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Abstract

This paper presents, in a series of simple diagrams, concise results about the replicator dynamics of direct and indirect reciprocity. We
consider repeated interactions between donors and recipients, and analyse the relationship between three basic strategies for the donor:
unconditional cooperation, all-out defection, and conditional cooperation. In other words, we investigate the competition of
discriminating and indiscriminating altruists with defectors. Discriminators and defectors form a bistable community, and hence a
population of discriminators cannot be invaded by defectors. But unconditional altruists can invade a discriminating population and
‘soften it up’ for a subsequent invasion by defectors. The resulting dynamics exhibits various forms of rock-paper-scissors cycles and
depends in subtle ways on noise, in the form of errors in implementation. The probability for another round (in the case of direct
reciprocity), and information about the co-player (in the case of indirect reciprocity), add further elements to the ecology of

reciprocation.
¢ 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the rich variety of topics treated by Maynard
Smith, reciprocal altruism takes a relatively narrow place.
The most explicit treatment can be found in the last
chapter, and the last appendix, of his seminal book on
‘Evolution and the Theory of Games’ (Maynard Smith,
1982), as well as in a target paper written for Brain and
Behavioral Science (Maynard Smith, 1984). In a commen-
tary to that paper, Seclten and Hammerstein (1984)
criticized that Maynard Smith had rashly adopted the
claim of Axelrod and Hamilton (1981) that tit for tat
(TFT), the reciprocal strategy par excellence, is evolutio-
narily stable.

Indeed, Maynard Smith did take some liberty with his
own definition of an evolutionarily stable strategy (or ESS).
In that definition (see Maynard Smith, 1982), he had
explicitly stated that for a strategy X to be an ESS, it must
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(a) be a best reply to itself (i.e. a Nash equilibrium) and
(b) if Y were any alternative best reply, X should be a
strictly better reply to Y than Y itself. Indeed, if this second
condition were not satisfied, Y could invade through
neutral drift.

As Maynard Smith explicitly showed in his appendix
(Maynard Smith, 1982), the strategy AlIC (unconditional
cooperation) is an alternative best reply to TFT, and both
strategies fare equally well against each other. Hence TFT is
no ESS for the iterated Prisoner’s Dilemma game. This is
not only a mathematical pedantry. If unconditional altruists
can spread, defectors can eventually invade and ultimately
take over. Moreover, Selten and Hammerstein (1984), just
as Axelrod and Hamilton (1981), stressed rightly that if
players are only boundedly rational, an erroneous move in
the iterated Prisoner’s Dilemma can lead to a long, payoff-
reducing vendetta between two TFT players.

In this paper, we will investigate the interplay of
defectors with conditional and unconditional altruists,
placing particular emphasis on the role of errors. We shall
analyse this in the context of evolutionary game dynamics
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(sec Hofbauer and Sigmund, 1998) for both direct and
indirect reciprocity, i.e. for the repeated Prisoner’s Dilem-
ma game against the same or against varying co-players.

Humans are certainly supreme reciprocators. Most the
examples of reciprocity-based collaboration in other
species have raised numerous objections and failed to gain
universal acceptance (Dugatkin, 1997, Hammerstein,
2003). All other eusocial species achieving high levels of
cooperation are based on kin-selection, to a much larger
extent than we are. Since Maynard Smith made a point in
professing that ‘for [him], the human applications of
sociobiology are peripheral’ (Maynard Smith, 1988,
Chapter 7), his relative neglect of reciprocity may simply
have been due to the fact that he saw little evidence for it
among species other than homo reciprocans.

In contrast, experimental economics increasingly high-
lights the fact that the success of our species is based on our
ability to treat non-relatives, and even complete strangers,
as ‘honorary relatives’ (to use a felicitous phrase, cf.
Seabright, 2004). We seem to have a special aptitude for
reciprocal interactions with our conspecifics. This tendency
may well be a human universal (Gintis et al., 2003; Fehr
and Fischbacher, 2003).

Reciprocal interactions are based on the principle of just
return ( Axelrod and Hamilton, 1981). It works if a helpful
action, or a gift, is returned to the donor by the recipient.
Over a period of time, such mutual support can lead to a
benefit for both parties involved (Trivers, 1971). But next
to this so-called direct reciprocity, one also finds, at least
among humans, instances of indirect reciprocity: the return
is provided, not by the recipient, but by a third party
(Trivers, 1971; Alexander, 1987; Lotem et al., 1999;
Wedekind and Milinski, 2000; Wedekind and Braithwaite,
2002). We note that strong reciprocity also belongs in this
context: humans tend to punish wrongdoers, even if this
involves a cost to themselves, and even if they are mere
bystanders rather than the victims of the wrongdoer. In
fact, experiments have shown that strong reciprocity and
indirect reciprocity go a long way towards explaining
human behaviour in public goods games (Milinski et al.,
2002a, b; Fehr and Fischbacher, 2003).

