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Qualitative analysis for a system of differential equations playing an important
role in a theory of molecular self-orsanization.

krx ix i - , ( t .2)

More precisely, it considers the restriction of (l.r) to the (invariant) simplex
S" defined by

n
x i ) O  a n d  I  r ,  -  t .

; _ 1

Equation (1.1) plal's a central role in the recent theory of self-organization
of biological macromolecules which focuses on the notion of the catalytic
hypercycle (F], [2]). We interpret x, as (relative) concentration of the species i.
These species form a cycle: the growth of species i is catalysed by its ,,pre_
decessor" i - I through reactions of ]\{ichaelis-Menten typ". o acts as ,,selection
pressure" by keeping the total concentration fixed.

_ 
There exists a unique fixed point C in int S, , given by the relatio ns krxr_, :

hjxj-rtogether with (1.3). It is shown in [3] that if all i;are equal, then C is a
sink for n : 2 and 3, no longer a sink but still asymptoticaliy stabre for n - 4
and unstable for n )- 5.
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358 SCHI-]STER. SIGMUND. AND WOLFF

In Section 2 of this paper we show that (1.1) is cooperative in the sense

that no species goes extinct, or more precisel-v that bd S, is a repeller. The

o-limits of points in int S* may be limit c,vcles or perhaps strange attractors.

But as we show in Section 3, the only attractor for a "short hvpercvcle" (n ..! 3)

is the fixed point C. Actually, we prove a more general result on intcrnai

equilibration which allov's us to show that if several short hyperc,vcles compete

(under the constraint of constant total concentration), then all but one of them

will vanish. In Section 4, u'e discuss the biological relevance of this model

for the formation and seiection of hyperc.vcles and shou' how it can account

for the "once for ever" decisions rvhich occured at manv steps of the evolution

of selfreproductive biopoiymers.

2. \'sn HvpnRcvcrp IS CooPERATIVTI

For 1 ( i ,  j  {n and r; }  0 rve have

i : . i )

The boundar-v of S", is inväriant, and contains subfaces of f ixed points.

I-et F denote this set of fixeti points.

LsMNIe 1. If x e bd Sn, tlte o-limit of x is a subsel of F.

Proof . l,et x be on the boundary, that is, on some face of S", . Thus assume

xi r 
-- '  0, x, ' :  0, t , . ,  .> 0,.. . ,  r i+x)> 0 and r:t-r ' . ,  --  0'  We shal l  shorn' bv

induction that ,1, - '  C, . tr*r + 0,.. . ,  tr l+r r * 0.

(1) r i  * 0 and xrir ,-r converges monotonical lv io some i imit zr '  trndeed'

since x, 1 .-= 0, one has i ;  --1 0, and so rr , ,  i  lor : i ; ;r . ;e h >- 0'  Also, hv {2.1)

y ;  . \

l ; ; l  '  - Ä , - t \ ' , { , t ,  
, I  

0

and hence xJxr*, trt,r. If h were strictl l '  positive, .ri i 'rr i., 1 rvould decrease at

least exponentiallv with factor -k;'r i, rvhich implies zri :0. rvhich in turn

impl ies h :0.

(2) ft i :,- 0 and r;..r/rr+2 converges to some limit z',*, (rvhich may be
-f m). For sufficiently large l, xi*tlxi*, is monotone. Indeed, bv (2.1)

( i :  ) '  { - l '  }  t r , ' , - ,  -  A;. \ )-r)

(#) : ki+,8,*,(f;X;; - *:) (2.2)

If vo) ko*rlho*r, then x*tlxin, is increasing, qtherwise it is ult imately
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decreasing. In anv case the l imit 2,. , ,  is approached monotonical lv. I f  z; > 0,
then rr * 0 obviously implies tr;  r ,r .+ 0.

Assume now ?i : 0, which according to (2.2) implies ti+t I co. If r,*, : Q,
then clearly fi+l + 0. There remains the case that zo*, ;. 0. Supp,sc x,*,
does not converge to 0, There exists, then, a 3 > 0 and a sequence /r * i, oo
wi th  ro* r ( t * )  )  ö  fo r  k  :  1 ,2 , . . .  .  Se t  T  -  (k r r , ) - t  log2 .  S ince  j , . * ,  (  k r * rx i * t
and x,*r(to) ) ö, one has

. { i  '  r ( l ) f o r  t r - T  {  / { t r .: : . ,

Let r : !kr*, and choose e > 0 such that

e[l - exp(r?E l2)] < 2,,*,[exp(r?ö/2) - l].

