Darwin's “Circles of Complexity”:
Assembling Ecological GCommunities
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arwin frequently rhapsodized about “how plants and

animals, most remote in the scale of nature, are bound

together by a web of complex relations”[1]. He relished
figuring out how if “certain insectivorous birds were to increase
in Paraguay,” a species of flies would de-
crease; and how—since these flies para-
sitize newborn calves—this decrease
would cause cattle to become abundant;
which “would certainly greatly alter the
vegetation.” And he went on to show

Confidence in a stable world has

gone the way of many other
Victorian oddities.

own right: they are unsustainable—that is, impossible in the
long run. They do occur in nature, but it is hard to make them
out before they are replaced by less fleeting configurations.
Ecologists who wish to understand what happened have no
time for a leisurely post mortem. Yet they
must know why communities fail if they
want to learn about those that persist.
J. E Gause was the first to construct
impossible ecocommunities in his lab;
this led him to the competitive exclusion

“how this again would largely affect the

insects; and this again the insectivorous birds...and so onwards
in ever-increasing circles of complexity.” Yet, Darwin adds, “our
ignorance is so profound...that we marvel when we hear of
the extinction of an organic being; and as we do not see the
cause, we invoke cataclysms to desolate the world, or invent
laws on the duration of the forms of life!”

Today, we certainly no longer marvel when we hear of an
extinction event. Confidence in a stable world has gone the
way of many other Victorian oddities. Laws on the “duration
of the forms oflife” are out of fashion, too. On the other hand,
cataclysms have come back—quite literally with a bang. “Mass
extinction,” writes David Raup, “is box-office” [2]. But it makes
up for less than 5% of all extinctions. There is a steady back-
ground level of less spectacular extinctions due to internal and
external stresses. Every ecosystem is continuously restruc-
tured by some species invading and others fading out.

All biological communities are transient, but some are
more s0. They collapse right away, without having to wait for
the construction of a river dam, the mutation of a parasitic
strain, or a series of harsh winters. They are doomed in their
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principle [3]. For obvious reasons, such
artificial communities do rarely amount to more than a few
strains of protozoa in a test-tube. To come any closer to real
food webs—sustainable and otherwise—one has to simulate
them on computers.

he stability of biocommunities is to alarge extent, there-

fore, the domain of mathematical ecologists. However,

their efforts were initially marred by a misunderstand-
ing: They used a notion of stability inherited from engineer-
ing and physics. A stable steering device, for instance, is one
that resumes its equilibrium after every small perturbation.
But field ecologists would never expect to find, out there in
the wild, the static, well-controlled state of affairs implied by
such a stability notion. For those ecologists unspoiled by phys-
ics, the proverbial lynx-hare cycle—whose undamped oscil-
lations have been recorded for two hundred years—epito-
mizes stability. They little care whether the population num-
bers converge or oscillate in a regular or chaotic fashion. For
them, stability means that those numbers do not vanish—that
the species making up the ecosystem do subsist. Not equilib-
rium, but survivalis what counts (see [4-6]).

PERMANENGE: THE REPELLING SIDE OF STABILITY

The ecosystem at time ¢is described by the frequencies x,(z)
to x,(f) of the populations making it up. It is stable in an eco-
logical senseif for along time none of these numbers drops to
0. Ifwe denote the state of the system by a vector xin n-space—
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or, more precisely, in the positive orthant R"—we have to
watch whether it approaches the boundary of that orthant
(where some x; are zero) or not.

So far, so trivial. But next, we have to define the dynamics
governing the evolution of the population frequencies x, to x,,
and that’s where we are faced with a great many choices. For
simplicity, let us stick with the most commonly used approach
and model population growth by a differential equation

%= X%, f{x,,...,%,) o

(i=1,..,n), where f,, the per capita rate of increase of the i-
th population, depends on the current frequencies of all popu-
lations: it becomes smaller, for instance, if there are more
predators, and larger if there are more prey, and so on. If the
[: are linear, i.e,, if %y x,)=1a,x +...+a,x,, where the

interaction terms @, can be positive or negative, this yields
the classical Lotka-Volterra equations (for a survey, see [7]).

f x,(t)=0 at some time ¢, then it remains so for all times.

The boundary of the state space, where one or several of

the populations are missing, is, therefore, invariant: this
means that the evolution of the ecosystem, as modeled by (1),
does not allow for the introduction of missing species “out of
the blue.” On the other hand, (1) is obviously just an idealiza-
tion of the internal dynamics. In reality, some external, con-
tingent factor—a migration, for instance—may well introduce
asmall amount of a species that had not been present before.
The interior of the state space—where all X; are strictly posi-
tive—is also invariant under (1), which means that under the
internal dynamics, no population number can reach 0. But,
of course, extinctions can happen, either when a random fluc-
tuation superimposed on (1) wipes out a small population or
when x,(f) becomes smaller than 1.

