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Qualitative analysis for a system of differential equations playing an important
role in a theory of molecular self-organization.

1. INTRODUCTION

This note deals with the ordinary differential equation
& = xkx;,_, — D) i=1,..,n, (L.1)

where %; > 0 are constants, indices are counted mod 7 and
n
P =3 kaw (1.2)
j=1

More precisely, it considers the restriction of (1.1) to the (invariant) simplex
S, defined by

x, =0 and Y ox = 1. (1.3)
is1

Equation (1.1) plays a central role in the recent theory of self-organization
of biological macromolecules which focuses on the notion of the catalytic
hypercycle ([1], [2]). We interpret «, as (relative) concentration of the species 7.
"These species form a cycle: the growth of species 7 is catalysed by its “pre-
decessor” 7 — 1 through reactions of Michaelis—-Menten type. @ acts as “‘selection
pressure” by keeping the total concentration fixed.

There exists a unique fixed point C in int S, , given by the relations kx, , =
kjx;_, together with (1.3). It is shown in [3] that if all &, are equal, then C is a
sink for # = 2 and 3, no longer a sink but still asymptotically stable for n = 4
and unstable for n > 5.
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358 SCHUSTER, SIGMUND, AND WOLFF

In Section 2 of this paper we show that (1.1) is cooperative in the scnse
that no species goes extinct, or more precisely that bd S,, is a repeller. The
w-limits of points in int S, may be limit cycles or perhaps strange attractors.
But as we show in Section 3, the only attractor for a “short hypercycle” (n << 3)
is the fixed point C. Actually, we prove a more general result on internal
equilibration which allows us to show that if several short hypercycles compete
(under the constraint of constant total concentration), then all but one of them
will vanish. In Section 4, we discuss the biological relevance of this model
for the formation and selection of hypercycles and show how it can account
for the “‘once for ever” decisions which occured at many steps of the evolution
of selfreproductive biopolymers.

2. THE HypercYCLE 18 COOPERATIVE

For 1 < 7,7 < nandx; > 0 we have

(19

~—

5 () s~

The boundary of S, is invariant, and contains subfaces of fixed points.
Let F denote this set of fixed points.

LemMma 1. Ifxebd S, , the w-limit of x is a subset of F.

Proof. Let x be on the boundary, that is, on some face of .S, . Thus assume
%, =0, & = 0, x;.y > 0,00, x4 >0 and x, ., = 0. We shall show by
induction that x; — 0, x,.; — 0,..., %, — 0.

(1) x,— 0 and x,/x,.; converges monotonically to some limit v; . Indeed,
since x; ; = 0, one has &, <0 0, and so x; | 4 for some 4 = 0. Also, by (2.1)
JOX - SoXs 0
(5) = —keax (=) <0
VXL A
and hence x;/x,, | v;. If & were strictly positive, x,/x,,; would decrease at
least exponentially with factor —k,, A, which implies v, = 0, which in turn
implies £ = 0.
(2) %,y — 0 and x,.,/x,,, converges to some limit z,., (which may be
-+ o0). For sufficiently large #, x,,,/x,,, is monotone. Indeed, by (2.1)

(2] = gy (T (e ) (2.2)

Xito Xitg i+1 ki

If v; = R;o/kip1, then x;/x;., is increasing, qtherwise it is ultimately
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decreasing. In any case the limit v, is approached monotonically. If v, > 0,
then x; — O obviously implies x;,,-— 0. :

Assume now v; = 0, which according to (2.2) implies z;,; < c0.Ifv,,; = 0,
then clearly x,.; — 0. There remains the case that v,,; > 0. Suppose x;,,
does not converge to 0. There exists, then, 28 > 0 and a sequence t;, — -- o0
with x;,4(f) > 8 for k = 1,2,.... Set T = (k, ;)" log 2. Since #&;,, < k;\ %5,y
and x;,,(f;) = 8, one has

8
x;4{t) = > for t,—T <t <t,.

Let r = 1k, , and choose ¢ > 0 such that
e[l — exp(rT8/2)] < v;, [exp(rT§/2) — 1].