Now choose A so large that

/  x ;  A .  "  r  -t t ,  -  
i ; )u, ' '  - '

and

I  , 1 *  D ' ' t l  <  '

for t)- t*- T. This implies by (2.2) that for tu- T { r S /,

(2.3)

( : . . r )  - (+r )1_rö2)
\ f i + 2 /  \ J , - r /

and thus

xr  - r (1 r )  .  x , .  , (1u  T)  .  - , , -
tr,;*z(/r) < 

ffi5 
exP(-r7ö'/2)

{ (o,*, -l- e) exp(-rT6i2) < ti+r - €

which is a contradiction to (2.3). Thus .r,*, - Q.
The proof that r,+2 - 0,..., xi+k_r+ 0 is analogous. Hence ,r(/) converges

to some subface of the boundary with the property that whenever .t, > 0
then 4*,  :0 .  On such a subface @(x)  :0 and hence j r  -  0  for  i  = . .  1 , . . . ,n .
Thus Lemma I is proved.

Lpnnre 2. xeF implies @(x) : 0.

Proof. Suppose tri - 0 for some 7, and fi : 0 for i : 1,..., z. Since
*i+t :0 one has either Ar*rx, - O(") : 0 (and hence @(x) - 0) or else
xi+r : 0' In the latter case one repeats this. since some tri+rü has to be strictly
positive, one gets finally @(x) : 0.
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An ODE on S, wil l be called cooperative if bd .S, is a repeller, i.e. if there
exists an e ) 0 such that with

1(.) : {x e S,: 0 < d(x, bd S") ( e}

(where d is Euclidean metric), the initial condition x(0) e int S, implies that
x(t)t '(e) for all sufficientlv large l.

TirnoRnlr. The system (1.1)zs cooperatiz:e.

Proqf . Let P(x) : xruz "' ;rr, . One has

P : P ( s - n @ )

with s . s(x) = Li:rkrr,-r. Let m; min{s(x) - nrD(x): x e S,l. \ote that.
in  general ,  m. : ,0.  But  min{s(x) :  x€Sn} }  0,  and hencer one mav chot tsc an
/14 '' 0 rvith

m .:. ,V < min{s(x): x e S"}

and set 1, I m ,' J'1. \\re deiine

J = {x e.S,: s(x) - n@(x) > II)
and

B + ^5'"\t

I  is an open neighbourhood of -F. Since b). L"*tt t"* i  :rr , i i  I  x ' '  i , ,1 ! , ,  i rnpl ies

x(t) e . ' l  for al l  sulhcientlv iarge I,  the sct

D ( x )  =  i ? '  ' :  { } ' x ( t ) e  - {  f o r a l l  t  e l T . t { '  -  i i ? '  i l l

is nonemptv anci henc,: rr,e rnav Cefine

i '(x) = inf Dixi

f o r x e b d S ' , .
We shor.v n<nv that ihe tr ial-.  7' is upper semict.rnl i i r . :  rr . i :  , :  i .  . . i i1l  rr:r i i

?(x) can be defined for al l  . t : : .  ̂ -( , , ,  rvhicir arc suff icicni i l  cir ;sc t ; .r , j  ,  i : rr1*eri .

given xe bd 5',  and * > 0. there is a I '  rvi th 7(x) : : . .1. T' ?' ix) r:  qrrcir

that x(t) e Ä for t  €lT',  ( . l1 i  1) T' :  l l .

Since,4 is open, there is a ö(r) > 0 such that d(x, y) ":  ö(x) inr| i i ts v/fr r i  ' i

for I  e V',Q' - 1) T' :-  l l  and hence I(y) : : .  ?'(x) -r '  cy. in part icul;r l  lor

a : I  there are f ini tel l '  manv x{1),. . . ,  x(r) e bd S,, such that ihe orrcrl  icts

Ki - iy e S,,:  d(y, xu)) < 3(x(j ' ))

cover  bd  S, .  Put

t *  Ü . ,
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and

r - igl, z(x"') r.

