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The paper presents a qualitative analysis of the following systems of n differential equations:
X=X XX Y roy XX, (j=i—1+nd,; and s=r—1+nd, ). which show cyclic symmetry.
These dynamical systems are of particular interest in the theory of selforganization and
biological evolution as well as for application to other fields.

1. Introduction. Selection and evolution of self-reproductive biological
macromolecules can be described appropriately by systems of differential
equations based on the formalism of deterministic chemical kinetics (Eigen,
1971).In the theory of Eigen a closed loop of autocatalytic reactions as shown in
Figure 1 playsanessential role. It wasfound to be most likely that kineticsystems
ofthistype were the only candidates which can develop a biochemical machinery
for reduplication and translation of nucleic acids. Referring to their dynamical
structure (Figure 1) these kinetic systems were called “hypercycles”. The
prerequisites of hypercycle formation, their physical properties and the relations
between hypercycles and the origin of the genetic code have been discussed
extensively in a recent paper (Eigen and Schuster, 1977). In the present paper we
concentrate on some mathematical aspects, especially on the topological
dynamics of the simplest class of differential equations comprising all important
features of hypercycles:

+This work has been supported financially by the Austrian Fonds zur Forderung der
Wissenschaftlichen Forschung. Project N. 2261.
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Vi=kiyiy— 5S kv =120 (1)

C,=1

j=i—=1+nd,, s=r—1+nd,; and c=) y,.

i=1

y; denote population or concentration variables for individual macromo-
lecules, y;=[I;]. The indices j and s simply refer to the precursors of i and
r in the catalytic cycle respectively. ¢ represents the total concentration of
polymers. In case ¢ is constant, the system of equations (1) corresponds to
the selection constraints of constant organization (Eigen, 1971).

Figure 1. Catalytic hypercycle (closed cycles represent self-instructed re-
plication, arrows—=pointing from one cycle {0 another correspond to the
catalytic terms x;x;, j=1—14nd;;)

Superficially looking, the system of differential equations (1) could be
understood as a special case of the continuous Fisher-Wright—Haldane
model frequently used in population genetics (Hadeler, 1974; Crow and
Kimura, 1970).

Y’:Z ijxi' —X; ZZJM X, Xy, i:132~~-” (2)
J

0<x <L, Y x=1f;=f;.

One basic assumption of this model for the evolution of gene distributions,
however, is that the matrix of coefficients F = (f;;) i+ symmetric, whereas in
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our case F shows a rather simple monomial but not symmetric form:

F=(0 0 0 ... 0 kK
ky 0 0 ... 0 O
0 k3 0 ... 0 O
0
0 0 k,
(3)
For equal rate constants, k,=k,=...=k,=k, F becomes a cyclic per-

mutation matrix. Cyclic symmetry as we will show later is an essential
feature of hypercycles and therefore, the solution curves of (2) do not
resemble at all those of (1).

Recently, Jones (1977) made an attempt to find an analytically solvable
system of differential equations which are related as closely as possible to
(1). For this purpose he introduced logarithmic functions as catalytic
coupling terms, i.e. he used terms k;y;Iny; instead of k;y;y;. Although the
solutions obtained thereby have much in common with the solutions of
our system of differential equations (1), the origin of logarithmic catalytic
terms is hard to explain on the basis of physically meaningful kinetic
mechanisms.

For a more convenient presentation dimensionless variables x;=y;/c¢
are introduced into (1). In order to simplify the following analysis the rate
constants are assumed to be equal: k,=k,=...k,=k. The influence of
variations in the distribution of rate constants will be discussed in a
forthcoming paper. Finally, an appropriate choice of time and con-
centration scales enables us to set k=c¢~' and we obtain the following
system of differential equations which shall be subjected to a detailed
analysis:

Xp=xX, X Y NX i=1,200n (4)
r=1
j=i—1+nd;,;, and s=r—14+nd,,.