It is clear that direct and indirect reciprocity share many
common features. In particular, the so-called folk theorem
on repeated games applies equally well to both cases (we
will come back to this in the discussion). However, there
are also many subtle differences. In this paper, we propose
to compare the replicator dynamics in the two cases,
restricting attention to the three most basic strategies: to
cooperate, to defect, or to discriminate. Needless to say,
there are many other possible strategies, and some play
probably an important role. Nevertheless, we believe that
the interplay of these three particular rules captures an
essential aspect of the evolutionary dynamics of coopera-
tion, and of our instinct for reciprocation. Thus we propose
to investigate the logic of reciprocation by analysing the
relationship of the most basic conditional strategy (do
whatever the co-player did), with the two extreme

unconditional strategies, those of indiscriminating altruism
and all-out defection.

2. The modelling background

All interactions which we consider involve two players,
one in the role of the donor, the other in the role of the
recipient. The donor can confer a benefit b to the recipient,
at a cost —c to the donor. Thus the donor can decide
whether to cooperate or to defect. We shall always assume
0<c<b, and use the terms ‘donor’ and ‘recipient’ even if
the donor refuses to donate.

We will consider repeated games. In the case of direct
reciprocity, the same two players interact round after
round with each other. For convenience, we shall assume
that in each round, each of the two players is in both roles,
and that both players have to decide simultaneously,
without knowing what the other will do. In the case of
indirect reciprocity, each player will be matched with a
different co-player in each round. In fact, since we want to
keep the parallel as close as possible, we shall again assume
that the player, in each round, plays both roles (donor and
recipient) and is matched against two co-players. (Alter-
natively, we could imagine that the player is, in each round,
with the same probability in the role of the donor or the
recipient. This introduces no essential change, cf. Nowak
and Sigmund, 1998a.)

Let us assume, as usual, that after every round another
round can occur with a constant probability w<1. We
number the initial round by 0 and the nth iteration by n.
The probability that there will be at least n iterations is
given by w", the probability that there are exactly »
iterations by w*(1 — w). In that case, the game will consist
of exactly n+ 1 rounds (the first round, and then n
iterations). The length of the game will be a random
variable, its expectation value is 1(1 —w)+2w(l —w)+
oo+ nw" (1 — w) 4 - - - which sums up to (1 — w)~L.

If we denote by A(n) the payoff in the nth round, we
obtain in the case w<1 as expected value of the total
payoff the sum

+00

3w = wIA©) + -+ + AW, (1)
n=0

which by using Abel’s summation formula is A(0) +
wA(1) + --- . Since all A(n) are uniformly bounded, this
sum always converges for w<1 to some value A(w). The
average payoff per round is given by

+00
A =wAw) =1 —=wP Y w' [AO) + -+ Am)].
n=0

)

It is often convenient to consider the limiting case w = 1.
In this case, there is always another round, the game
consists of infinitely many rounds and the total payoff
S, A(n) may diverge. It is convenient, instead, to consider
the average (over time) of the payoff per round, i.e. the
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limit, for n — 400, of

AQ)+---+A(m)
n+1

provided it exists. The theorem of Frobenius implies that in
this case, the limit of the time averages is just
lim,,, 1 (1 — w)A(w).

We shall consider the interaction of three strategies only.
The cooperator always decides to donate, when in the role
of the donor; the defector never donates; and the
discriminator donates under conditions that will be
specified in the two cases of direct and indirect reciproca-
tion considered below. Cooperators and discriminators are
also called indiscriminating and discriminating altruists.

We consider a large, well-mixed population. The
frequencies of the three strategies (cooperator, defector,
discriminator) are given by x, y and z, respectively (with
x+y+z=1). With P,, P, and P. we denote the expected
values for the total payoff obtained by these strategies, and
by P = xP, + yP, + zP; the average payoff in the popula-
tion. We shall assume that the frequencies of the strategies
change with time, such that more successful strategies
increase in frequency. For instance, we may assume that
from time to time, players can compare their payoff with
that of another player chosen at random in the population,
and imitate the strategy of that player if it is more
successful. If we assume that the probability for a switch is
proportional to the payoff difference, the evolution of the
frequencies of the strategies in the population is given by
the replicator equation

; €)

X =x(P, — P),
.)-} = Y(Py - P)’
i=zP, - P) €

(see e.g. Hofbauver and Sigmund, 1998). Many other
dynamics show a similar behaviour. We will frequently
use the fact that the replicator equation remains unchanged
(in the simplex S3) if the same function is added to each
payoff term, and by abuse of notation still design them
with P, Py, P, and P. In particular, we can normalize the
payoff matrix by adding an appropriate constant to each
column. We recall that the Nash equilibria are exactly
those fixed points which are saturated (i.e. if x =0 then
P, <P etc).

3. Direct reciprocity

The cooperator, defector and discriminator, for the case
of direct reciprocation, are also known as AllC, AlID and
TFT (tit for tat) player. The latter cooperates in the first
round and then does whatever the co-player did in the
previous round.

AlID against AlID has payoff A(r) = 0 in every round,
so that A(w) =0. A TFT player against an AlID player

earns A(0) = —¢ and, for n=1, A(m) =0, so that
A(w) = —c, etc.

