails. In this mathematical survey, we only describe two approaches
[15, 8, 7]. In the first part, we investigate the effect of punishing defectors, and
in the second part, the effect of withdrawing altogether from such games. Both
models lead to interesting replicator dynamics which can be fully analyzed in spite
of being based on non-linear payoff functions.

2. Public Goods with Punishment. There are two options for the public goods
game. Option e1 contributes to the public good, whereas option e2 does not. In
the public goods game with punishment, this decision is followed by a second round
where players have the option to punish the defectors, or not. Option f1 consists
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in punishing non-contributors, option f2 in not punishing them. We assume that
each act of punishment reduces the payoff of the punished player by the amount β,
but also reduces the payoff of the punishing player by an amount γ (with β, γ > 0).
Thus, punishing is a costly activity: a selfish player should refrain from it. In the
resulting game (first, contribute or not; then punish or not), there are four distinct
strategies.

G1 = e1f1: contributes and punishes, this is the social strategy.
G2 = e2f1: is the paradoxical strategy which does not contribute, but punishes

all co-players who do not contribute.
G3 = e2f2: is the selfish strategy of players who neither contribute nor punish.
G4 = e1f2: is the strategy of mild players who contribute, but do not punish.
All players receive as a result of the contributions of their (N − 1) co-players an

average payoff
B =

rc

N
(N − 1)(x1 + x4). (4)

The costs arising from their own contribution (if any), their punishing activities
and the fines incurred from the punishers result in a net average payoff Pi for type
Gi, with

P1 = B − c(1− r

N
)− (N − 1)γ(x2 + x3) (5)

P2 = B − (N − 1)β(x1 + x2)− (N − 1)γ(x2 + x3) (6)

P3 = B − (N − 1)β(x1 + x2) (7)

P4 = B − c(1− r

N
) (8)

Since P1 + P3 = P2 + P4, the quotient x1x3
x2x4

denotes an invariant of motion and
hence the sets

WK = {x ∈ Sn : x1x3 = Kx2x4} (9)
(with K > 0) provide a foliation of the state space S4 into invariant manifolds (see
figure 1).

It is thus sufficient to study the dynamics on the two-dimensional manifolds,
which are saddle-like surfaces spanned by the edges G1−G2−G3−G4−G1. There
is no rest point in the interior of these surfaces. The flow on the edge G1G2 points
towards G1, and on the edges G2G3 as well as G4G3 it points towards G3. The
edge G1G4 consists of fixed points.

To make things interesting we shall always assume

β >
c

N − 1
(1− r

N
) (10)

which states that the total fine imposed on a non-cooperative player by its punishing
co-players is higher than the net costs of contributing to the public goods. Then
the point

Q =: (
(N − r)c

βN(N − 1)
, 0, 0, 1− (N − r)c

βN(N − 1)
) (11)

lies on G1G4. The transversal eigenvalues of the points on the segment G1Q are
negative, and hence are saturated, i.e. Nash equilibria. The points between Q and
G4 are not. This yields the phase portrait in figure 2. It follows that all initial
conditions lead either to G3 or to the segment G1Q. If we assume that random
shocks occasionally perturb the system, we see that in the long run, the asocial
equilibrium G3 gets always established – just the same prediction as with classical
game theory, conflicting with empirical evidence.
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Figure 1. The Wright manifold: the invariant of motion x1x3
x2x4

=
K foliates the state space S4 into invariant manifolds WK , shown
here for K = 1.

(a) G1 G2

G3G4

Q

(b) G1 G2
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Figure 2. Replicator dynamics for public goods games with pun-
ishment on the invariant manifold WK for K = 1: (a) for group
sizes of N = 5 and (b) N = 10 players. The edge G1G4 is a line
of fixed points. On G1Q they are stable (closed circles) and on
QG4 unstable (open circles). Even though the social state G1 and
the asocial G3 are both stable, random shocks eventually drive the
system to the asocial equilibrium G3. For larger group sizes Q
approaches G4 and consequently the system takes longer to reach
G1. Parameters: r = 1.5, c = 4, γ = 1, β = 2, µ = 0.
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Let us now assume that players occasionally learn about the type of their co-
players, and that players who normally are contributors may change their mind
and decide, with a small probability µ, not to contribute if they know that this
entails no risk, i.e. that all other players are of the non-punishing types G3 or G4.
This alters the payoff values. Players with strategy Gi now have an expected payoff
Pi(µ), with