At fixed total concentrations ¢, the physically meaningful range of
relative population variables, x;, is represented by an n-simplex (S,} which
will be called “n-population simplex” here. Each actual composition of the
system can be described by a state vector x =(x;,x,,...,x,)€S,. S, is defined
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by:

P

S,={xeWR"

x20Vi) x;=1}. (5)

For many purposes it will be useful to distinguish between pure states (x;,
=1, x;.;,=0) which correspond to corners of the simplex. and mixed states.
Clearly, the interior of the n-simplex is the set of mixed states for which no
population variable is vanishing:

IS, ={xeN"

x;>0Vi ) x;=1]. (6)

Thus, the whole n-simplex consists of two disjoint sets, the interior and the
boundary, BS,:

S,=1IS,UBS, and IS,nBS,={. (7)

In order to facilitate reading we shall split the analysis of (4) into three
parts. At first general results which are valid for all dimensions n will be
presented. Then we will describe the interiors (IS,) of the n-simplices by
means of complete phase portraits for systems with n<4. Examples of
higher dimensional systems (n=3) are discussed with the aid of trajectories
obtained by numerical integration. Finally, the boundaries (BS,) of the n-
simplices will be analysed in detail. A complete description is given for all
types of dynamical systems occurring as restrictions of (4) to the simplices
S,, with m=4 which belong to the boundaries BS, (n>m).

2. General Results

2.1. The complete population simplex and its restrictions. The dynamical
system of dimension » on §, as it is defined in (4) will be denoted
“complete simplex” since it contains all n population variables. For short
we shall use the notation {(n). These dynamical systems {n) have an
important property:

X, =0=>%,=0 (8)

i i

All simplices occurring in the boundaries BS,, therefore, are (globally)
invariant sets.

In general, there are several possibilities for restrictions of the dynamical
systems <{n) to S, (m<n). Figure 2 shows the hierarchy of these restrictions
of ¢(n)> with n<8. The individual types of dynamical systems will be
denoted by (mA>, {(mB>, {(mC> etc. We shall describe all cases up to m<4

n
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in Section 4. Here, we consider only one example (m=2) which we will
need in the following discussion. There are three different types of
dynamical systems on simplices of dimension two (S,) which correspond to
invariant sets or subsets of (n) (Figure 3):

Figure 2. Restrictions of S, to S,,. n>m=2 (The general recursive algorithm
for the diagrams is derived in Section 4.4)

10y (R 0
! o—o———-—->0
O :

: O. 9—“0 j:i+1-n~6 in
. o o k#i-1+n8}y
i k k#i

k¢i+1—n6in

Figure 3. Schematic graphs for all simplices S, ({(2) is the graph for the
complete simplex S,, (24> represents a flowing edge, and (2B} a fixed point
edge
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(1) The complete simplex (2> which is characterized by three fixed
points, two at the ends and one in the middle of the segment {(x,,
x2)|x1 e[0, 17, x, +x,=1],

(2) the flowing edge (24> {(x; xj)[xie[O, 17, x;+x;=1; j=i+1—nd;,|
with two fixed points, one on each end, and

{3) the fixed point edge (2B) {(xi,xk)ix,-e[(), 1], x;+x,=1: k=i, k#i—1
+nd;; and k#i+1—nd,}. In the last case every point of the set is
invariant.

2.2. Stability of points on the n-population simplex with respect to the
neighbourhood in R™.+ Appropriately, we distinguish two different cases:

(1) Starting from any point x°eR" in the neighbourhood of IS, with ¢°
=Y x{#1 and x?>0Vi the total concentration will approach c¢=1
asymptotically.

wherein  r= Y x;x;, j=i—1+nd,.. (10)
i=1

From x{ >0V i follows r®=Y, x{xy >0, which leads to

¢>0 for c¢<1 and

¢<0 for c¢>1

thus proving asymptotic stability of the fixed point of (9) at c=1.

The “neighbourhood” of a flowing edge (24> on BS, shows the same
dynamical behaviour as the neighbourhood of IS, as long as the corners
are excluded:

From x{ >0, x¢>0 with j=i+1—nd,, follows >0 as above.

1243

(2) Approaching the neighbourhood of a pure state or of a fixed point edge
(2B) on BS, the tangent vector along the c-axis vanishes and hence the fixed
point at c=) x;=1 is not a sink.

+For the sake of brevity we use “neighbourhood” for the set theoretic difference between
the neighbourhood of S, and S, restricted to the cone of non negative vectors X.
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Proof. x°eR";
(@) x{>0; x) =0V =i

0=0=¢=0 or

(b) x?>0,x7>0; xV=0Vj+#i,k and k+#i, i—14nd; or i+1-nd,

F0=0=¢=0.