The payoff matrix for the three strategies AlIC, AlID and
TFT is, omitting the factor (1 — w)~!, (i.e. considering the
payoff per round)

b-c —c b-c¢
M= b 0 b(1 —w) |. )
b—c¢c —c(1-w) b-c

Let us normalize the corresponding replicator equation
such that P,, the payoff for defectors, is 0. Then we obtain

P,=—c+wbz, P,=P,+wcy. (6)
We note that P, — P = yg, with
g=wb—c)z—c(l —w). N

On the edge with z = 0, AllID clearly wins. On the edge with
x = 0, i.e. in a population consisting of defectors and TFT-
players, we have a bistable dynamics. The unstable
equilibrium is F,; = (0,1 — Z,£), with

(1 —we
wb —c)

Since 2 is small if w is close to 1, this means that a small
TFT-cluster is able to invade a population of defectors if w,
i.e. the ‘shadow of the future’ is sufficiently large (Axelrod
and Hamilton, 1981). The edge y =0 consists of fixed
points only. Clearly, a population of AllIC and TFT players
will always cooperate, and none of the two strategies is
favoured. On the edge y = 0, those points with z>¢/wb are
Nash equilibria, and the others are not. To see this, we
have only to look at the sign of P,— P, ie. of
P, = —c + wbz. The other Nash equilibria are the corner
y =1 (defectors only) and F,.. In the interior of the
simplex, there is no fixed point. Indeed, we see that P, =
Py(=0) holds for the points on the line g =0, and that
there, P, is positive. The segment with g = 0 consists of a
single orbit parallel to the edge z = 0, which converges to
the saddle point F,, and separates the simplex into two
parts.
It is easy to see that the function

Z =

®

V=x"zg )

is an invariant of motion.

In the case c<wb, the dynamics shows an interesting
behaviour (see Fig. 1). In the absence of defectors, any
mixture of TFT-players (i.e. discriminating altruists) and
AlC players (indiscriminating altruists) are in equilibrium,
and we have to assume that random shocks send the system
up and down the defectors-free edge y = 0. If a random
shock introduces a small amount of defectors while
z>c¢/wb, the defectors will forthwith be eliminated. If the
defectors are introduced while z<(1 — w)c/w(b — ¢), they
will take over. But if the defectors are introduced in the
‘middle zone” where

c/wb>z>(1 —w)e/wb —¢), (10)
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discriminators
z

+

Y % o B

defectors cooperators

Fig. 1. The replicator dynamics of direct reciprocity in the absence of
errors, assuming a constant probability w<1 for a further round. Here
and in the other figures, full circles correspond to stable fixed points, and
empty circles to unstable fixed points (stability being understood in the
sense of Lyapunov: all close-by states remain close-by). We note that fixed
points that are stable are Nash equilibria, but that the converse does not
hold. The same dynamics shows up in the case of indirect reciprocity with
a fixed number of synchronous rounds and no errors (e=0).

the amount of defectors will first increase, and then vanish.
During the phase of their invasion, they will exploit and
eventually deplete the AIIC players. This is a kind of
pyrrhic victory: the defectors end up meeting mostly TFT-
players, and this will be their undoing.

Looking at it from the point of view of defectors, any
invasion attempt while z>Z is doomed to failure and will
result in a state with y = 0 and z>¢/wb. The only hope for
the defectors is to wait with the invasion attempt until drift,
i.e. a succession of random shocks, has sent the state, along
the edge y = 0, to the region where z< 2. This drift needs
some time. If the invasion attempts occur too often, the
drift will never have the time needed to lead into the zone
which favours defectors. Thus the defectors should not try
too frequently to invade. In other terms, cooperators
will be safe only if invasion attempts by defectors are
sufficiently frequent. If they are too rare, a cooperative
society might lose its immunity—random fluctuations
may lead to a state with too few discriminators to repel
an invasion attempt by defectors. Let us mention in
this context that we assume mutations to be so rare that
they do not lead to a deterministic drift term (otherwise
we would not be able to keep the treatment entirely
analytic).

In order to deal with errors, it is convenient to use the
results from Nowak and Sigmund (1990), where the
payoffs for stochastic reactive strategies are computed.
Fach such strategy is given by a triplet (f,p, q), where [ is
the probability to cooperate in round 0 and p resp. ¢ are the
probabilities to cooperate after a cooperation resp.

defection by the co-player in the previous round. In
Nowak and Sigmund (1990) it is shown that if a player uses

strategy (f,p,q) against a co-player using (f',p',q), the
payoff is given by

—cle + wre') + b(e + wr'e)
(1 —w)(1 — uw?) ’

where r=p —q, ¥=p — ¢, w=rr', e=(1—w)f +wq and
e=(1 —w)f +wq.

AlIC is given by (1,1,1), AlID by (0, 0,0) and TFT is
given by (1, 1,0). We will assume that an intended donation
is mis-implemented with a probability &, and an intended
refusal with a probability ke, for some k=0. (It makes
sense to distinguish between these two errors, and in
particular to keep the case k =0 in mind.) Then the three
strategics are given by (1 —¢& 1 —¢1— g), (ke ke, ke) and
(1 — &, 1 — ¢, ke), respectively.

