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arwin ftequently rhapsodized about "how plants and

animals, most remote in the scale of nature, are bound

together by a web of complex relations" []. He relished

fi guring out how if 'tertain insectivorous birds were to increase

in Paraguay," a species of flie'-s would de-

crease; and how-since these flies para-

sitize newborn calves-this decrease

would cause cattle to become abundant;

which "would certainly greatly alter the

vegetation." And he went on to show

"how this again would largely affect the

insects; and this again the insectivorous birds...and so onwards

in euer- increasing circles of complexiry." Yet, Darwin adds, "our

ignorance is so profound...that we marvel when we hear of

the extinction of an organic being; and as we do not see the

cause, we invoke cataclysms to desolate the world, or invent

laws on the duration of the forms of life!"

Today, we certainly no longer marvel when we hear of an

extinction event. Confidence in a stable world has gone the

way of many otherVictorian oddities. Laws on the "duration

of the forms of life" are out of fashion, too. On the other hand,

cataclysms have come back-quite literallywith a bang. "Mass

extinction," writes David Raup, "is box-office" [2]. But it makes

up for less than 5% of all extinctions. There is a steady back-

ground level of less spectacular extinctions due to intemal and

external stresses. Every ecosystem is continuously restruc-

tured by some species invading and others fading out.

All biological communities are transient, but some are

more so. They collapse right away, without having to wait for

the construction of a river dam, the mutation of a parasitic

strain, or a series of harsh winters. They are doomed in their

own right: they are unsustainable-rhat is, impossible in the

long run. They do occur in nature, but it is hard to make them

out before they are replaced by less fleeting configurations.
Ecologists who wish to understand what happened have no

time for a leisurely post mortem.Yetthey

must knowwhy communities fail if they

want to learn about those that persist.

J. F. Gause was the first to constmct

impossible ecocommunities in his lab;

this led him to the competitiue exclwion

principle [3]. For obvious reasons, such

artificial communities do rarely amount to more than a few

strains of protozoa in a test-tube. To come any closer to real

food webs-sustainable and otherwise-one has to simulate

them on computers.

he stability of biocommunities is to a large extent, there-
fore, the domain of mathematical ecologkts. However,
their efforts were initially marred by a misunderstand-

ing: They used a notion of stability inherited from engineer-

ing and physics. A stable steering device, for instance, is one

that resumes its equilibrium after every small perturbation.

But field ecologists would never expect to find, out there in

the wild, the static, well'-controlled state of affairs implied by

such a stabilitynotion. For those ecologists unspoiled byphys-

ics, the proverbial lynx-hare cycle-whose undamped oscil-

lations have been recorded for two hundred years-epito-

mizes stability. They little care whöther the population num-

bers converge or oscillate in a regular or chaotic fashion. For

them, stabilitymeans that those numbers do notvanish-that

the species making up the ecosystem do subsist. Not equilib-

rium, but szruiualiswhalcounts (see [4-6]).

PERMAITEIUCE: IHE REPEI-TIIUG SIDE |lF $IABII-ITY
The ecosystem at time ris described by the frequencies .rr(/)
to xr(t) of the populations making it up. It is stable in an eco-

logical senseiffor a long time none of these numbers drops to

0. Ifwe denote the state ofthe system byavectorxip n-space-
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or, more precisely, in the positive orthant Äl_we have to
watch whether it approaches the boundary of that orthant
(where some J; are zeroj or not.

So far, so trivial. But next, we have to define the dynamics
governing the evolution of the population frequencies xt ro x n,
and that's where we are faced with a great many choices. For
simplicity, let us stick with the most commonly used approach
and model population growth by a differential equation

*,= x,f ,(xr,. . . ,x,,)

(i = \..., n), where /,, the per capita rate of increase of the i_
th population, depends on the current frequencies ofall popu_
lations: it becomes smaller, for instance, if there are more
predators, and larger if there are more prey, and so on. If the
/, are l inear, i .e.,  i f  f ,er,. . . ,xh)=riaitxt+...+ainxn, where the
interaction terms aij can be positive or negative, this yields
the classical Lotka-Volterra equations (for a survey, see [7,]).

l, 
r,,t) = 0 at some time 4 then it remains so for all times.