2.3. Fixed points of the dynamical systems {(n). All dynamical systems of
type {n)> have one fixed point in IS,. According to our choice of equal rate
constants this fixed point coincides with the center of the simplex:

111
>‘<0=<—.,.,>. (11)
nn n

Furthermore, there are fixed points in BS, which for convenience can be
grouped into several classes.
(1) All corners of the simplices {(n) represent fixed points

X0 =1,x;,=0Yj=1,2...nj=i. (12)

(2) Fixed point edges (2B) connecting two non consecutive corners (i, J.
j#i, j#i—1+nd, and j+#i+1—nd,) are one-dimensional manifolds of
fixed points. According to Figure 2 they occur in BS, with n=4.

(3) Two-dimensional manifolds of fixed points are represented by the
triangles (S3) of type <(3C)». They are spanned by three pairwise non
consecutive corners and consequently are found in BS, with n=6.

(4) Three-dimensional manifolds of fixed points occur in BS, with n=8
and are shown in Figure 2 as tetrahedra of type {4E).

This sequence may be continued easily up to higher dimensions.

2.4. Normal modes and eigenvectors of the fixed points in IS,. General
results—valid for all n—can be obtained by linearization of the dynamical
system (4) around the central fixed point x;:

izAero(Hz”) with z=x-—X,. (13)

The Jacobian matrix at the central fixed point X,

ex,
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becomes very simple as a consequence of our initial assumption of equal
rate constants:

2 2 2 2 2
A=| - = = S -
n n n n
| 2 2 2 g 2
n n n n n
2 | 2 2 % 2
n n no n n
22 2 22
n n n n
22 2 22 2
n n n n (14)

Due to cyclic symmetry of A the eigenvalues wl’, i=1,...,n and the cor-
responding eigenvectors &', i=1,...,n can be calculated easily:

o' =—1; EN=(1,1...1). (15a)
4 2mi
a)(d):exp{:;l(]—l)}:;vja j:233"-'an;

CP =125 a2 AT = (LA L), (15b)
Depending on whether n is odd or even we find one or two real
eigenvalues respectively and [(n—1)/2] complex conjugate pairs of eigen-
values. For two- and three-dimensional systems (n=2,3) all eigenvalues
have negative real parts. The central fixed point therefore is asymptotically
stable. In the case of n=3 we obtain one pair of eigenvalues with non zero
imaginary parts  indicating the existence of a rotational component.
Trajectories therefore will spiral into the central sink.

The four dimensional system (n=4) represents a special case since we
find two purely imaginary eigenvalues wP’=i and w{’= —: besides the
two additional degenerate modes w{’=w{"’ = —1. The linearized system
with n=4 thus contains a center x,e1S,. Centers are inherently instable
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systems and in contrast to sinks or sources may change into spiral sinks or
sources when non-linear terms are included (Coddington and Levinson,
1955; see also Section 3).

The central point in IS,, n=5, represents an unstable equilibrium point
since there is at least one pair of complexes conjugate eigenvalues with
positive real parts.

Turning now to the eigenvectors we find that &}, the vector belonging
to wy’, corresponds to simultaneous and equal changes in all variables x;.¥
Thus & points in a direction perpendicular to the simplex S,. @} is negative
and real in agreement with asymptotic stability derived for ¢ = Xx; at the point ¢
=1 (see Section 2.2).

The four dimensional system (n=4) will be of some interest in Section 3
and therefore we will now describe the corresponding eigenvectors of the
linearized system in some detail. The eigenvector &=(1, 1, 1, 1),
perpendicular to S,, need not be considered any further. For the other
three we find:

o =i, & =(1, —i, — 1,i)
w(OS): _17 5(03):(1’ _1317 —1)

of) = —i, &P =(1,i, — 1, —i).

&Y points from the center of the simplex towards the middle of the fixed

point edges of type (2B> 13 or 24. According to the eigenvalue w§’= —1
trajectories approach asymptotically the plane through x, perpendicular to
&% This plane is spanned by the remaining two eigenvectors ¢’ and &Y
and contains the purely rotational component of the center in the
linearized system; thus the trajectories in the plane spanned by &g and &Y
form a set of closed orbits surrounding the midpoint of S,.