Applying this formula to the strategies AlIC, AlID
and TFT, we obtain a 3 x 3 payoff matrix M which, at
first glance, looks somewhat daunting. But it can be
simplified considerably. We will use the fact that the
replicator dynamics on S3 is unchanged if we subtract,
in each column of M, the diagonal from all elements.
Up to the multiplicative factor ¢(1 — (k + 1e)/1 —w, the
normalized matrix (which we still denote by M) is of the
form

(1

0 -1 do
M=|1 0 -xol, (12)
6 -k 0
where we used
S=we, K=1—w+ wke, o::ég—_—c,
c—ch
6 =w(l — (k+ 1)e). (13)
We note that P = z(1 + ¢)P;. Using
P,— P=P]J1 —(+0)], (14)

we sce that in the interior of §3, z =0 iff g=1—(1 + 0)z
vanishes. It is easy to see that g =0 defines an orbit
connecting the fixed points F ye=(0,1 —£,2) and
Fo.:=(1 — 3,0,2), where Z=(1+0)"'. On the edge x =0
there is a bistable competition between defectors and
discriminators, their basins of attraction separated by F..
On the edge y = 0 there is a stable coexistence between the
discriminators and the undiscriminating altruists at the
point Fy;. On the edge z = 0 the defectors dominate the
indiscriminating altruists.
In the interior of S3 we obtain an invariant of motion

Vi=xAyEzC11 — (1 + 0)7] 15)
with A=x/0, B=05/0 and C=-1/6 (note that
A+B+C+1=0).

The interior fixed point is

F = (xo,d0,1) (16)

1+ o(k +0)
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discriminators
z

y < D x

defectors cooperators

Fig. 2. The replicator dynamics of direct reciprocity with errors in
implementation (ie. £>0), for w< 1.

The dynamics is shown in Fig. 2. There is a horizontal
orbit on the line with z = Z, connecting the fixed points F .
and F,, (the latter is a Nash equilibrium). Below this
line, all orbits converge to y = 1, the defectors win. The
part above the line is filled with periodic orbits surround-
ing the unique fixed point: they correspond to the con-
stant level curves of the invariant of motion V given by
(15). The time averages correspond to the values at the
fixed point F. This fixed point is stable, but not
asymptotically stable. We note that the amount of
defectors (whose time average corresponds to d¢) can be
made arbitrarily small if the error rate is sufficiently
reduced. On the other hand, the basin of attraction of the
defectors can be arbitrarily small if ¢ is sufficiently small
and w sufficiently close to 1.

For w=1 we obtain as payoff matrix, up to the
multiplicative factor ¢(1 — (k + 1)),

0 -1 p
M={|1 0 <=kp|, 17
¢ —ke O
where
1/b—c
'=E(1+k—8b)' (18)

(Recall that, using Frobenius, we have to multiply all
values with the factor 1 — w in order to obtain the average
payoff per round) If k>0 (i.e. if there is a positive
probability that an intended refusal results in a donation),
the dynamics is the same as in Fig. 2, the z-coordinate of
the separatrix is

N (k+ De
=r—e (1 ke + 1)8)‘ (19)

If ¢ — 0 the separatrix merges with z = 0 and we obtain
a system whose payoff matrix is

0 —¢ @G-09/(1+k)
M=|c 0 —k(b-0/0+k) |. (20)
0 o0 0

This is a rock-paper-scissors game: AlID is outcompeted
by TFT, which is outcompeted by ANC, which is out-
competed by ANID in turn. The unique fixed point in the
interior of S3 is F = (k(b—c)/(k+ 1)b,(b—c)/(k + 1)b,
¢/b). We conclude that for k>0 (positive probability that
an intended refusal turns into a donation), the replicator
dynamics is as shown in Fig. 3.

If, on the other hand, we first consider the limiting case
£ = 0 (with w< 1), we obtain the dynamics shown in Fig. 1.
If we then consider the limit case w = 1, we obtain Fig. 4.
We note that the passages to the limitw =1 and e =0 do
not commute.

Traditionally, it is assumed in most treatments of
indirect reciprocity that only intended donations are mis-
implemented, not intended defections (Panchanathan and
Boyd, 2003; Fishman, 2003; Brandt and Sigmund, 2004).
This is quite in line with everyday experience. We note that
in Fishman (2003), the failure of an intended donation is
not due to an error, but to a lack of resources. Such a lack
of resources can occur occasionally, by pure chance, and
has the same effects as an error: it results in an unintended
defection. In indirect reciprocity, it turns out that if we
assume that intended defections also fail, the resulting
dynamics is not appreciably different. Interestingly, how-
ever, it makes a difference in direct reciprocity, for the
passage to the limit w = 1.

To see this, let us assume that k= 0. In the limiting
case w = 1, the payoff matrix is given, up to the factor

discriminators
z

y O < X

defectors cooperators

Fig. 3. The replicator dynamics of direct reciprocity, with errors in
implementation, for w = 1 (the infinitely iterated game).
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discriminators
z

y % X

defectors cooperators

Fig. 4. The replicator dynamics of direct reciprocity, in the absence of
errors, i.e. e =0, forw=1.

c(1 —¢), by
0o -1 p

M=11 0 0. (21
e 0 O

This yields a completely different picture. The edge x =0
consists of fixed points. Intuitively, this is clear: errors
between two TFT players will eventually lead to mutual
defection, and this can never be redressed by another error.
Thus their average payoff per round will be 0. The fixed
points with z<Z are Nash equilibria, where

z=c/b(1 — o). 22)

The dynamics looks as in Fig. 5, which is an intriguing
mirror-image of Fig. 1. Finally, if we let ¢ - 0, we obtain
Fig. 6 as a mirror image of Fig. 4.