Close to the boundary of the state space, extinction looms.
The community will be stable in an ecological sense, there-
fore, if the state vector x(#) keeps safely away from the bound-
ary. There are several ways to make this precise: the notion
which is best understood is that of permanence, first intro-
duced by P. Schuster, K. Sigmund, and R. Wolff [8]. System (1)
is said to be permanent if there exists a constant k>0 such that,
whenever the x; are initially all positive, then all x,(t) will be
ultimately larger than k. This means that if all species are ini-
tially present (although possibly in very small quantities), they
will have left, after some time, the zone where extinction
threatens. In other words, the boundary of the state space is a
repellor. if we start on the boundary and introduce some few
members of the missing species, then (after a transient phase)
extinction will threaten neither the newcomers nor the former
inhabitants. Their numbers can—and often will—oscillate
wildly, in a regular or irregular way; this does not matter as
long as they keep well away from 0. Usually, one also assumes
that they keep away from . Clearly, every decent model
ought to have this property, and we assume it from now on. In
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this case, permanence means that there exists a compact set
in the interior of the state space R”, where all orbits initiating
from the interior end up. This compact set may contain one
or several strange attractors. It must (as a consequence of
Brouwer's fixed point theorem)
also contain an equilibrium (see
[9]), but this equilibrium need
not be an attractor.

This shows again how differ-
ent the “permanence” version of
ecological stability is from the
stability notion of engineers. The
system would be stable in the
latter’s sense if it admitted an equilibrium % in the interior
of the state space (all components strictly positive) that is
asymptotically stable: every slight perturbation would be
promptly cancelled. Such a condition is neither necessary nor
sufficient for permanence (see, for example, the discussion
in [7] or [10]).

If the system (1) is permanent, then no x,(1) can converge
to 0, for #— +eo. But conversely, even if no X,(f) tends to 0,
the system need not be permanent. There are essentially two
reasons for this. The first is exemplified by the classical preda-
tor-prey equation of Lotka-Volterra:

Ecologists must know
why communities fail if
they want to learn
about those that
persist.

% =x(a-x,) 2)
X, =x,(-b+x,).

The equilibrium (a,b) is surrounded by periodic orbits. This
system is not permanent. An orbit starting in the interior does
not converge to the boundary—it cycles periodically. However,
ifitstarts veryclose to the boundary, it keeps coming back, again
and again, to where a small perturbation can send it to the
boundary. Even if the system started near the equilibrium, a
sequence of arbitrarily small and rare perturbations can send it
closer and closer to the boundary. The internal dynamic does
not work against this tendency. It does not send any popula-
tion towards 0, but neither does it promote survival.

There is another, more interesting example that shows how
things can go wrong. Its first (and simplest) form is due to May
and Leonard [11]. Consider an “ecosystem” consisting of three
competing species:

; 1
X =x00-x-2x,—=x,)
2
; 1
xZ:xZ(r—xz—2x3-Ex]) 3)
. 1
X3 =X3(r—x, -2x, —Exz).
Each species i by itself would converge to an equilibrium
value E,.Species 2 dominates 1 in the sense that it can invade a
habitat containing only species 1 and drive species 1 to extinc-

tion. Likewise, species 3 dominates 2, and species 1, in turn,
dominates 3. But what happens if all three species are initially
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present? This depends. For some interaction terms iy the
boundary is a repeller and the system is permanent. For other
f, , however, the boundary attractsorbits from the interior. Such
an orbit hovers for some time in the vicinity of E; (so that the
habitat seems to contain mostly species 1); then, swiftly, it
swings over to the vicinity of E, (where species 2 predominates)
and lingers there for a much longer time, switches brusquely
over to E,, and so forth. The species supersede each other cy-
clically, but not periodically: the times between the revolutions
grow exponentially, and the frequencies of the minority spe-
cies become smaller and smaller. The lim inf x; are 0, but the
lim sup x, are as large as the equilibrium densities E;. This
system, obviously, is not permanent; in fact, the distance be-
tween the x(7) and the boundary converges to 0. One of the spe-
cies will eventually be wiped out by arandom event, and which-
ever of the two remaining species dominates the other will pre-
vail in the habitat. But its hegemony is not stable: if another
random event (a migration from a nearby habitat, for instance)
reintroduces the species that has been wiped out, this new-
comer will take over.

Admittedly, such a rock-scissors-paper cycle of three com-
petitors has never been found in nature. We use it only as the
simplest example of a heteroclinic cycle. But as soon as we come
to more complex ecosystems (for instance, two prey species and
two predators), the likelihood of similar cycles grows.