F o r  a n v x e  l t h e r e  i s  a  7  l 7 s u c h  t h a r  x ( t ) e  - . {  f o r  t e l T , ( L  - + -  l ) f  r -  1 . l .
Define

1t  = sup{P(x) :  xe 1 i .

Suppose no\\ ' x .I btj S" . \\-c ciairr ' that there is a I ) 0 such that x(t) eJ.
Indeed. assurlre that x(l) -, 1 for ali 1 > 0 and ler-

t ,  ;  in f { t  , }  0 :  x( t )e Br .

/, erists since otherwise x(t) e -4 and

P(x(r)) > / '(x(0)) exp(.\[r;

for ail t l> 0, which is imnossibie since P is bounded. There is a T, ..- T
such that  x( t )  q  " .1 for  /  -  t ,e lTr  , (L :  l )  Z,  - r  l l .  Put t ins

ri + r, r (.1, 4' 1)r, -- l

iurl norrrrg :hrr: riLrrinr-1 thc timc [t, , t j ] the orbit of x spencis a time less thar.
T. tn i l  ancl morr' than 1.X, ': I in A, one sees thar

P&( j ' t i )  ' : :  P(x(r l ) )  cxp(- -  rn i  ' l ' ,  . ,L I ,171+ XI ,

) P(x(r')tew

)2 P(x(0))eM.

Similarl l ' ,

l ,  *  in f { t  }  r , ' :  x( t )e Bi

exists ancl there is a T" '::..7 with x(t) e -,1 for t - tre lTr, (f i  1) 7"r,, 11.
With

t L : t z + Q , - t 1 ) 7 2 +  1 ,

one gets

P(x(ti)) >- P(x(t,))eM 2 P(x(O))ezM.

Proceeding induct ive ly  one obta ins a sequence t ; ,  k :1,2, . . .  wi th

P(x(ti)) )> P (x(O))ekM,

which is a contradiction to P(x(t)) { P for all I ) 0. Thus x(r) has to leave

361
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1 at some time. Note also that for any I ) 0 smaller than the first exit time
one has t e lt'* , to*r] ty some A (with ti : 0),

P (x ( r ) )  2  P (x ( t ; ) ) exp ( -  , z  ? )  P (x (O) )  exp ( -  , z  7 ' -  , t t )

and hence

P(x(r)) - P(x(0)) exp(- z T)

Let

1 : m i n { P ( x ) : r e S " \ / } .

Clearly p > O. Choose e > 0 so small that I(e)C I and that

P ( * )  <  p e x p ( - i m l T )  f o r a l l x e / ( e ) .

The orbit of a point x e S,\1 may possible enter d but never ,I(e), since

P ( x ( t ) )  > , p e * p ( - , n l T )

Any orbit starting in 1(e) leaves I after a finite time and never returns to 1(e).
Thus the theorem is proved.

3. INrrnNel EgurlrnnerroN AND Corrrpntrtrox oF SHoRT Hypnncycr-ss

As framework we shall use the ODE on S,:

4 : xr(Gt - Q) (3.1)

where the G, are functions on S, and E :l i-rxoGi.

3.a. Internal Equilibration for 2-Hypercycles

Suppose that in (3.1) one has G, : h$z and G, : hzxt, where k, and k,
are constants )0. Equation (3.1) then describes a system having a 2-hypercycle
as subsystem. For r, and x, ) 0 one has

( ! ,  A , r '  -  t x r  _ j , t
\ t -n ' ' )  

:  - f r " ' ( * '  
k ' t

and hence

,rl kr

; -  
-E Q'2)

In particular, all orbits of (1.1) in intS, converge to the fixed point C.
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3.b. Int ernal Equilibr ation for 3 - Hy per cy cles

Suppose now that in (3.1) one has G, - krx, , Gz : h"x, and Gz : hsxz.
This means we have a 3-hypercycle as subsystem. Note that x, + x2 + r: ( I
(:1 in case n :3). We shall prove

ffr hs x2 hr "r3 h2- - - l - ,  - - _ i - ,  - -  ,  ( J . J l
x2 R2 x3 R3 xr Rr

(In particular, ali orbits of (l. l) in int S, converge to C).
Let / be the line through the origin (in (r, , lcz, tr3)-space) given by hrx" :

krx, : Arx, , and let pt , pz and pr be the planes through / and the xr-, xr- and
r3-axes respectively. Note that (2.1) is valid for i : 1 and j :2. Hence p,
divides R3 in such a way that in the half space containing the unit vector e, ,
the ratio (xr/xr) is decreasing, and in the other one it is increasing.