2.5. Normal modes and eigenvectors of some fixed points in BS,. Normal
mode analysis in the linearized dynamical systems around the fixed points
in BS, is less straightforward than the previous examples. We will restrict
ourselves to the fixed points at the corners of S,. In this case the Jacobian
matrix A is almost completely filled with zeroes. For the fixed point x; = (x;

tIn case n is an even number the eigenvalue o}'=wl 2" = —1 is twofold degenerate.
Without loss of generality we can always choose the eigenvectors in such a way that &5
=(1,1,..., 1), see (15a,b).
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=1, x;=0Vj#i) we find:

i J
A= |0 0 0 0
il0 0 —1 0} j=i+1—nd,,. (16)
ilo 0 1 0
0 0 0 0
The matrix A has only one nonzero eigenvalue w;=1 with & =(x;=—1,
x;=1; x=0Vk+#1ij)=(0,0,....,—1,+1,...,0,0) as the corresponding

eigenvector. & thus points from the corner x;,=1 in the direction of the
outgoing flowing edge towards the next fixed point X;:x;=1, j=i+1—nd,,
The eigenvalue w;=1 indicates that the corners of S, are unstable. Since
there are n—1 zero eigenvalues an analysis of the linearized system
provides only very limited information on the behaviour of the correspond-
ing non linear dynamical system (4) around the fixed points X; (see
Section 4).

2.6. Lemma. In the next section 1t will be useful to introduce a function u
defined in (17) which has the following properties:

U= —X{X3,..5X, (17)

) u=—u(l—nr) (18)
(I u=01n BS, (19)
(III) u=0in BS, and at x,, the center of S, (20)
(IV) u=min in IS, at x,. (21)

Proof. (I) Making use of the previously defined function (see (10))
r=Y X;Xj, j=i—nd;,
i=1
it 1s easy to verify that

U= —u -—21 (xi——kzl xkxl>= —u(l—nr), [=k—14nd,,.
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(IT) In BS, there is at least one vanishing variable,
x;=0=u=0Vi=1,2,...,n.
(II1) From (I) and (II) follows u=0=-11=0 in BS,;

1
X0=<1,1,...,1>:>1‘=A:>(1 —nr)=0=u=0.
n'n n n

V) du=Y (—fl—t>(5x,-=u Y Slnx,
i=1\0X; i=1

inIS,: > 6x;=0

i=1

n

at X,: Y. dlnx;= )
=1 i=1

i=

Ox; " .
‘=n ) Ox;=0=0u=0
X i=1

a2
*u=2u) Y dlnxdInx;, since ((ﬂ Z>=0Vi=1,2,...,n

i<j A

inlS,: Y ox;+ Y dx,=3 (6x;)*+2).) ox;0x,=0
i=1 k=1 i=1

i= i<k

Y. Y Ox0x, = —3 Z (0x;)?

i<k i

. . N2 :
at X1 0’u= —~u—Z(0x,~)2:<E> Y (0x;)* >0=>u=min

n? -

3. The Interior of the n-Population Simplex

3.1. Dimension 1 (n=2). Putting x=x, in (4) (for n=2) one obtains the
Abelian differential equation x'=2x*—x? on [0,1].

Since r=2x,(1 —x,;)=1/2 (with equality iff x,=x,=1/2), one has by
Lemma (2.6) u<0, with equality iff x;, =x,=1/2. Hence u 1s a Ljapunov
function for the stable attractor x; =x,=1/2. The phase portrait consists of
three fixed points on S, and two nonsingular orbits having x, =1, resp. x,
=1 as z-limits and x, =x, =1/2 as w-limit.
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3.2. Dimension 2 (n=3). Again, 4 <0 with equality iff x,=x,=x,=1/3,
u is a Ljapunov function and the center of the simplex is a stable attractor
whose basin of attraction is the interior of S,. This can be pictured in
another way by noting that x;=0 iff x’_, =x,x,., (i=1, 2, 3, x,=x; and
xys=Xx,). It is easy to see that this condition is fulfilled by a circle through
the center which is tangent to the edge x,_, =0 at the point x;., =1 and
to the edge x;, ; =0 at the point x;_, =1. Hence the edges of a hexagon as
shown in Figure4a are crossed from the outside to the inside. This shows
that the points in the interior of S; have the center as w-limit and the loop
1-2-3-1 as o-limit. An example of an orbit obtained by numerical
integration is shown in Figure 5.