Now choose & so large that

S AL
a.nd

}M o] < (2.3)

X

ive
for t == t,, — T. This implies by (2.2) that for t, — T < ¢ <

() = (2] oo

Xirg Xiro
and thus

% a(tx) xp(te — T) .
< - ~exp(—rT38;2
% 0(2y) Xty — T) p( )

< (Vg + ) exp(—rT8)2) < ¢,y — €

which is a contradiction to (2.3). Thus x,,, — 0.

The proof that x, ., — 0,..., x;,,_; — 0 is analogous. Hence x(t) converges
to some subface of the boundary with the property that whenever x, > 0
then x;,; = 0. On such a subface ®(x) = 0 and hence &; = 0 for i =- 1,..., n.
Thus Lemma 1 is proved.

LemMma 2. x eF implies B(x) = 0.

Proof. Suppose x; = 0 for some j, and % = 0 for { = 1,....,n. Since
%;.1 = 0 one has either %; ,x; — ®(x) = 0 (and hence D(x) — 0) or else
%1 = 0. In the latter case one repeats this. Since some x,,, has to be strictly
positive, one gets finally ®(x) = 0.
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An ODE on S,, will be called cooperative if bd .S, s a repeller, i.e. if there
exists an € > 0 such that with

() = {x € 5,: 0 < d(x,bd S,)) < ¢}

(where d is Euclidean metric), the initial condition %(0) € int S,, implies that
x(t) ¢ I(€) for all sufficiently large t.

THEOREM.  The system (1.1) is cooperative.

Proof. Let P(x) = %%, *** %, . One has
P = P(s — nd)

with s -= s(x) = Y1 k¥, . Let m = min{s(x) — 2d(x): x € S,}. Note that,
in general, m < 0. But min{s(x): x €.S,} > 0, and hence one may choosce an
M > 0 with

m << M < min{s(x): x€ S,}

and set L - - | m /M. We define

A = xal,:s(x) — ndP(x) > M}
and
B = S,\4

A is an open neighbourhood of F. Since by Lemmas 1 and Z x = bd §, implies
x(t) € 4 for all sufficiently large ¢, the set

Dix) = (T > 0x(tedforall te[T (L = N7 - ¥

is nonempty and hence we mayv define

7'(x) = inf D(x}
forx=hd S, .

We show now that the map 7 is upper semicontinuous, ine 0 JXx) and
T(x) can be defined for all x = S, which are sufficiently close to b v Indeed,
given xebd S, and « > 0. there 1s a T" with T(x) =7 T° -« Tix) - x such
that x(tye A for t e [T (L -+ L) T 4 1].

Since 4 is open, there is a 6(x) > 0 such that d(x, y) <0 8(x) implics vitie A
for te[T',(L - 1)T" - 1] and hence T(y) < T(x) - a. In particular for
« == 1 there are finitely manv x™ .. %D e bd 5, such that the open scts

K, = {ye S, d(y, x) < 3(x)}

cover bd §,, . Put
13
I={)K

i=1
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and
T = max T(xV) - |.

1<t

For any x € [ there is 2 T - T such that x(t)e 4 for te [T, (L + T - 17.
Define

P = sup{P(x): x e[

Suppose now x = I'bd 5, . We claim that there is a £ > 0 such that x(¢) ¢ L.
Indeed. assume that x(2} = I for all + > 0 and lec

t, = inf{t = 0: x(t) € Bj.
1, exists since otherwise x(¢) € 4 and

P(x(t)) = P(x(0)) exp(t;
for all ¢ = 0, which is impossibie since P is bounded. There is a T, << T
such that x(t) = 4 for + — t, [T}, (L = 1) Ty -~ 1]. Putting

o=t (L DTy

and notmg that during the time [¢, , #;] the orbit of x spends a time less thar

o

. in B and more than LT, 1 in A, one sees that

P(x(1)) == P(x(t))) exp(— ‘m{ T, - LMT, & M,
= P(x(t))ev

> P(x(0))eM.