Let l, , l, and l" be the lines obtained as intersection of Pr , Pz and 2, with
S, and consider the following Fig. l: let P, be an arbitrary point between
e, and C.

Frcune I

Let P, (resp. Pr) be the intersection of Pre, (resp. Prer) with /, (resp. /r).
Let Q" (resp. pr) be the intersection of Pre, (resp. Prel) with /, (resp. /r).
We claim that the intersection Qrof Q"erand Qre" l ies on /r.
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Indeed, this statement is easily seen by a projective change of cr:ordinates
rvhich sends the four points el ,  €r, €3 and c into the points ei .  el ,  el and c'
rv i th  coord ina tes  (  f - . co ,0 ) ,  (0 ,  l ) ,  (0 ,0 )  and (1 ,  j )  (see  F i r .  2 ) .

-+ e,

Frcune i

Let H clenote the hexagon PfrQ2Q\esP2 lving in S, and a. the pvramici
r.r ' i th base l I  and sumrnit O i thc origin of (.",  ,  rr , :r")-space), Consider oni:
of t i ie fäces of r,  ()PrP. t i r :  

"ranrrr lr .  
Since P, ,  P, ancl e, are corinear. ol)r l :1,

Iies on a plane ihr.r,rqh the .r.,-a:ris 'o'hicrr is tirercfore of the f'orrn 11fx, =,-. g6n..1.
on the other hand, since oPrl ' ,  is not on the sa're,* ide as e, i , l ' i th respeci
to the plane / '  .  tnc rat i i -r  (xrr 'rr) must increase. ' l l ius 

any orbit  through ap1p2
must enter the pvramid" The other faces of ,zt arc dealt q'ith similarlr:.

Lett ing l)r varv from e, to c and repeating the constructinn, on" obtains
a nested family of pvramids having the l ine i  as their intersection. f 'hus al l
orbits converge to$'ards l ,  i .e.,  (3.3) is val id.

3.c. Competition. of Short llyperct'cles

Cons ider  nou 'a  sys tem cons is t inq  o f  4 ,2 -h1 'percvc les  and . ' i1  l - i r r l , , - r , , . , i . . .
We may descr ibe  th is  bv  an  cquat ion  o f  the  rypc  (3 .1 ) .  namcl ,

l o r  i : 1 , . . . ,  \ - ;

(3 .4  )
: *{o)18{')rioi - o1i
: rj')(Aj')rl') - ot)
: ,,,,1uj,,rj,, -,,)

V,

rl,
+( i l&2

i';'
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on the simplex Srr,rnr. Bi- (3.a) and (3.b) al i  orbits in int.Sr.y_3r, converge
to the invariant subset S* clefined by the relations

Äl')n,l') - Al')rl') ;  |  \ l
I  l r . ' . r  - Y

Al').-l ') -. A.:i).r| .-' Ä(t)'0) i ,. Ä - ;,...,,v . M.,

u'hich is an (, \  '  - ' l I )-simplex. As coordinates on S*, rve useJi ( i  :  1,. . . ,  l \  +M),
'*'here

v.ith

and

h\'t Pat
b l i \ b I i \  _  b t i t b t i t  L l t ) b t t t" 1  ' , - 3  " 2  ' ' t  " 3  " 2

Note that  r :n  Sx,  -y i ' ;  0  and l )=1r ; :  1 .  The re lat ion J i :  I  means
that there exists just the ith hypercvcle. in internal equilibrrium. The restriction
of (3.4) to the invariant subsimplex S* becomes

li : Yikli yi -' O)
( J . )  )