X

2

(c)

Figure 4. Dynamical systems on some simplices S; and S, (a=the complete
simplex (3>, b={3A4>, c={4A4>, d={4C>, and ¢={4B)

3.3. Dimension 3 (n=4). By the change of coordinates x=x,, y=x,, z
=x,, and elimination of the fourth linearly dependent variable, (4)
becomes

X=x(l-x—y—z—7)
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]

T
5
—X) —

Figure 5. Phase portrait of (3>

(with 7= (x +z)(1 = x — z)). Another change of coordinates

X 0 -2 -2 [y I
V| — 2 2 0 ¥yl + -1
4 2 0 2 z —1

puts the origin into the center of S, and the x-, y-, and z-axes through

the midpoints of the edges 23, 34 and 13 respectively. The system then
becomes

X=—(14+z)(y—xz2)

y= (l—=z){x—yz)
t=z—z4x? -yt
Note that the equation is invariant for the transformation z— —z, x— —y,

v—x. The eigenvalue —1 of the Jacobian at the origin corresponds to a

2
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contraction along the z-axis. On the plane z=0 (which corresponds to the
condition x, +x;=1/2) the previous system reduces to

Since 2=0 iff x= +y. one sees that apart from the fixed point in the center
there are no orbits on the plane x, +x;=1/2. The first two equations show
that the system has a strong rotational component around the :z-axis.
Introducing cylinder coordinates z=z, x=r cos(), y=r sin @ one sees that

0=1-— V’Ez sin (260 4+ 7/4)

is independent of r and always positive if |z| < 1/2.

This strong rotational component is also shown in the numerical
solutions (see Figures 6a, b) and tends to suggest that there might be
closed orbits around the z-axis, lying on the center manifold corresponding
to the eigenvalues 4 of the Jacobian at the fixed point x,. This evidence
is misleading, however.

]
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5 1

Figure 6. Phase portrait of <(4>. (a) projection onto the plane (x,.x,); (b}
projection onto the plane (x,.x;)

Note, indeed, that
F=X1X5+X3X3+X3X, FX4X, = (X +X3)(x2 +x4)=5(1—35)

with s=x, +x,. Clearly 0<r=<1/4, with r=1/4 iff s=1/2, ie. iff x,+x;
=1/2. Thus ii=u(1-4r)<0 in the interior of S, with equality iff x, + x;
=1/2. However, as we have seen above, there are no orbits on this plane;
more precisely, the set {teR:x,(t)+x;(r)=1/2} is at most countable for
every orbit x(t) except the one corresponding to the fixed point in the
center. Thus t—u(x(t)) is monotonically decreasing, u is a Ljapunov
function, and the center of the simplex is a stable attractor whose basin of
attraction is the interior of S,. This is in contrast to the behaviour of the
linearized system described in 2.4.

3.4. Dimension nz=5. For n=5 the central point is a saddle point— the
Jacobian has eigenvalues with positive and negative real parts—and is
certainly no longer an attractor. There is strong numerical evidence (see
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Figure 7a,b) that there exists a closed orbit which is a stable attractor. We
are unable, however, to present a proof of this conjecture.

4. The m-Dimensional Boundaries of the n-Population Simplex

4.1. The case m=2. Apart from the complete 2-population simplex, there
are two possible cases:

(1) Flowing edge (24): This system occurs as edge between two
consecutive states of the n-hypercycle, n>3. For example, if x;=0 in the
three population simplex, one obtains the differential equations

Xp=x.(=r)
Xy =x3(x; —7) (22)

(with r=x,x,), on the simplex S,. Putting x=x,, this reduces to the
Abelian differential equation

x=x>—x? (23)

on the interval [0, 1].