A very interesting related paper has recently been
submitted (Imhof et al., 2005). Tt also studies, in the
context of direct reciprocity, the interplay of AlIC, AlID
and TFT. Instead of assuming errors, it imposes a cost of
complexity to the TFT strategy. The payoff matrix,
therefore, is

b—c —c b—c
M= b 0 b(1 —w)
b—c—v —c(l—-w)y—v b—c—v

) (23)

where v>0 is a small number corresponding to an extra
cost for using a conditional strategy, rather than an
unconditional one. The edge y = 0, now, consists of an
orbit leading from z =1 to x = 1: TFT is dominated by
AIIC. The dynamics on the other edges is as before. There
exists a unique fixed point F in the interior of S3:

F:=(1—L . "). 24)

cw  bw cew’ bw

discriminators
z

<
<

y D) X
defectors cooperators

Fig. 5. The replicator dynamics of direct reciprocity, if only donations are
mis-implemented, for w<1.

discriminators
z

y —— X

defectors cooperators

Fig. 6. The replicator dynamics of direct reciprocity if only donations are
mis-implemented, for w = 1.

A simple computation shows that the eigenvalues of the
Jacobian of the replicator equation, at the point F, are
complex conjugate and have positive real part. Hence F is
unstable, and in the vicinity the orbits spiral outward,
clockwise. Since F is a Nash equilibrium, and y = 1 is also
a Nash equilibrium, it follows by the odd number theorem
(see e.g. Hofbauer and Sigmund, 1998) that there must
exist a third Nash equilibrium, which necessarily must be
F .. This point is saturated, and hence a saddle. There must
be an orbit with F as a-limit and F,; as -limit. All other
orbits in the interior of S3 converge to y = 1, so that the
defectors win (see Fig. 7). This follows easily from Zeeman
(1980). As shown numerically in Imhof et al. (2005), the
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discriminators
z

y < O x

defectors cooperators

Fig. 7. The replicator dynamics of direct reciprocity if there is a cost to
complexity. On the edge y = 0, the discriminators are dominated by the
unconditional altruists.

addition of a mutation term introduces a limit cycle. The
gist of this paper discusses the case of a finite population
and shows that the corresponding stochastic process
spends most of its time in the vicinity of the TFT corner,
provided the population is sufficiently large, the number of
rounds sufficiently high and the mutation rate sufficiently
small. It would be of considerable interest to find out
whether a corresponding result holds if players are not
penalized by a cost of complexity but are liable to make
errors. We stress that the bifurcation due to the cost of
complexity v is quite different from the bifurcation due to
the error probability ¢, although in both cases the limit
equilibrium is (1 — ¢/bw, 0, c/bw).

4. Indirect reciprocity

Two of the main differences between direct and indirect
reciprocation are the following.

(1) The TFT strategy discriminates according to what
happened in the previous round. There are two distinct
ways of translating this in the context of indirect
reciprocity (see also Boyd and Richerson, 1989). Players
can base their decision on what happened to them in the
previous round; alternatively, they can base their decision
on what their co-player did in the previous round. Roughly
speaking, players can either be affected by a diffuse feeling
of indebtedness (‘Somebody helped me, I feel elated and
therefore will help the next person’), or clse, they can be
moved by a feeling of appreciation (‘My co-player did a
noble thing, not to me but to a third party, and I will now
help my co-player in turn’). In both cases, some general
feeling of gratitude seems at work.

In one case, A gives to B and therefore B gives to C. In
the other case, A gives to B and therefore C gives to A (see
Fig. 8). In one case, the discriminator received a benefit,

Fig. 8. Two approaches to indirect reciprocity. If A gives to B, C may
either decide to reward A or expect help from B.

and thanks a person who did not help him. In the other
case, the discriminator rewards a benefactor—but for an
action that did not benefit him.

Interestingly, both factors seem to show up in economic
experiments (cf. our remarks at the end of this section). But
in the theoretical models considered so far, rewarding
works fairly well and thanking not at all.

(2) The two players engaged in direct reciprocation
experience in parallel the same number of rounds. By
contrast, the histories of two players interacting via indirect
reciprocity intersect only once, and thus each has a
different numbering of his rounds: a donor in the first
round may be matched with a recipient who has reached
her fifth round, etc.

One more remark on the patterns of interaction between
the players. In a more sophisticated direct reciprocity
model, we could assume that the players alternate, either
regularly or randomly, as donor and recipient, rather than
acting simultaneously (Nowak and Sigmund, 1994; Frean,
1994). Similarly, in a less sophisticated model of indirect
reciprocity, we could assume that all players start at the
same time and that their rounds are synchronized (Nowak
and Sigmund, 1998b; Panchanathan and Boyd, 2003;
Fishman, 2003; Ohtsuki and Twasa, 2004). This does not
agree, however, with the continuous replicator dynamics,
which is based on the assumption that generations blend
into each other, or that learning occurs continuously. In
fact, a synchronous model would better fit with a difference
equation.