_ \  r , l ,

. t i l r l  ' l  f  , .  r , :
: ,  ! t - ' i

i

, i '  : r ' : : r  I  , : r rC t iOn  t he
' , .  , ' r i - . . \ . . , . , , . ,  r ' . :  i r : i : : , i  ,  :  ;  r  t ; l l  7 ; : i  i ,

t' ' ' 't '!t)g' t

L ( , ) L t i l

. _-!'t "..,: ,- t.8i n1- n? 
f t t r  t  1, . . . ,  \ '

rvith t -.. I...., ,\ , ,,JI

r  i 5  11 r : s t i g i 1 i 3 ; i v  easy ' t c  ana i i . ' s t . .  , ; r , . ,
.  i . ,  t h ,  r  r h r r .  l r u  , : r 1 . . , .
'  , '  : i i l i l c l / r r r  ä f t  i h { ' : . i  l  r  :

. '  , r i r ,  i  : :  i .  , ,  . . 1 1 r :  , t r r - t i ; 1 1 : :  I  i l r i r s  , .  , l

. j - : i t : , : : i i i . - - f  
' . t . r : l  

. " : : t : i , i r j ' r ' : i 1 1 t : i : , i : . r r l r i r ; i ü , t : i : : j . , .

a r c : h 3 ' , * t - i i r - e s , , i ' , i  '  l ' i t r : s  i r i r : ; i n i  , l  . .  .  , : t . i i t r  r i ; i i r . l , l i i , :  -

htzlrtzt - Alzr;ar
-  l v l t 5 L .

, r1 i l le  the

iV(j measure

ir ' ;perc\,cle
sun ives  and reachcs  in :c rna i  equ i i ib l i l i r , :

\ \ 'e do l tot knolv h{i i l  io orolc a \ :( ,r fcsi.runding exclusiL;n l i i rrcipie for the
corrlpeti t ion of longer h'" 'perc,vcles, nor ho\r '  to describc rhrir  attractors.

Final iy, iet us note that for the comrreti t ion of two 2-rrvpcrcy.cles ( i .e. (3.4)
with rV -. 2, II : 0) one obtains by a simpie computation that

Ä!r)x1tr - Ä11)r(t)

This shows that the plane through the line joining the two attractors Ar(hl\ x\r) -
Alt'"!t', slz) -. *tzt .- 0) and Ar(*\t,:..rf) : 0, h\ztrtzt - h\z)x;ztl are invariant.
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It means that the internal equilibration of the two hypercycles occurs in a
well-balanced way. It would be interesting to know whether a corresponding
fact holds for longer hypercycles.

4. DrscussroN: Tur.FonlrarroN AND SELECTIoN op HvprRCycLES

Any attempt to explain the evolution of the genetic code has to deal u'ith
a kind of "existence and uniqueness" problem:

(A) it has to show horv such an extremely improbable machinery could
emerge;

(B) it must account for the very strange fact that there is only one such
code for the multitude of living cells on earth. The biochemical theory of
hypercycles as developed in [2] is a step towards the solution of this double
task. We want to shou'here hou'the simple mathematical model (1.1) ref lects
this.

Problem (A) relates to the notion of self-reproductive automata. As v.
Neumann showed in [4], the "complexity" of such an automaton has to be
above a certain threshold. This level can be estimated in the biochemical
context: as shown in !] and 12] it exceeds the capacity of the primitive
biopolymers likely to be found in the "primordial soup," so that they have
to cooperate in order to fulfill their task. The hypercycle is a biochemical
device allowing macromolecular information carriers of comparatively low
grade to pool their information. The theorem in Section 2 means that this
form of cooperation is stable in the sense that small perturbations cannot
"kill off" members of the hypercycle.