Similarly,

t, = inf{r > 17 : x(¢) € B}

exists and there is a T, < T with x(tYe 4 for t — t, [Ty, (L + 1) T, - 1].
With

1y =1ty + (L -+ 1Ty, + 1,
one gets
P(x(13)) = P(x(t,))eM = P(x(0))e?.
Proceeding inductively one obtains a sequence t;, & = 1, 2,... with
P(x(t)) = P(x(0))e*,

which is a contradiction to P(x(t)) <. P for all ¢ > 0. Thus x(¢) has to leave
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I at some time. Note also that for any ¢ >> 0 smaller than the first exit time
one has f €[t , t;,,] for some k (with t; = 0),

P(x(t)) = P(x(ti)) exp(— [m | T) = P(x(0)) exp(— |m | T + M)

and hence
P(x(2)) = P(x(0)) exp(—|m | T)
Let
p = min{P(x): x € S,\I}.

Clearly p > 0. Choose € > 0 so small that I(¢) C I and that
P(x) < pexp(—|m|T) for all x € I{e).
The orbit of a point x € S,\I may possible enter I, but never I{e), since
P(x(t) > pexp(—| m | T)

Any orbit starting in I(e) leaves [ after a finite time and never returns to I{e).
Thus the theorem is proved.

3. INTERNAL EQUILIBRATION AND COMPETITION OF SHORT HYPERCYCLES

As framework we shall use the ODE on S,

where the G are functions on S, and @ =¥} , x,G, .

3.a. Internal Equilibration for 2-Hypercycles

Suppose that in (3.1) one has G, = kx, and G, = kyx; , where %, and %,
are constants >0. Equation (3.1) then describes a system having a 2-hypercycle
as subsystem. For x; and x, > 0 one has

o Ry Yok
(x2 kz)“ k2x1(x2 kz)
and hence
Xy ky
% , (3.2)

In particular, all orbits of (1.1) in int S, converge to the fixed point C.
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3.b. Internal Equilibration for 3-Hypercycles

Suppose now that in (3.1) one has G; = kyx;, G, = kyx; and Gy = kyx, .
This means we have a 3-hypercycle as subsystem. Note that x, + x, + x; < 1
(=1 in case n = 3). We shall prove

X1 ky Xy ky X3 ks
o R R R
X9 2 X3 3 *y 1

(3.3)

(In particular, all orbits of (1.1) in int S, converge to C).

Let I be the line through the origin (in (¥, , %, , %3)-space) given by kyx; =
koxy = kyx, , and let p, , p, and p; be the planes through / and the x;-, x,- and
xs-axes respectively. Note that (2.1) is valid for 7 = 1 and j = 2. Hence p,
divides R3 in such a way that in the half space containing the unit vector e, ,
the ratio (¥,/x,) is decreasing, and in the other one it is increasing.

Let [, , I, and I, be the lines obtained as intersection of p, , p, and p, with
S; and consider the following Fig. 1: let P, be an arbitrary point between
e, and C.

e,

FIGure 1

Let P, (resp. P;) be the intersection of Pe, (resp. P,e,) with I, (resp. ).
Let O (resp. ;) be the intersection of Pye, (resp. Pye;) with I (resp. 1,).
We claim that the intersection O, of Qje, and Q,e, lies on /; .
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Indeed, this statement is easily seen by a projective change of coordinates
which sends the four points e, , e,, e; and C into the points e , e}, e, and '
with coordinates (+ 0, 0), (0, 1), (0, 0) and (1, 3) (see Fig. 2;.

l
e,
2

Ficurg 2

Let H denote the hexagon P,P,0,0,0,P, lving in S, and = the pvramid
with base // and summit O (the origin of (x, , x, xg)-space). Consider one
of the faces of =, OP,P, for example. Since Py, P, and e, are colinear, OP,F,
lies on a plane through the x,-axis which is therefore of the form Xy[x, == const.
On the other hand, since OP,f, is not on the same side as e, with respect
to the plane p, . the ratio (x;/x,) must increase. Thus any orbit through OP,P,
must enter the pyramid. The other faces of 7 are dealt with similarly.