A high value for w, i.e. a large number of rounds, is less
plausible with indirect than with direct reciprocity, since in
a realistically small population, players experiencing many
rounds would necessarily have to interact numerous times
with the same partner, and hence be engaged in direct
reciprocity. Nevertheless, the limiting case of w — 1 has
been considered by some authors (e.g. Ohtsuki and Iwasa,
2004). We shall see that in our model, setting w = 1 does
not change much.

We will consider a continuous entry model, as in Brandt
and Sigmund (2005). Players enter a large population one
by one, interact asynchronously with different players
at random times, and exit. Since we assume that the
population is large, its composition will change only
slowly, so that it is stationary during an individual’s life-
time.

We consider the case that C gives A, ie. that
discriminators are motivated to reward players, and give
if their co-player gave in the previous round. Again, we
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denote by ¢ the probability of not implementing an
intended donation.

Let g be the probability that a player knows (either
through direct observation or via gossip) what a randomly
chosen co-player did in the previous round. Furthermore,
let us posit that discriminators are trustful in the sense that
if they have no information, they assume that their
recipient gave help in the previous round. With 4 we
denote the frequency of players with a good reputation (i.e.
having given in their previous round). It is easy to see that
h = &x + z(1 — g + gh)), so that we obtain

_dx+ (=92

h 1 — &gz

(25)
The payoff in round » (with n>1) for an indiscriminate
altruist is

P,(n) = —cég + belx + z[(1 — q) + &q]]. (26)

Indeed, such a player always tries to donate, at a cost —¢
(this succeeds with probability £). On the other hand, a
player is the object of an intended donation if the co-player
who donates is either an unconditional cooperator (prob-
ability x) or a discriminator (probability y) who either does
not know the player’s reputation (probability 1 — g) or else
knows the reputation (probability ¢), and that reputation is
good (probability & because it can only be bad if the
player, an unconditional altruist, made a mistake in the
previous round). The benefit resulting from an intended
donation is b&, because the donation can fail with
probability . Similarly, the payoff for a defector is

Py(n) = belx + (1 — 9)], 27)
and for a discriminator which we call A, it is
P.(n) = —c&(1 — g+ gh) + belx + z[(1 — ¢)

+&g(1 — g+ gh)]l- (28)

The second term in the sum is (up to the expected benefit
bE) just the probability that the co-player intends to make a
donation to player A. This happens either if the player is an
unconditional altruist (probability x), or if he is a
discriminator (probability z) who either does not know
the reputation of A (probability 1 — ¢) or else knows the
reputation (probability g), and this reputation is good. The
reputation of A is good if in the previous round, A
intended to donate (either because A did not know the co-
player’s reputation or else because that reputation was
good, an event whose probability is /), and if, moreover, A
succeeded in the intended donation (probability Z).
A straightforward computation shows that

P.(n) — Py(n) = [Px(n) — Py(m)(1 — ¢ + gh). (29)

The same relation holds for the first round, although the
payoffs for the first round are slightly different:
P (0) = —c& + b&(x + 2), P,(0) = bé(x + 2) and
P.(0) = —c&(1 — q) + qh] + b&(x + z). Hence the total pay-
off values Py, P, and P; also satisfy

P. — P, = [Py — P,J(1 — g+ qh). (30)

Clearly P.(n) — Py(n) = &—c+ béqz) (for nz1) and
P(0) — P,(0) = —c&. Thus if w=1 the payoff values per
round satisfy

P, — Py, = &(—c + béqz) (31
and for w<1,
Py — P, = &—c + wbiqz). (32)

If we normalize by setting Py, = 0 then, up to the factor ¢,
we obtain

where f = —c + wbégz.

Let us first consider the corresponding replicator
equation without the common factor f. Since
h=&x+ (1 — ¢)z)/(1 — &gz), this equation has the same
orbits as the equation with

P.=1—-8&z, P,=1-—q+&gx. (34)

If g<1 and ¢>0, we have 0 = P, <P, <Py and hence all
orbits in S3 converge to x = 1, with the exception of the
edge x=0. An invariant of motion is given by
V = zx4~ly®,

If e=0 (no errors), the edge y =0 consists of fixed
points and the invariant of motion is V' = zxq . I g =1
(full information about the co-players) the edge x =0
consists of fixed points and the invariant of motion is
V =zy*

Let us now consider the replicator dynamics for (33).

If g<c/wbé then f is negative for all values of z between
0 and 1, and hence on all of S3. Multiplication with f
corresponds thus to a time-reversal. This means that the
indiscriminating altruists are dominated by both the
discriminators and the defectors, while the discriminators
are dominated by the defectors. All orbits in the interior of
the simplex lead from x =1 (indiscriminating altruists
only) to y =1 (defectors only). This means that if the
probability ¢ to know the co-players past is too small (i.. if
there is not much scope for reputation), cooperation
cannot evolve, a well-known result from Nowak and
Sigmund (1998a) (see Fig. 9).