The proof in Section 2 proceeds in a way which sheds some light on a possible
course of hypercycle formation. We have to assume that the species are formed
by mutations, i.e. by random fluctuations introducing from time to time small
positive concentrations r, . We start with a svstem which is not yet complete,
i .e. where xi :0 for some / ' t .  By Lemma 1, the x(t) approaches the f ixecl
point set and asymptotically seems to be inert. All but the concentrations of
the "end species" (where x, ) 0 but x;. .1 :  0) are extremely small .  Consider
some mutation which introduces one of the previously non exist ing sfecies
without yet completing the hypercycie: the system still remains on the boundary
and after some (possibly drastic) changes in concentration approachcs again
some seemingly inert state. But when f inal ly the svstem is completed by a
mutation creating the last missing member, the state x(f) enters int S* and
the long term behaviour changes its character. The attractor norv lics in the
interior of the concentration simplex and apart {rom the lou. dimensional

cases no longer consists of fixed points. From a seemingly dead quasi-
equilibrium emerges a pulsating form of dynamical cooperation.
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Probiem (B) has to do rvith the competit ion of hvpcrcvcles. \ \rhi le we cannot
1)ro'r an exclusion principle in ful l  general i tr ' ,  u'e mav account for the..once
for ever" decisions i f  u.e make the natural irssunrption that f luctuations leading
to efficient mutations are t.erv small and do not occur frequentlv.' I 'hus 

consider thc competit ion of the hl. irercvcles 11, ( l  < /  <,\)r,vi thout
common species. \ \ ' i th xlr), . . . , ;r f ,r)  - , . ,  g as the concentr.at ions of the species
of H, ,  the svstem is describeci br- '

w h c l e T  .  i - 1

j l" t: ')(xlr)x,q) - @)

n ,ö r , ,  , ;  i  
.  1 , . . . ,  ,V ;  A j t ,  >  0 ;

)- f tj".1".'"t
I  I  i . ,  I

\ . te f irst that Lemma I remains 'ai icl .  s. that i f  /{ ,  is incomplete, al l  con-
centrat ions except thosc of the end-sPecics crnr-crgc to 0. As lonq as no hyper-
cvc le  i s  comple ted ,  the  s . ,s t r r t r  i s : rs r .n r i r to t i ca i l v  iner t .

Suppose noq, ' tha t ;  l l t i l t ; . i i , ,n  ( , rn r l ) l r t cs  rh t -  f i r s t  hvperc f .c le ,  i / ,  sa1 , . .  Le t  G
be thc  subsc t  o f  thc  . ( ) rc .n r ra t i rn  s imp lcx  rvherc  .v j l )  : ,  0  f , r .  t  - -  1 , . . . ,  z ,  and

Af l) . t ! i )  .-  7, l t t .r t t

v  n .

!  !  , 1 ? )
I  !  ? : 1

: r r r , '  1 . . . . . . \ - .  i  . i . , n r ;
t  i  -  n,ö,, ,  . i j  is an t;prn
hvpercl 'cie t / ,  i thc ser rvhert r l

,  . . l t i  r
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remains bounded au'a'from 0. A minor modif icat ion shorvs thai the theorem
in section 2 is st i l l  val id for the r jr) and thus that @ remains bouncled awav
from 0. Hence ;rjr) converges to 0, i.e. all orbits from ,o enter G. The same
holds for all orbits starting from some suitable open neighb.rhood I/ of E
in the concentration simpiex.

If the time interval which precedes the mutation completirg rl, is large
enough, the concentrations of those species which are .rot 

".,al.p".ies 
have

become so small that the fluctuation sends the system into some state in tr/.
Hence the system will converge to some attractor of the purc hypercycre /1, .
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If the time interval up to the next fluctuation is sufficiently large, the state
will not leave G under such a small perturbation and hence will still converge
to an attractor of Hr. This is valid even if further hypercycles /1, are completed:
the concentrations of all their species will vanish. This does not mean, of
course, that evolution ends with the first hvpercycle. But it shorvs that the
only possible concurrents of H, are those hypercycies having some species i
in common with 11r. Such a hypercvcle 11 rvill supersede II, ifr i is a better
catalysator for its ,F/-successor than for its f1r-successor. (Indeed, kt1r.'1 .,,: hr*,
implies (* l ! t l*r*t) + 0 etc.).  Hence mutations introducing nerv specics mav
yield "improved" hypercvcles and extinguish their ancestors.

The inheritance of members of the previous hyperc,vcle is a mathematical

paraphrase of the "once for ever" decisions in the formation of the celiular
mechanism, where v'e have "linear descendencv" of prebiotic organisms
instead of the familiar, many-branched "descendency tree" of Darwinian
evolution. This fact is amplv validated biochemically by the universality of
the genetic code, the uniqueness of chiralities etc.
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