I 
The boundary of the state space, where one or several of

I the populations are missing, is, therefore, invariant: this
means that the evolution of the ecosystem, as modeled by (l),
does not allow for the introduction of missing species ,,out of
the blue." On the other hand, (l) is obviously just an idealiza_
tion of the interna_l d1'namics. In reality, some external, con_
tingentfactor-a migration, forinstance_maywell introduce
a small amount of a species that had not been present before.
The interior of the state space-where all x, are strictly posi_
tive-is also invariant under (l), which means that under the
internal dlmamics, no population number can reach 0. But,
ofcourse, extinctions can happen, either when a random fluc_
tuation superimposed on (l) wipes out a small population or
when x,(/) becomes smaller than 1.

Close to the boundary of the state space, extinction looms.
The community will be stable in an ecological sense, there_
fore, ifthe state vectorx(t) keeps safely awayfrom the bound_
ary. There are several ways to make this precise: the notion
which is best understood is that of permanence, first intro_
duced by P Schuster, K. Sigmund, and R. Wolff [B]. System (l)
is said to be permanent if there exists a constant b>0 such that,
whenever the x, are initially all positive, then all x,(/) will be
ultimately larger than k. This means that if all species are ini_
tiallypresent (although possiblyin verysmall quantities), thev
wil l  have left ,  after some t ime, lhe zone where extinct ion
threatens. In otherwords, the boundary ofthe state space is a
repellon if we start on the boundary and introduce some few
members of the missing species, then (after a transient phase)
extinctionwill threaten neitherthe newcomers northe former
inhabitants. Their numbers can-and often will_oscillate
wildly, in a regular or irregular way; this does not marter as
long as they keep well away from 0. Usually, one also assumes
that they keep away from -. Clearly, every decent model
ought to have this property, and we assume it from now on. ln

(1 )

this case, permanence means that there exists a compact set
in the interior of the state sp ace Ri,where all orbits initiating
from the interior end up. This compact set may contain one
or several strange attractors. It must (as a consequence of
Brouwer's fixed point theorem)
also contain an equilibrium (see

[9]), but this equilibrium need
not be an attractor.

This shows again how differ-
ent the "permanence" version of
ecological stability is from the
stabilitynotion of engineers. The
system would be stable in the

= x r la -  x r )
= xr(-b + xr) .

latter's sense if it admitted an equilibrium i in the interior
of the state space (all components strictly positive) that is
asymptotically stable: every slight perturbation would be
promptly cancelled. Such a condition is neither necessary nor
sufficient for permanence (see, for example, the discussion
in [7] or [r0]).

If the system (1) is permanent, then no x,(f) can converge
to 0, for t-)+-. But conversely, even if no r,(r) tends to 0,
the system need not be permanent. There are essentially two
reasons for this. The first is exemplified by the classical preda_
tor-prey equation of Lotka-Volterra:

( 21

x z '

The equilibrium (a,b) is surrounded byperiodic orbits. Thi$
system is nofpermanent. An orbit starting in the interior does
not converge to the boundary-it cycles periodically. However,
if it starts ueryclose to the boundary, it keeps coming back, again
and again, to where a small perturbation cal send it to the
boundary. Even if the system started near the equilibrium, a
sequence of arbitrarily small and rare perturbations can send it
closer and closer to the boundary. The internal dyrramic does
not work against this tendency. It does not send any popula_
tion towards 0, but neither does it promote surviva_I.