If g>c/wbE, then the line z = c/wbgé intersects the
interior of the simplex S; and defines a segment of
fixed points. Indeed, on that line, 0 = P, = Px = P;. These
fixed points are all Nash equilibria. In the simplex S3, all
orbits lie on the same curves as with (34), but the
orientation has not changed in the region with z>c¢/wbqé
(see Fig. 10).

This means in particular that the mixture of discriminat-
ing and undiscriminating altruists given by z = c¢/wbqé¢
and y =0 corresponds to a fixed point of the repli-
cator dynamics. A cooperative population of two types
of altruists can exist, if the average level of informa-
tion within the population is sufficiently high. We note
that this equilibrium is stable. However, it is not
asymptotically stable, since it belongs to a segment of
fixed points.

1% B
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discriminators
z

y ) X
defectors cooperators

Fig. 9. The replicator dynamics of indirect reciprocity for ¢>0 if g, the
information about the co-player’s last move, is small. The same dynamics
holds if discriminators are expected to donate whenever they received a
donation in the previous round.

discriminators
z

y — D x

defectors cooperators

Fig. 10. The replicator dynamics of indirect reciprocity for ¢>0 if ¢, the
information about the co-player’s last move, is sufficiently large. The
dynamics looks the same if one assumes synchronous rounds, and w<1.

The dynamic behaviour in the vicinity of the segment of
Nash equilibria is interesting. One part of the segment is
transversally stable, in the sense that small perturbations
away from the segment are counteracted by the dynamics.
In the other part, small perturbations are amplified by the
dynamics. A small deviation to higher z-values will lead,
first to an increase and then to a decrease of discriminators,
and thus eventually back to the stable part of the segment.
By contrast, in the unstable part of the fixed points
segment, a small deviation to lower z-values leads to the
fixation of defectors.

In the limiting case ¢ =0 (no errors), the edge y =10
consists of fixed points, of which those with z=¢/wbq are
Nash equilibria. The line with z = ¢/wbq consists of fixed
points, too. Below this lineg, all orbits converge to y = 1.
Above the line, each orbit converges to a Nash equilibrium
on y = 0. (see Fig. 11).

In the limiting case ¢ = 1 (full information) the edge x =
0 consists of fixed points, of which those with z<c/wb¢ are
Nash equilibria. The line with z = ¢/wbé consists of fixed
points which are all stable. Hence the dynamics is as shown
in Fig. 12.

If both ¢ =1 and & = 0 the edges x = 0 and y = 0 both
consist of fixed points. In the interior of S3, all orbits

discriminators
z

y ( X

defectors cooperators

Fig. 11. The replicator dynamics of indirect reciprocity for ¢ =0 (no
errors) if ¢<1 but sufficiently large. The dynamics looks the same if one
assumes synchronous rounds, e =0, and w<1.

discriminators
z

y < X

defectors cooperators

Fig. 12. The replicator dynamics of indirect reciprocity if £>0 and g = 1.
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discriminators
z

<

y < x

defectors cooperators

Fig. 13. The replicator dynamics of indirect reciprocity if e =0 and g = 1.

remain at parallel to the z = 0 edge. Those with z>¢/wb
point from left to right (the defectors vanish), while those
with z <¢/wb point from right to left (the undiscriminating
altruists vanish). Again, the line z = ¢/wb consists of Nash
equilibria. The dynamics is shown in Fig. 13.

As an aside, let us turn to previous models of indirect
reciprocity which were based on the assumption that all
players experience their rounds in a synchronized way. In
the case of no errors and a fixed number of rounds, this
leads to a dynamics as in Fig. 1. Without errors and with a
constant probability w<1 for another round we obtain a
dynamics as in Fig. 11 (Nowak and Sigmund, 1998b). With
errors and a constant probability w<1 for another round,
the dynamics looks as in Fig. 10 (Panchanathan and Boyd,
2003). With errors and a number of rounds which is fixed
in advance or Poisson distributed, the dynamics is bistable
and displays an attractor consisting of a stable mixture of
discriminating and undiscriminating altruists, as shown in
Fig. 14 (Fishman, 2003; Brandt and Sigmund, 2004). Let us
note that synchronized games can easily be set up in
experiments, but they seem unlikely to occur under natural
circumstances.

Finally, let us briefly consider the case when players are
motivated by a general feeling of indebtedness, and
discriminators decide to give whenever they have received
support in the previous round. If we denote by / the
probability that a player has received support in the
previous round, we see that & = &x + hz).

In round # the payoff values for unconditional altruists,
defectors and discriminators are Py(n) = —c& + hb, P,(n) =
hb and P.(n) = —ché + hb. If we assume that a discrimi-
nator, in the first round, always donates, we get
P.(0) = —c& + bh. After normalizing the total payoff values
such that P, = 0, we obtain, up to the factor (1 — w)'l,
P, = Pl —w(l —h). 35)

Py = —cg,

discriminators
z

y .( X

defectors cooperators

Fig. 14. The replicator dynamics of indirect reciprocity if one assumes
synchronous rounds, ¢>0, and a number of rounds which is fixed, or
Poisson distributed.