—_—Xy—

—_—y —
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]

5 1

—y -

Figure 7. Phase portrait of {5) projected onto the plane (x,.x,). (a)=starting
from a point near the center of Ss; (b)=starting from a point near the corner
(1—5:6/4, 6/4, 6/4. 3;4). 6=10"*

The interior of S, consists of a single orbit with the point x, =1 as
s-limit and the point x,=1 as o-limit. Note that the eigenvalue of the
Jacobian, i.e. the ¢/¢x derivative of the right hand side of (23), is 0 for x=0
and 1 for x=1. Thus the system is not symmetric under time reversal.

(2) Fixed point edge (2B). This system occurs as the edge between
two nonconsecutive pure states of the n-hypercycle, n=4. For example, if
x>=x,=0 in the 4-population simplex. one obtains X, =x,=x;=x,=0.
Thus all points on such an edge are invariant.

4.2. The case m=3. Apart from the complete 3-population simplex, there

are three cases:
(1) Two flowing edges {34 >: This system occurs on the boundary of the
n population simplex for n=4. For example, if x,=0 in the 4-population
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simplex, one obtains the system
X—l = .X'l ( - I‘)
Xy =X3(xy—7)

X3=X3(x5—71) (24)

(with r=x,x, +x,x3) on the simplex S;. The edge 13 is fixed, the other
two are flowing. Since (x, +x,) = —x3x; <0, x, +x, is a Ljapunov function
for the interior of S5, and thus the point x;=1 is a stable attractor for
every point in the interior. By a change of coordinates x=x,, y=x, one
obtains

X=xy(y—1)
y=rx—y—y3). (25)

The Jacobian at the point y=0, x=4d has eigenvalues 0 and d (0<d<1).
Introducing polar coordinates, r=./x*+)* and y=arctg()/x), one
obtains

Y =rcos*ysiny, F=r?siny [rsiny —1 +siny cosy].

Thus we find

. cos?
lim & =— ——— — for r—0.
r—o I sinyrcosy —1

This result shows that y=mn/2 is the only critical direction (cf. Nemytskii
and Stepanov, 1960). Thus the orbits become tangent to the edge 23 as
they approach the w-limit x;=1. On the other hand, since rj/i= —1 for
=0, the orbits become parallel to the edge 12 near their x-limits on the
edge 13. The phase portrait is drawn in Figure 4b.

(2) One flowing edge (3B): This system occurs on the boundary of the
n-population simplex for n=35. For example, if x;=x;=0 in the 5-
population simplex, one cobtains the system:
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(with r=x,x,). The only flowing edge is 12. It is easy to see that in the
interior, x,/x, is constant while x,/x, and x,/x, are decreasing. Thus the
orbits point straight towards x,=1. All points in the interior have x,=1
as w-limit and some point on the fixed edge 14 as z-limit.

(3) No flowing edge (3C): This system occurs on the boundary of the
n-population simplex for n=>6. For example if x,=x,=x,=0 in the 6-
population simplex, the 3-simplex (x,,x;,x5) consists entirely of fixed
points.

4.3. The cuse m=4. Apart from the complete 4-population simplex, there
are five cases:

(1) Three flowing edges (4A4): This system occurs on the boundary of
the n-population simplex for n=5. For example, if x;=0 in the 5-
population simplex, one obtains:

X3—1) (27)

(with r=x,x, 4+ x,X;+x3x4). Two of the faces of this simplex (namely x,
=0 and x,=0) are of type (34), the other two of type (3B). Three of
the edges are flowing and three are fixed. Since x, <0 in the interior of S;.
there are no fixed points or closed orbits. The ratio xj/x, i$ increasing,

since
X3\ XX
( _Nay
X X,

Thus the orbits through the planes x;/x, =const. (which contain the edge

24) are directed towards the plane x; =0. Once x;/x, is larger than 1, the
ratio x,/x, is increasing

The orbits approach the flowing edge 34. The point x, =1 1s the o-limit of
all points in the interior of S, (see Figure 4¢).
{2) Two consecutive flowing edges {4C»: This system occurs on the
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boundary of the n-population simplex, n=6. For example if x,=x,=0 on
the 6-population simplex, one obtains:

Xp=x,(—r)

X=X, (x, —7)

X=X — 1)

s =xs(—r) (28)

with r=x,x, +x,x;. The boundary has two faces of type (3B, one of type
(34> and one of type {(3C>. The edges 12 and 23 are flowing, the others
are fixed. The planes xs/x,=const. are invariant. Putting a coordinate
system (x,)) on such a plane, with (1,0) corresponding to x,=1, (0,1)
corresponding to x;=1 and (0,0) corresponding to some point on the edge
15, one obtains

X=x[—xy+d(l—x—1y)(1—x)}]
y=xy[(1-d)(1—y)+dx]

with 0<d <1 given by xq/x, = (1 —d)/d.