The general approach behind these arguments is that on
top of the “internal dynamics” (1), we have to expect the in-
fluence of small, external perturbations. The “real ecosystem”
will not follow one orbit of (1) but will occasionally jump from
one orbit to another. This can increase the oscillations, as in
Eq. (2), or it can allow a missing species to be reintroduced, as
in Eq. (3). Such minor fluctuations can lead to extinction, but
not if (1) is permanent.

e cannot exclude, of course, some major effect spoil-

ing the system. This can destroy even permanent

networks. The top predatoris a case in point. Such a
predator, who lives at the top of a food chain, is usually rare.
What happens if it gets eliminated (say by human interfer-
ence)? At first glance, one might think that the rest of the net-
work will benefit from the removal of the top exploiter. But
this is not necessarily so (see [12]). It can happen, for in-
stance, that two prey and one predatory species form a
permanent system, but that the two prey species, in the
absence of the predator, are no longer permanent: one of
them eliminates the other (see [9]). In this sense, a predator
can “stabilize” (i.e., render permanent) a two-prey system
which, by itself, is not permanent because one species
dominates the other.

There is another case where a two-prey system is not per-
manent, namely, when none of the two species can invade
the other (bistability). Such a system cannot be stabilized by
the introduction of a suitable predator (see [9]). On the other
hand, it can be stabilized by the introduction of two preda-
tory species, each one specialized upon one of the prey (see
[13]). Alternatively, it can be stabilized by the introduction of
one competing species and one predatory species. Similarly,
a nonpermanent system consisting of three competing spe-
cies forming a rock-scissors-paper cycle can be rendered per-
manent by an additional competing species or by a predatory
species with suitable parameters (see [14]). It follows that if,
in the resulting four-species system, the predator is eliminated
(by hunting, for instance), then the system collapses: only one
of the three competitors will survive. Such a predator can be
viewed as a keystone of the ecosystem.

cosystems with only three or four species don't exist in

nature, of course, but such “toy communities” help us to

understand more complex food webs. It ought to be
stressed that their dynamics can be extremely complex: so far,
not even the Lotka-Volterra equation describing three com-
peting species is fully understood. But if one is interested just
in the permanence of such a system, one can reach fairly com-
prehensive answers, in part because the problem is reduced
to the dynamic behavior close to the boundary, i.e., one di-
mension down.

By now, there is a solid body of mathematical results on
permanence for all kinds of population dynamics (see [15] for
a comprehensive survey). Roughly speaking, one has two
problems to solve in order to prove permanence: (a) find the
invariant sets on the boundary which are candidates for at-
tracting orbits from the interior, and (b) show that they don't.
The best technique for (a) is given by the notion of chain-re-
current sets (see [16-18]); for (b), by the method of average
Ljapunov functions (see [19-20]). The two methods have been
neatly combined by J. Hofbauer [21]. For Lotka-Volterra equa-
tions, more explicit conditions are known. Thus the system is
permanent if there exist strictly positive p, such that

E pir + a8+ t052,)>0

holds for all equilibrium points z on the boundary of R! (see
[22]), or, alternatively, if the convex hull of the boundary equi-
libria is disjoint from the set of all states x where no species
increases (i.e., where f,<0 for all i) (see [21]). Both condi-
tions can easily be checked by linear programming. Both, by
the way, are not necessary for permanence if n> 3. But if the
Lotka-Volterra equation is permanent, then there is a unique

Mother Nature, of course, does not assemble her networks by throwing n species together in one go.

It makes more sense to assume that she adds one species after another through successive invasions.
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Just as communities are assembled stepwise, through trial and elimination,
so the ecologists who work on community assembly have to proceed stepwise, restructuring their models

by repeatedly adding new facets in order to trace Darwin's “ever-increasing circles of complexity.”

equilibrium x with all species present, and itis the limit of all
time-averages of orbits in the interior of the state-space. If D
is the Jacobian at x,then (-1)"det D>0, and traceD <0.Fur-
thermore, (-1)"det A>0, where A is the matrix of the inter-
action terms a; (see [7]).

NOAH'S ASSEMBLY: ADRIFT ON THE GENE POOL

These results allow us to study the permanence question for
multi-species Lotka-Volterra equations by numerical simula-
tions, and hence to get a feeling for the likelihood of perma-
nence in randomly assembled ecological networks. The first
results (see [23]) were extremely negative: for higher-dimen-
sional models (with n=10, say, or larger), the probability of per-
manence was vanishingly low. But Mother Nature, of course,
does not assemble her networks by throwing 7 species to-
gether in one go. It makes more sense to assume that she adds
one species after another through successive invasions.