Letting P, vary from e; to C and repeating the construction, one obtains
a nested family of pyramids having the line / as their intersection. Thus all

orbits converge towards /, i.e., (3.3) is valid.

3.c. Competition of Short Hypercvcles

Consider now a system consisting of A’ 2-hypercycles and 37 3-kvperoncies,
We may describe this by an equation of the type (3.1). namelv

xizﬁ) . x](l)(}{i?).‘;j‘f . (15))

: ; for 7= 1,.,1\;
# = 2Pk — @)

(3.4)
R . . - \
8 = PR - 9)

xéi) _ xéi)(k;i)xif) - Q)){ for ¢ == N - ],...‘ N J[,

50:(;) — xéi)(ké")xéﬁ __ (p),
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on the simplex Syy.3y . By (3.2) and (3.b) all orbits in int S,y ., converge
to the invariant subset S* defined by the relations
RO — pl0 50 {= 1., N

RPxg) o R = RN e N — 1, N M

which is an (A - 3 }-simplex. As coordinates on S*, we use y, (1 == 1,..., N-M),
where

) —
Yio= A‘z‘Z)Qi !
with
KR | .
qi == “‘“(T'H(—)“ f()r 1 == 1,..., L\/
kll —+ k2z
and

B k;i)k:(;)
qz kii)k:(;i) + k(zi)k(li) - kgi)kfzi}

for 1= N4+1,..,N 4 M.

, A NM .
Note that on S* v, >0 and 3, 1" ¥, = 1. The relation y, = | means

that there exists just the /th hypercvcle, in internal equilibrium. The restriction
of (3.4) to the invariant subsimplex S* becomes
Vi = yi(qz'yz' - (D)

with 7 = 1., N+ W and e Yo

bis perticwlarly easy to analy

s wrow or decay

o whether they are | “ollows that

frractnrs are the oo ~1 +.fraction the

SR PR ) Uoand oo ; roall P

TR s ondy w-ones F abies s - 0 _,as are the

- s ' 3 B WHOSC DO 4o S Ive measure
are the vertices o &7 Vhus for alme o1 0 inudal conditions, s hypereyele

survives and reaches internal equilibrivig
We do not know how to prove a corresponding exclusion vrinciple for the
competition of longer hypercycles, nor how to describe their attractors.
Finally, let us note that for the competition of two 2-hypereycles (i.e. (3.4)
with N == 2, M == 0) one obtains by a simpie computation that

(1),,(1) 1 (1)
fom —hiv const

@@ @I :
Ax| kB
This shows that the plane through the line joining the two attractors 4, (R{x{! —
kP2, 2P =« == 0) and Ay(xV = xfh =0, APPxl® — kP x?) are invariant.
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It means that the internal equilibration of the two hypercycles occurs in a
well-balanced way. It would be interesting to know whether a corresponding
fact holds for longer hypercycles.

4. DiscussioN: THE FORMATION AND SELECTION OF HYPERCYCLES

Any attempt to explain the evolution of the genetic code has to deal with
a kind of “existence and uniqueness” problem:

(A) it has to show how such an extremely improbable machinery could
emerge;

(B) it must account for the very strange fact that there is only one such
code for the multitude of living cells on earth. The biochemical theory of
hypercycles as developed in [2] is a step towards the solution of this double
task. We want to show here how the simple mathematical model (1.1) reflects
this.

Problem (A) relates to the notion of self-reproductive automata. As v.
Neumann showed in [4], the “complexity” of such an automaton has to be
above a certain threshold. This level can be estimated in the biochemical
context: as shown in [1] and [2] it exceeds the capacity of the primitive
biopolymers likely to be found in the “primordial soup,” so that they have
to cooperate in order to fulfill their task. The hypercycle is a biochemical
device allowing macromolecular information carriers of comparatively low
grade to pool their information. The theorem in Section 2 means that this
form of cooperation is stable in the sense that small perturbations cannot
“kill off” members of the hypercycle.