P1(µ) = B − c(1− r

N
)[1− µ(x3 + x4)N−1]− (N − 1)γ(x2 + x3) (12)

P2(µ) = B − (N − 1)β(x1 + x2)− (N − 1)γ(x2 + x3) (13)

P3(µ) = B − (N − 1)
rc

N
µ(x1 + x4)(x3 + x4)N−2 − (N − 1)β(x1 + x2) (14)

P4(µ) = B − (N − 1)
rc

N
µ(x1 + x4)(x3 + x4)N−2

− c(1− r

N
)[1− µ(x3 + x4)N−1] (15)

where B remains unchanged (see eq. (4)). Indeed, the terms P3 and P4 for non-
punishers are modified by the expected value of the loss due to contributors chang-
ing their mind: for each of the N − 1 co-players, this happens if (a) the co-player is
a contributor, and (b) all N − 2 by-standers are non-punishers, which are indepen-
dent events. The terms P1 and P4 for contributors are modified whenever all N −1
co-players are non-punishers. Note that one could also assume that players who
ordinarily would not contribute change their mind if they notice that the co-players
are punishers. But we shall not consider this possibility, because it has, somewhat
surprisingly, less dramatic effects [15].

Again, P1(µ)+P3(µ) = P2(µ)+P4(µ) and hence the WK are invariant manifolds.
For small µ > 0, the orientation of the flow on the edges G1G2, G2G3 and G3G4

remains unchanged, but the edge G1G4 no longer consists of rest points: the flow
on this edge now points towards G1. The vertices G1 and G3 are sinks within
each WK , and G2 and G4 are sources, as can be seen by linearization. Thus there
exists at least one rest point in the interior of each WK , for topological reasons.
Moreover, there is only one such point (which accordingly must be a saddle point,
see figure 3). Indeed, it must satisfy P1(µ) = P2(µ), which yields

f(y) := P1(µ)− P2(µ)

f(y) = µ
(N − r)c

N
yN−1 − β(N − 1)y + [β(N − 1)− (N − r)c

N
] = 0. (16)

with y = x3 + x4, i.e. the frequency of non-punishers. This equation has a unique
solution y = ŷ in ]0, 1[ because f is strictly convex, f(1) < 0, and f(0) > 0. In
addition, the fixed point must satisfy P2(µ) = P3(µ) and hence,

γz =
rcµ

N
(1− z)ŷN−2 (17)

with z = x2 +x3, i.e. the frequency of non-contributors. Eq. (17) uniquely specifies
z. Note that for µ → 0 all interior fixed points converge to Q.

In the whole state space we therefore have a bistable situation: apart from a
set of measure zero, all initial conditions lead to the social or to the asocial state.
Numerical simulations show that even for very small µ the basin of attraction of
the social equilibrium G1 can be substantial.

3. Optional Public Goods. We now exclude the possibility of punishing co-
players, but assume instead that players have the option of not participating in
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(a) G1 G2

G3G4

(b) G1 G2

G3G4

Figure 3. Replicator dynamics for public goods games with pun-
ishment and reputation: (a) for group sizes of N = 5 and (b)
N = 10 players. Introducing reputation results in a bi-stable sit-
uation. Depending on the initial configuration, the systems ends
either in the social equilibrium G1 or the asocial G3. Instead of
Q and the line of fixed points along G1G4 there appears an in-
terior fixed point which essentially determines the size of the two
basins of attraction. For increasing group sizes N the fixed point
approaches G4 and thereby increases the basin of attraction of G1.
Parameters: r = 1.5, c = 4, γ = 1, β = 2, µ = 0.2.

the public goods game, but can instead turn to some autark activity yielding an
average payoff σ which is unaffected by the other players. To fix ideas, imagine
that within the large population, random samples of N players are asked whether
they wish to engage in a public goods game or prefer the autark activity. We shall
consider only three strategies: the cooperators and the defectors, who opt for the
public goods game, with the intention either to contribute or to exploit, and the
loners, who prefer not to join the group of public goods players anyway. These
three strategies are fixed in advance, and do not depend on the size or composition
of the group playing the public goods game. But it can happen, of course, that
in a sample only a single cooperator or defector is willing to engage in the public
goods game. In this case, the game will not take place and the players must go for
autarky.