There is another, more interesting example that shows how
things can go wrong. Its first (and simplest) form is due to May
and Leonard [11]. Consider an,,ecosystem,,consisting of three
competing species:

i ,  = x,(r  x,  -  Zx, I  x,)
:

i z=  x . ( r -  x r -2xu_)x)  (3 )

i z=  x { r - x t - zX- I+1 .

Each species i by itself would converge to an equilibrium
va-lue 8,. Species 2 dominates 1 in the sense that it can invade a
habitat containing only species 1 and drive species I to extinc_
tion. Likewise, species 3 dominates 2, and species 1, in tum,
dominates 3. But what happens if all three species are initially
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There is another case where a two-prey system ls not per-

manent, nämely, when none of the two species can invade

the other (bistability). Such a system cannot be stabilized by

the introduction of a suitable predator (see l9l). On the other

hand, it can be stabilized by the introduction of two preda-

tory species, each one specialized upon one ofthe prey (see

[ 13] ) . Alternatively, it can be stabilized by the introduction of

one competing species and one predatory species. Similarly,

a nonpermanent system consisting of three competing spe-

cies forming a rock-scissors-paper cycle can be rendered per-

manent by an additional competing species or by a predatory

species with suitable parameters (see [14]). It follows that il

in the resulting four-species system, the predator is eliminated

(by hunting, for instance), then the system collapses: only one

of the three competitors will survive. Such a predator can be

viewed as a keystone of the ecosystem.

cosystems with only three or four species don't exist in

nature, of course, but such "toy communities" help us to

understand more complex food webs. It ought to be

stressed that their dynamics can be extremely complex: so far,

not even the Lotka-Volterra equation describing three com-

peting species is fully understood. But if one is interested just

in the permanence of such a system, one can reach fairlycom-

prehensive answers, in part because the problem is reduced

to the dynamic behavior close to the boundary' i.e., one di-

mension dor,vn.

By now, there is a solid body of mathematical results on

permanence for all kinds of population dynamics (see [15] for

a comprehensive survey). Roughly speaking, one has two

problems to solve in order to prove permanence: (a) find the

invariant sets on the boundary which are candidates for at-

tracting orbits from the interior, and (b) show that they don't.

The best technique for (a) is given by the notion of chain-re-

current sets (see [f6-18]); for (b), by the method of average

Ljapunovfunctions (see [19-20]). The two methods have been

neatly combined by I. Hofbauer [2 1 ]. For Lotka-Volterra equa-

tions, more explicit conditions are knor,vn. Thus the system is

permanent if there exist strictly positive p, such that

) .  P , ,  t ,  +  a , ,4+ . . .+a , , ,2 , , )  >  o
-

holds for all equilibrium points z on the boundary of Ri (see

t22l), or, alternatively, if the convexhull of the boundary equi-

libria is disjoint from the set of all states x where no species

increases (i.e., where f, <0 for all D (see [21]). Both condi-

tions can easily be checked by linear programming. Both, by

the way, are not necessary for permanence if n > 3. But if the

Lotka-Volterra equation is permanent, then there is a unique

present? This depends. For some interaction terms /,, the

boundary is a repeller and the system is permanent. For other

/, , however, th eboundary attracrsorbits from the interior. Such

an orbit hovers for some time in the vicinity of E (so that the

habitat seems to contain mostly species 1); then, swiftly, it

swings over to the vicinity of E, (where species 2 predominates)

and lingers there for a much longer time, switches brusquely

over to -E3, and so forth. The species supersede each other cy-

clically, but not periodically: the times between the revolutions

grow exponentially, and the frequencies of the minority spe-

cies become smaller and smaller. The lim inf x, are 0, but the

lim sup .{, are as large as the equilibrium densities E. This

system, obviously, is not permanent; in fact, the distance be-

tvveenthex(t) andtheboundaryconverges to 0. One of the spe-

cies will eventually be wiped out by a random event, and which-

ever of the two remaining species dominates the otherwill pre-

vail in the habitat. But its hegemony is not stable: if another

random event (a migration from a nearby habitat, for instance)

reintroduces the species that has been wiped out, this new-

comer will take over.