his approach has been used by Richard Law and co-

workers in a remarkable series of papers [24-27]. In his

computer simulations, Law starts out with a more or less
judiciously chosen species pool consisting of primary produc-
ers and consumer species. He then assembles communities
by an iterative procedure which mimics sequential invasion
attempts: he randomly selects a species from the pool which
is not present in the community and checks whether it can
invade the community, i.e., whether it increases when rare.
(For Lotka-Volterra equations, this is easy to do since one has
only to check the invaders’ growth rate at the equilibrium point
of the invaded community, even if this point is unstable.) If
the invasion attempt fails, the species goes back to the pool to
try its luck another time. But if the invasion attempt is suc-
cessful, a new community will be obtained. It may simply be
the augmented community—i.e., the previous species and the
invader—but the invader may also eliminate some of the in-
digenous species. In no case, apparently, will the invader it-
self be driven to extinction by having eliminated members of
the previous community; i.e., it will not be a victim of the com-
munity collapse caused by its invasion (but it can, of course,
be eliminated by later arrivals).

This iterative procedure yields a succession of permanent
communities that frequently leads to an end state where no
further species from the pool can invade. This end state need
not be unique, but may depend on the (contingent) sequence
of arrivals. But as Law notes in [26], the number of such end
states is typically very small—history has an effect, but one that
is rather limited; often a different order of arrivals does not lead
to a different end point. No such end state can be a subset of
another end state, by the way. It can also happen that there is
no end species at all. In this case, the community structure is

transient: some species undergo endless cycles of elimination
and successful reinvasion. Another curious fact is that end states
often lack reassembly paths; they cannot be arrived at through
a sequence of stepwise increasing permanent subcommuni-
ties but instead need supplementary species that catalyze their
construction and are eventually lost. In other words, one needs
to know more than just the species present in order to under-
stand how the community was assembled.

A growing number of ecologists believe that the method of
community construction will lead to insights on the structure
of multispecies communities, such as number of throphic lev-
els, connectance, complexity, resistance to invasion and so
on (see [28-30]). But previous studies were often too much
focussed on stable equilibria and missed a substantial num-
ber of possible “succession chronicles” (see [31-33]). The per-
manence notion used by Law is more appropriate. As he
writes, “the dynamics close to an interior equilibrium point
are not the main issue for coexistence; what matters is whether
the densities of rare species tend to increase.”

On the other hand, it must be admitted that the permanence
concept has its drawbacks. There can be permanent systems
whose repelling “skin” covering the boundary is too thin to pro-
tect against extinction. There can also be systems in which a
part of the boundary attracts orbits (hence, no permanence)
while another part repels orbits so that they end up on an
attractor in the interior, perfectly safe from extinction. In this
sense, the notion of permanence is both too strong and too
weak. One can easily think of other definitions which reflect
more faithfully an ecologist’s notion of a stable community, but
these definitions seem mathematically intractable so far.

ome other aspects of the assembly approach to

ecocommunities need qualification. It is by no means

sure that invading species alight one at a time. Ifaland
bridge forms, for instance (such as the Isthmus of Panama),
then the habitat is subject to many simultaneous invasion at-
tempts. Furthermore, the “species pool” from which all invad-
ers are drawn is obviously a convenient abstraction. How large
should it be, and how should one choose the interaction terms
between the species? One can follow two complementary
strategies: either draw on the very extensive level of expertise
on real food webs found in nature or in experiments (see [34-
40]) or else deliberately ignore it and study community as-
sembly as a purely mathematical problem. P. J. Taylor, a
pioneer in this approach, points out that if one restricts pa-
rameters in advance to realistic values, one loses the oppor-
tunity to find out whether they have been selected by the eco-
logical dynamics [41]. Only in this way can one hope to ex-
plain, for instance, the rarity of feeding loops where species 1
eats 2, which eats 3, which eats 1 [42].
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In reality, invading species do not come from a species pool,
of course; they arise (occasionally) through speciation events
and (much more frequently) through migration from other
communities that are not randomly assembled but structured,
in turn, by long histories of invasions and eliminations. This
is somewhat analogous to the construction of new genomes,
which arise (occasionally) through mutation and (much more
frequently) through recombination of genomes which are
themselves the products of a long history.

A metapopulation (i.e., a patchwork of communities linked
by migration) tends to be much more stable than a single, well-
mixed system (see [43-46]). In particular, V. Jansen hasrecently
shown that even by linking only two (nonpermanent) preda-
tor-prey models of type (2), one obtains permanence [47].
Unfortunately, few useful conditions for permanence in spa-
tially structured communities are known so far. But just as
communities are assembled stepwise, through trial and elimi-
nation, so the ecologists who work on community assembly
have to proceed stepwise, restructuring their models by re-
peatedly adding new facets in order to trace Darwin’s “ever-
increasing circles of complexity.”

In the end, we may find, as P. J. Taylor suggested, that this
ecological complexity “persists by virtue of the transience of
any ecological system” [41]. Permanence is just a tool; tran-

sience is here to stay.
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