We denote by x, y and z the frequencies of cooperators, defectors and loners,
respectively, and by Px, Py and Pz their average payoff. Clearly

Pz = σ (18)

where we shall always assume that

0 < σ < (r − 1)c. (19)

The frequency of cooperators among the players actually willing to join a public
goods group is

f =
x

x + y
. (20)

The payoff for a defector in a group of S players, of which m are cooperators, is
mrc/S. Both m and S are random variables. For any given S the average payoff
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for a defector is specified by
S−1∑
m=0

rc
m

S

(
S − 1

m

)
fm(1− f)S−1−m = frc

S − 1
S

(21)

and therefore the average payoff for a defector who is not the only member of the
group is

N∑
S=1

frc
S − 1

S

(
N − 1
S − 1

)
zN−S(1− z)S−1 = frc(1− 1− zN

N(1− z)
). (22)

Altogether this yields an average payoff for a defector

Py = σzN−1 + frc(1− 1− zN

N(1− z)
). (23)

Given that there are S− 1 co-players in the group, switching from being a defector
to being a cooperator yields c(1 − r

S ). For the cooperator’s average payoff Px one
therefore obtains

Py − Px =
N∑

S=2

c(1− r

S
)
(

N − 1
S − 1

)
zN−S(1− z)S−1 (24)

i.e.
Px = Py − cF (z) (25)

where

F (z) = 1 + (r − 1)zN−1 − r

N

1− zN

1− z
(26)

an expression which depends neither on f nor on σ. The average payoff in the
population P̄ = xPx + yPy + zPz is given by

P̄ = σ − [(1− z)σ − c(r − 1)x](1− zN−1). (27)

Due to assumption (19), the three strategies form a rock-scissors-paper cycle: if
most players cooperate, it is best to defect; if most players defect, it is best to
abstain from the public goods game; and if most players are loners, it is best
to cooperate. It is only this third statement which is non-intuitive. But if the
frequency of loners is high, then most groups are small, and among mostly small
groups, cooperation can be a better option than defection. Indeed, in spite of the
fact that within every group, defectors do better than cooperators (by economizing
their own contribution), it can happen that across all groups, cooperators do better,
on average, than defectors. This is an instance of Simpson’s paradox.

In order to study the dynamics, it is convenient to effectuate a change in vari-
ables, and consider, instead of (x, y, z) ∈ S3, the two variables (f, z) ∈ [0, 1]× [0, 1].
This yields

ḟ = −f(1− f)cF (z) (28)
and by (27)

ż = [σ − c(r − 1)f ]z(1− z)(1− zN−1) (29)
Dividing the right hand sides of the previous two equations by the positive factor
f(1−f)z(1− z)(1− zN−1), which corresponds to a change in velocity and does not
affect the orbits, one obtains

ḟ =
−cF (z)

z(1− z)(1− zN−1)
(30)
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Figure 4. Replicator dynamics for optional public goods games:
in order to prove that for r > 2 all orbits are closed (see figure 5b),
the replicator equation is rewritten as a Hamiltonian system on
]0, 1[×]0, 1[ through an appropriate change of variables f = x

x+y .

and

ż =
σ − c(r − 1)f

f(1− f)
(31)

which is a Hamiltonian system for (f, z) in [0, 1]× [0, 1]. For r ≤ 2 one has always
f → 0 because F (z) is positive on [0, 1[. For r > 2 there exists a unique zero ẑ of
F (z) in ]0, 1[. This follows from the fact that G(z) := (1 − z)F (z) (which has the
same zeros as F (z) in ]0, 1[) satisfies G(0) > 0, is negative for z 6= 1 close to 1 and
has a second derivative