The proof in Section 2 proceeds in a way which sheds some light on a possible
course of hypercycle formation. We have to assume that the species are formed
by mutations, i.e. by random fluctuations introducing from time to time small
positive concentrations x; . We start with a system which is not yet complete,
i.e. where x; = 0 for some j’s. By Lemma [, the x(¢) approaches the fixed
point set and asymptotically seems to be inert. All but the concentrations of
the “end species” (where x; > 0 but x,,, = 0) are extremely small. Consider
some mutation which introduces one of the previously non existing species
without yet completing the hypercycle: the system still remains on the boundary
and after some (possibly, drastic) changes in concentration approaches again
some seemingly inert state. But when finally the system is completed by a
mutation creating the last missing member, the state x(¢) enters int S, and
the long term behaviour changes its character. The attractor now lies in the
interior of the concentration simplex and apart from the low dimensional
cases no longer consists of fixed points. From a seemingly dead quasi-
equilibrium emerges a pulsating form of dynamical cooperation.
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Problem (B) has to do with the competition of hypercycles. While we cannot
prove an exclusion principle in full generality, we may account for the “once
for ever’” decisions if we make the natural assumption that fluctuations leading
to efficient mutations are very small and do not occur frequently.

Thus consider the competition of the hypercvcles H, (I =X 1 < N) without
common species. With x;”,...,xﬁfl) -# 0 as the concentrations of the species

of H,, the system is described by
R IR ) (4.1)
wherej == 7—1 ”15171,2 Lo, NG REY = 0;

.

N
Z R and b - ‘_

1=

g e

ny ( ( (
Z /’e[-”‘x‘/)xj”.
zel

1
i

—

Note first that Lemma 1 remains valid, so that if H, is incomplete, all con-
centrations except those of the end-species converge to 0. As long as no hyper-
cvele is completed, the svstem is asvmptoticailv inert.

Suppose now that a mutation completes the first hypercycle, #H, say. Let G

be the subset of the concentration simplex where &V > 0 for 7 = 1,..., #, and
(0 Gy - (1
kivx < RNk (4.2)
tor DIV Noobe dalim L o joed— 1+ md, and J =
! = m6y, . s an open neighborhood of the attractors of the “pure”

hvpercvcle £, (the set where PO Y ). Since in G one has

The set 2o~ srven mvariant, the o vanish and ali crbirs converge to the
attractors of ¢/, |
Let £/ denote the invariant subset of the concentration simplex where i > 0

for 1 <04 < ny and all other concentrations except those of one or several
end-species x;" are 0. Since &1 — 0 and & - 0, ;') is decreasing and 377, x(V
remains bounded away from 0. A minor modification shows that the theorem
in Section 2 is still valid for the %V and thus that @ remains bounded away
from 0. Hence " converges to 0, i.e. all orbits from E enter G. The same
holds for all orbits starting from some suitable open neighborhood V" of E
in the concentration simplex.

If the time interval which precedes the mutation completing H, is large
enough, the concentrations of those species which are not end-species have
become so small that the fluctuation sends the system into some state in V.

Hence the system will converge to some attractor of the pure hypercycle H, .
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If the time interval up to the next fluctuation is sufficiently large, the state
will not leave G under such a small perturbation and hence will still converge
to an attractor of H, . This is valid even if further hypercycles H, are completed:
the concentrations of all their species will vanish. This does not mean, of
course, that evolution ends with the first hypercycle. But it shows that the
only possible concurrents of H, are those hypercycles having some species ¢
in common with H, . Such a hypercycle H will supersede H, iff ¢ is a better
catalysator for its H-successor than for its Hj-successor. (Indeed, Y, <7 &;,,
implies (x{})/x;,;) — O etc.). Hence mutations introducing new species mav
yield “improved” hypercycles and extinguish their ancestors.

The inheritance of members of the previous hypercycle is a mathematical
paraphrase of the “‘once for ever” decisions in the formation of the cellular
mechanism, where we have “linear descendency” of prebiotic organisms
instead of the familiar, many-branched ‘‘descendency tree” of Darwinian
evolution. This fact is amply validated biochemically by the universality of
the genetic code, the uniqueness of chiralities etc.
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