Since y =0, the point (0,1) is an attractor for all the points (x,))
belonging to the interior of S,. The phase portrait is shown in Figure4d:
every point in the interior of S, has x;=1 as w-limit and some point on
the face x, =0 as «-limit. x, increases for a time, then decreases to 0.

(3} Two non-consecutive flowing edges (4B>: This system occurs on the
boundary of the n-population simplex for n>6. For example, if x;=x,=0
on the 6-population simplex we obtain:

Xy=x;(~r)
Xy =X5(x;—7)
Xpg=x4(—7)

Xs=Xs(xg—1) (29)

(with r=x,x,+x4x5). The four faces of this simplex are all of type (3B).
The two edges 12 and 14 are flowing, the others are fixed. Again we find
invariant planes x,/x,=const. Putting a coordinate system (x.y) on such a
plane, with (1, 0) corresponding to x,=1. (0,1} corresponding to x;=1



TOPOLOGICAL ANALYSIS OF NON-LINEAR DIFFERENTIAL EQUATIONS 763

and (0,0) corresponding to some point on the edge 14, one obtains

X=x(1—x—y)(1—-d)—x(1—d)—yd]
y=y(l=x—y)[d—x(1—d)—yd]

with 0=<d<1 given by x,/x,=(1—d)/d. Interchanging d and 1—d has the
same effect as permuting x and y. The origin is a source with eigenvalues
d and 1—d. For d>1/2 one has y>0 and the point (0, 1) is an attractor for
all the points (x, y) belonging to the interior of S,. For d<1/2 the situation
is symmetric. For d=1/2, the orbits point straight away from the origin.
The phase portrait is shown in Figure4e. The o-limit of any point in the
interior of S, is some point on the edge 14. The w-limit is xs=1 in the
“half simplex” x, >x,, x,=1 for x, <x, and some point on the edge 25 for
Xg=X;.

(4) One flowing edge <4D>: This system occurs on the boundary of the
n-population simplex for n=7. For example, if x;=x5;=x,=0 on the 7-
population simplex, one obtains

Xp=x1(—r)
X‘Z:(XI ’+‘X4+x6)r
Xg=X4(—7)

Xo=Xo(—1) (30)

(with r=x;x,). Two faces are of type (3B)> and two of type (3C>. Only
the edge 12 is flowing. Since x,/x;,X./x; and x,/x, are constant and X,
>0, one sees that all orbits point straight towards x, =1. The points in the
interior of S, have x,=1 as w-limit and some point on the face x, =0 as
a-limit.

(5) No flowing edge (4E): This system occurs on the boundary of the n-
population simplex for n=8. For example, if n=8 and if x;=x;=x;=x,
=0, one obtains x, =xX, =xX,=x4=0. Thus the simplex S, consists entirely
of fixed points.

4.4. Recurrence relations between S, and S Denoting a simplex S,
as M(a.b.c,....z) we shall understand by M the total number of edges and
by a,b,c¢ the number of adjacent flowing edges following each fixed point
edge; a zero has to be put in places where two fixed point edges touch
each other.

Thus 6(2,1,0) describes a simplex S, containing two adjacent flowing

m m~— 1
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edges and one such edge separated from the former by one and two fixed
point edges on each side respectively. Note that the simplex is left invariant
under cyclic permutation and under reflection of the indices. Applying the

following recurrence relations to all indices “i” of a simplex S,, one
obtains all restrictions of S,, to S,,_,

S, = Sm-1
M(..,i,...)1i=0 M—1(...i...)
M(.niy . i=1 M—1(...,0,....)
M. niv . )iiz2 M—1(..,0,i=2,....)

eM-—-1(..,1i=-3,....)