G′′(z) = zN−3(N − 1)[(N − 2)(r − 1)− z(Nr −N − r)] (32)

which changes sign only once in ]0, 1[. In this case all orbits in ]0, 1[×]0, 1[ are closed
orbits surrounding ( σ

c(r−1) , ẑ), see figure 4.
Translating this into the replicator dynamics on S3, one sees that for r ≤ 2 the

point (0, 0, 1) (loners only) is a homoclinic rest point (see figure 5a), whereas for
r > 2, all orbits in intS3 are closed orbits surrounding (x̂, ŷ, ẑ) where

x̂ =
σ

c(r − 1)
(1− ẑ) (33)

ŷ = (1− σ

c(r − 1)
)(1− ẑ) (34)

(see figure 5b). We note that by increasing the sample size N , the equilibrium value
ẑ increases: there will be less and less willingness to participate in the public goods,
but f and hence the ratio between cooperators and defectors remains unchanged.
Increasing the loner’s payoff σ leaves the loner’s frequency unchanged, and increases
the equilibrium value x̂ of cooperators. Increasing the multiplication factor r (the
’interest rate’ of the public good) results in a larger equilibrium value ŷ of defectors.
It is easy to see that the time-averages for the payoff values Px, Py and Pz must
all be equal, and hence equal to σ. Thus, in spite of endless oscillations in the
population, no type does better, on average, than the loners. The public goods is a
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(a) e z e y

e x

(b) e z e y

e x

Q

Figure 5. Replicator dynamics for optional public goods games
in S3: (a) for r < 2 and (b) for r > 2. The cyclic dominance of
the three strategies is reflected in the heteroclinic cycle along the
boundary of the simplex S3. (a) For low multiplication factors,
intS3 consists of homoclinic orbits only. Except for brief inter-
mittent bursts of cooperation due to random shocks, the system
always remains in ez. (b) In contrast, for higher r an interior fixed
point Q appears surrounded by closed orbits. This results in peri-
odic oscillations of cooperators, defectors and loners. Parameters:
(a) N = 5, r = 1.8, c = 1, σ = 0.5, (b) N = 5, r = 3, c = 1, σ = 1.

tempting option, but it always gets undermined by defection. On the other hand,
the option of dropping out of the game leads to ever recurrent bursts of cooperation.

4. Discussion. In this paper we have postulated that the frequencies of strategies
change according to the replicator equation (1). What is the rationale behind
this assumption? Let us consider a large population consisting of players who,
occasionally, update their strategy in the following way: they randomly choose a
model player and compare their own payoff with that of the model. If that payoff is
higher than their own, they adopt it with a probability proportional to the payoff
difference; if the model’s payoff is lower, they stick to their strategy. It can be shown
that this ’proportional imitation rule’ induces the replicator dynamics [11, 12].

It should be stressed, however, that other updating rules lead to other dynam-
ics. For instance, if the player adopts the model’s strategy whenever it yields a
higher payoff (i.e. with certainty instead of a certain propensity only) then the
resulting dynamics is a differential equation with a discontinuous right hand side.
This has been termed the ’imitate the better’ rule [12]. Another conceivable sce-
nario would be that occasionally, players update their strategy by switching to
whichever strategy is optimal, given the current state in the population. The orbits
of this ’best-reply’ dynamics are piecewise linear, always pointing towards one of
the corners of the simplex [10, 1].

In figures 6-8 we give examples of the ’imitate the better’ rule and the ’best
reply’ dynamics, for the public goods game with punishment, with punishment and
reputation as well as the optional public goods game. In each case, the state
space is subdivided into regions differing by the rank ordering of the payoff values,
and the vector fields (given by analytic expressions involving the payoffs in each
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(a) G1 G3

G4

P

Q

(b) G1 G3

G4
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(c) G1 G3
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Q

Figure 6. Sample trajectories in public goods games with pun-
ishment for different dynamics (in the absence of the paradoxical
strategy G2): (a) replicator dynamics, (b) imitate the better and
(c) best-reply dynamics. The dashed lines indicate relevant iso-
clines for which the payoff of two strategies becomes equal. In the
long run, the asocial G3 state is eventually reached in all three sce-
narios. Only in (a) the system may remain close to social G1 state
for some time because the line of fixed points G1Q is stable (closed
circles). Nevertheless, random shocks will inevitably drive the sys-
tem to G3. In (b) and (c), all trajectories in intS3 lead directly to
G3. Parameters: N = 5, r = 1.5, c = 4, γ = 1, β = 2, µ = 0.

region) present discontinuities along the boundaries. A full study of these dynamics
is forthcoming.