Admittedly, such a rock-scissors-paper cycle of three com-

petitors has never been found in nature. We use it only as the

simplest example of aheteroclinic cycle.But as soon as we come

to more complexecosystems (for instance, tvvo preyspecies and

two predators), the likelihood of similar cycles grows.

The general approach behind these arguments is that on

top of the "internal dlmamics" (l), we have to expect the in-

fluence of small, external perturbations. The "real ecosystem"

will not follow one orbit of (1) but will occasionally jump from

one orbit to another. This can increase the oscillations, as in

Eq. (2), or it can allow a missing species to be reintroduced, as

in Eq. (3). Such minor fluctuations can lead to extinction, but

not if (1) is permanent.

e cannot exclude, of course, some major effect spoil-

ing the system. This can destroy even permanent

networks. The top predator is a case in point. Such a

predator, who lives at the top of a food chain, is usually rare.

rÄIhat happens if it gets eliminated (say by human interfer-

ence)? At first glance, one might think that the rest of the net-

work will benefit from the removal of the top exploiter. But

this is not necessarily so (see t12l). It can happen, for in-

stance, that two prey and one predatory species form a

permanent system, but that the two prey species, in the

absence of the predator, are no longer permanent: one of

them eliminates the other (see [9]). In this sense, a predator

can "stabilize" (i.e., render permanent) a two-prey system

which ,  by  i t se l f ,  i s  no t  permanen l  because one spec ies

dominates the other.
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equilibrium i with all species present, and it is the limit of all

time-averages of orbits in the interior of the state-space' If D

is the Jacobian at i, then (-l)" det D > 0, and traceD < 0 . Fur-

thermore, (-l)'det A > 0, where Ä is the matrix of the inter-

action terms a,, (see l7)).

NtlAH,$ A$SEMBIY: AITRIFI t|N IHE GENE Ptl(ll
These results allow us to study the permanence question for

multi-species Lotka-Volterra equations by numerical simula-

tions, and hence to get a feeling for the likelihood of perma-

nence in randomly assembled ecological networks. The first

results (see [23]) were extremely negative: for higher-dimen-

sionai models (with n=10, say, orlarger), the probability of per-

manence was vanishingly low. But Mother Nature, of course,

does not assemble her networks by throwing n species to-

gether in one go. It makes more sense to assume that she adds

one species after another through successive invasions.

his approach has been used by Richard Law and co-

workers in a remarkable series of papers [24-27]. Inhis

computer simulations, Law starts out with a more or less

judiciously ch osen species poolconsisting of primaryproduc-

ers and consumer species. He then assembles communities

by an iterative procedure which mimics sequential invasion

attempts: he randomly selects a species from the pool which

is not present in the community and checks whether it can

invade the community, i.e., whether it increases when rare.

(For Lotka-Volterra equations, this is easy to do since one has

only to check the invaders' growth rate at the equilibrium point

of the invaded community, euen if this point is unstable.) If

the invasion attempt fails, the species goes back to the pool to

try its luck another time. But if the invasion attempt is suc-

cessful, a new community will be obtained. It may simply be

the augmentedcommunity-i.e., the previous species and the

invader-but the invader may also eliminate some of the in-

digenous species. In no case, apparently, will the invader it-

self be driven to extinction byhaving eliminated members of

rhe previous community; i.e., itwill notbe avictim of the com-

munity collapse caused by its invasion (but it can, of course,

be eliminated bY later arrivals).