The dynamics looks as in Fig. 9: the defector’s corner with
y = l is a global attractor. This still holds if the error rates
are modified, or if one assumes that the discriminators
defect in the first round, etc. In particular, letting ¢ - 0 or
w — 1 changes nothing. It is all the more surprising that
some experiments (and, indeed, everyday introspection)
show that indirect reciprocation based on a generalized
feeling of indebtedness is not rare (Engelmann and
Fischbacher, 2002; Dufenberg et al., 2001). To the best of
our knowledge, a theoretical explanation for this is still
lacking (cf. Boyd and Richerson, 1989).

5. Discussion

Direct and indirect reciprocation are obviously closely
related. For instance, Nowak and Sigmund (1998b)
pointed out that the discriminating strategy used in their
treatment of indirect reciprocity is nothing but the
‘Observer TFT discussed by Pollock and Dugatkin
(1992) in the context of the iterated Prisoner’s Dilemma.
There is a line of papers by economists, most of it
antedating the work by evolutionary biologists, which
discuss indirect reciprocation in populations of rational
players (see e.g. Rosenthal, 1979; Kandori, 1992; Ellison,
1994). In particular, the so-called folk theorem on repeated
games states that every feasible pair of payoff values for the
two players is obtainable by strategies in equilibrium (i.e.
such that no player has an incentive to deviate). It must
only be assumed that (a) the payoff is larger than the
security level that players can guarantee themselves (in our
case, this is 0), and (b) that the probability for another
round is sufficiently large (see e.g. Fudenberg and Maskin,
1986). The equilibrium can be achieved by so-called ‘trigger
strategies” which switch to defection as soon as the other
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player defects. Intuitively, it makes no sense to exploit the
co-player in one round if one, thereby, forfeits all chances
for mutual cooperation in further rounds. The argument
works for direct as well as for indirect reciprocation.
The difference between personal enforcement, in the
former case, and community enforcement, in the latter, is
irrelevant to the sequence of payoffs encountered by an
individual player. The folk theorem assumes rational
players having full information, but it can be considerably
extended.

In both direct and indirect reciprocity, the presence of
unconditional altruists weakens the stability of the
cooperation. Although the dynamics in Figs. 2 and 10
look very different, in each case the defector’s corner y = 1
has a basin of attraction which can, and will, be ultimately
reached if the population is subject to arbitrarily small
random shocks for a sufficiently long time. As long as this
is not the case, the three strategies coexist in a stable, but
not in an asymptotically stable way. In one case, periodic
oscillations around the Nash equilibrium can increase, and
in the other case, the state can wander along a continuum
of Nash equilibria, until the defector’s basin is threaten-
ingly close.

There are devices leading out of this fundamental
unstability, of course. One variation working for both
direct and indirect reciprocity is provided by the concept of
‘good standing’ (Sugden, 1986). A player who cooperates is
in good standing. A player failing to donate to a recipient
in good standing will acquire a ‘bad standing’. But a player
refusing to donate to a player in bad standing will keep a
good standing. Essentially, this means that discriminators
have to distinguish between justified and unjustified
defections. The corresponding strategy in the context of
direct reciprocity is called contrite TFT, in the context of
indirect reciprocity ‘standing strategy’. In both cases, the
strategy (or family of strategies, to be precise) is more
stable than the discriminating strategy we have considered
in this paper (see e.g. Boerlijst et al., 1997; Leimar and
Hammerstein, 2001; Panchanathan and Boyd, 2003). On
the other hand, it requires higher cognitive capabilities, and
suffers from errors in perception (rather than implementa-
tion). Experimental evidence for the standing strategy
seems to be disappointing (Milinski et al., 2001).

There are other ways of boosting the stability of
reciprocation. For instance, the so-called Pavlov strategy
(which prescribes to donate if both players, in the previous
round, made the same decision) can lead to stable
cooperation in direct reciprocation whenever b>2¢ (Fu-
denberg and Maskin, 1990; Nowak and Sigmund, 1993). In
indirect reciprocation, the assumption that the social
information of each player grows during his or her life-
time can also lead to an asymptotically stable mixture of
discriminating and indiscriminating altruists (Brandt and
Sigmund, 2005).

To return to Maynard Smith, let us note that the last
chapter of “The Major Transitions in Evolution’ (Maynard
Smith and Szathmary, 1997) discusses the evolution of

human cooperation between non-relatives by placing
particular emphasis on the social contract and the public
goods game. It can be argued that indirect reciprocity
occupies a place in between direct reciprocity and
public goods games (see also Milinski et al., 2002a, b;
Panchanathan and Boyd, 2004). It describes inter-
actions between two players only (donor and recipient),
but it involves reputation, and hence communication,
acting within a larger group. Moreover, like the social
contract, indirect reciprocity requires at least a rudimen-
tary form of a theory of mind. Indeed, empathy is clearly
required for a bystander to form a moral judgement
about an action taking place between two other players.
Reputation also plays an essential role in the theory
proposed by Sigmund et al. (2001) to explain the role of
punishment in public goods games. Thus reciproca-
tion, both direct and indirect, constitutes certainly an
important element for understanding the last of the major
transitions on the list of Maynard Smith, the one that led
to human cooperation.
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