We note that public goods games with more general payoff terms than those
assumed in (2) and (3) can also be of interest, although a complete analysis of the
dynamics seems presently out of reach. Preliminary numerical explorations suggest
that while the details can be considerably different, the main outcomes are robust:

1. in the public goods with punishment, reputation effects may lead to a bistable
situation. Depending on the initial condition, either the social or the asocial
equilibrium prevails.
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(a) G1 G3

G4

P

Q

(b) G1 G3

G4

Q

(c) G1 G3

G4

Q

Figure 7. Sample trajectories in public goods games with pun-
ishment and reputation for different dynamics (in absence of the
paradoxical strategy G2): (a) replicator dynamics, (b) imitate
the better and (c) best-reply dynamics. The dashed lines again
indicate relevant isoclines for pairwise equal payoffs. The sad-
dle point Q now lies in intS3 separating the basins of attrac-
tion of the social G1 and the asocial G3 states. The size of these
basins varies considerably for the different dynamics with (a) hav-
ing the largest and (c) the smallest. In (b) and (c) the approach
of G1 deserves some special attention: once the trajectory hits
the isocline G1Q, it remains there until random shocks eventu-
ally drive it along the isocline to the G1 corner. Parameters:
N = 5, r = 1.5, c = 4, γ = 1, β = 2, µ = 0.2.

2. in the optional public goods game, a rock-scissors-paper dynamics can lead
to the (often dynamic) co-existence of all three strategies. In particular, co-
operation subsists, but does not achieve fixation.

During the last decades, many aspects of the social dilemma for public goods
have been studied (see, e.g., [9, 2, 14, 5, 6]. In particular, relatedness between
the players, assortative interactions (for instance, with nearest neighbors only) and
repeated interactions turned out to be important factors for persistent cooperation.
In this paper we have concentrated on the evolutionary dynamics in well-mixed
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(a) e z e y

e x

Q

(b) e z e y

e x

Q

(c) e z e y

e x

Figure 8. Sample trajectories in voluntary public goods games
for different dynamics and with r > 2: (a) replicator dynamics (c.f.
figure 5), (b) imitate the better and (c) best-reply dynamics. For all
dynamics the cyclic dominance of the three strategies is reflected
by the heteroclinic cycle along bdS3. The dashed lines indicate
relevant isoclines for pairwise equal payoffs. In (a) and (b) the
interior fixed point Q is a center surrounded by closed orbits but
in (b) Q can turn into a source or sink depending on the parameter
values. For the best-reply dynamics (c) Q becomes stable and all
trajectories converge to Q in an oscillating manner. But note,
when starting near the defectors corner ey the system first evolves
to ez until random shocks eventually initiate convergence to Q.
Parameters: N = 5, r = 3, c = 1, σ = 1.

populations of unrelated individuals meeting just once, and have studied the effect
of two possible factors sustaining cooperation:

1. punishment (which requires individual discrimination of co-players, and a
certain reputation effect); and

2. optional participation (which requires the possibility to withdraw from the
public enterprize in favor of an autarkic strategy).

The replicator dynamics can be fully analyzed in both cases, despite the fact
that the payoff terms are non-linear. The results highlight an unexpected related-
ness between the two models: In the optional public goods game, the possibility to



THE DYNAMICS OF PUBLIC GOODS 587

withdraw from the game sustains cooperation. In the public goods game with pun-
ishment, it is the possibility to opportunistically withhold the contribution which
gives cooperators a chance to get established. In both cases, by asking less from
cooperators, more cooperation can be achieved.
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