This iterative procedure yields a succession of permanent

communities that frequently leads to an end state where no

iurther species from the pool can invade. This end state need

not be unique, but may depend on the (contingent) sequence

of arrivals. But as Law notes in [26], the number of such end

:tates is typicallyverysmall-historyhas an effect, but one that

is rather limited; often a different order of arrivals does not lead

to a different end point. No such end state can be a subset of

another end state, by the way. It can also happen that there is

no end species at all. In this case, the community structure is

transient: some species undergo endless cycles of elimination

and successful reinvasion. Another curious fact is that end states

often lack reassembly paths; they cannot be arrived at through

a sequence of stepwise increasing permanent subcommuni-

ties but instead need supplementary species that catalyze their

construction and are eventuallylost. In otherwords, one needs

to know more than iust the species present in order to under-

stand how the communitywas assembled.

A growing number of ecologists believe that the method of

community construction will lead to insights on the structure

of multispecies communities, such as number of throphic lev-

els, connectance, complexity, resistance to invasion and so

on (see i2B-301). But previous studies were often too much

focussed on stable equilibria and missed a substantial num-

ber ofpossible "succession chronicles" (see [31-33]). The per-

manence notion used by Law is more appropriate. As he

writes, "the dlmamics close to an interior equilibrium point

are not the main issue for coexistence; what matters is whether

the densities ofrare species tend to increase."

On the otherhand, it mustbe admittedthatthe perrnanence

concept has its drawbacks. There can be permanent systems

whose repelling "skin' covering the boundary is too thin to pro-

tect against extinction. There can also be systems in which a

part of the boundary attracts orbits (hence, no permanence)

while another part repels orbits so that they end up on an

attractor in the interior, perfectly safe from extinction' In this

sense, the notion of permanence is both too strong and too

weak. One can easily think of other definitions which reflect

more faithfullyan ecologist's notion of a stable communiry but

these definitions seem mathematically intractable so far.

ome o ther  aspec ts  o f  the  assembly  approach to

ecocommunities need qualification' It is by no means

sure that invading species alight one at a time. If a land

bridge forms, for instance (such as the Isthmus of Panama),

then the habitat is subiect to many simultaneous invasion at-

tempts. Furthermore, the "species pool" from which all invad-

ers are drar,rm is obviously a convenient abstraction' Howlarge

should it be, and how should one choose the interaction terms

between the species? One can follow two complementary

strategies: either draw on the very extensive level ofexpertise

on real food webs found in nature or in experiments (see [34-

401) or else deliberately ignore it and study community as-

sembly as a purely mathematical problem. P. J. Taylor, a

pioneer in this approach, points out that if one restricts pa-

rameters in advance to realistic values, one loses the oppor-

tunityto find outwhether theyhave been selected bythe eco-

logical dy'namics [41]. Only in this way can one hope to ex-

plain, for instance, the rarity of feeding loops where species I

eats 2, which eats 3, which eats I [42].
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In reality, invading species do not come from a species pool'

ofcourse; they arise (occasionally) through speciation events

and (much more frequentll,) through migration from other

communities that are not randomly assembled but structured,

in turn, by long histories of invasions and eliminafions This

is somewhat analogous to the construction of ne\v genomes,

which arise (occasionally) through mutation and [much more

frequently) through recombination of genomes which are

themselves the products of a long history.

A metap op ulation (i.e., a patchwork of communiti es linked

by migration) tends to be much more stable than a single' r"'ell-

mixed system (see [43-46]). In particular,V Jansen has recentlv

shown that even by linking only two (nonpermanent) preda-

tor-prey models of t lpe (2), one obtains permanence [47] '

Unfortunately, few useful conditions for permanence in spa-

tially structured communities are kno-"vn so far. But just as

communities are assembled stepwise, through trial and elimi-

nation, so the ecologists who rvork on community assembly

have to proceed stepwise, restructuring their models by re-

peatedly adding new facets in order to trace Darl'vin's "ever-

increasing circles of complexity."

In the end, we may find, as P l' Talrlor suggested' that this

ecological complexity "persists by virtue of the transience of

any ecological system" [41]. Permanence is just a tool;  tran-

sience is here to stav.
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