OM—1(....i=2,0,....)
5. Discussion

5.1. Stability of hypercycles. One of the most important results obtained
here concerns the existence of an attractor in IS, This attractor is a stable
equilibrium point in systems with n=2, 3 and 4 and a stable limit cycle for
n=5. In the three systems of lower dimension we were able to derive an
analytical proof for asymptotic stability of the dynamical systems which
converge to the fixed point xo=(1,n 1/n,..., I/n). For dynamical systems
with n=5 x, was found to be a saddle point. There is strong numerical
evidence for the existence of a stable closed orbit in these systems (1=5).
Thus there is no point in IS,, which has an w-limit on BS,.

As a consequence of the existence of an attractor in IS, no population
variable vanishes along a trajectory starting from any point in IS,. Hence
no component of an intact or complete hypercycle of type (4) will be
extinguished within the frame of the deterministic approach of chemical
kinetics.t

5.2. Time average of population variables. All sets of solution curves for the
system of differential equations in (4) have a common characteristic and
physically important property: The time averages of the relative (or normalized)
population variables, w,(t)

1 t
w;(t)= ( x;(t)dt (31)
e J o
. . 1 !
w;=lim wi(t)=lim —— J x;(t)dt (32)
t -y  -x =19 to

tA rigorous proof for this statement is given in Schuster et al.. 1978,



TOPOLOGICAL ANALYSIS OF NON-LINEAR DIFFERENTIAL EQUATIONS 765

converges very fast. In systems with stable fixed points in IS, (n=2, 3 and
4), of course, w;=x;=1/n. Systems with limit cycles in IS, (n=5) converge
to the same values w;=1/n obtained by integration over a whole period.
Again we find fast convergence of w,(r). In Figures8a.,b x;(1) and w;(r) are
compared for two examples with oscillating solutions (n=4,5). After a few
rotations the time averages for all population variables remain constant for
practical purposes; w;(t) exhibits strongly damped oscillations. We might
call this approach towards stationary or oscillatory states “internal equilib-
ration”. Complicated dynamical systems consisting of hypercyclic units or
subunits can be studied appropriately under the simplifying assumption of
established internal equilibrium (Eigen and Schuster, 1977). This approxi-
mation can be well justified only for rapidly equilibrating systems like
those considered here.

5.3. Regulation of population variables. As we have shown in Section 5.2
all time averaged population variables w;(t) converge to w;=1/n. The equal
values for all variables are just a consequence of the assumption of equal
rate constants k;=k,=...=k,=k. In the more general case one would
have obtained:

W=k / Yok tj=i+1—nd,,- (33)

=1

Accordingly, relative values of time averaged population variables are
automatically controlled by the dynamical system. This property unites the
set of components to an organized system. In case of total populations,
c=c(t), growing slowly enough to guarantee established internal equilib-
rium, the time averaged relative population variables remain constant for
practical purposes and the hypercycle is growing as a stable entity.

54. w-limits of points in BS,. Let us assume that a hypercycle has
reached BS, by some catastrophic or stochastic event which led to
extinction of one component: x;=0. In this situation, which can be
understood properly as a break in the catalytic hypercycle the residual
dynamical system represents an open chain of catalytic reactions involving
autocatalysts. Such chains are not stable. A chain resulting from a cleavage
between the components k and | (k=i—1+nd;;, I=i+1—nd,,; x;=0) of a
hypercycle will converge to the pure state lying just before the break: x, = 1. For
more details see Section 2 in Schuster et al., 1978.
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Figure 8. Solution curves x;(r) and their time averages w;(t). {a) a typical
curve of (4> on S,: (b) a typical curve of (5> on S, abscissa=time axis. full
range = 1000 time units
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5.5. Asymmetry of flows and pure states. Turning now to more ma-
thematical aspects of the dynamical system (4) on S, we realize an
interesting local asymmetry around pure states, x;= 1. The state is unstable
against fluctuations of x,: dx, >0, k=i+1—nd,,. In case such a fluctuation
occurs, the state vector leaves with initially strongly increasing speed and
flows along the edge ik towards the next pure state x, =1. Fluctuations in
the opposite direction with respect to the cycle shown in Figure 1: 0x;>0, j
=i—1+nd,;, on the other hand, are not enhanced and will slowly fade
out. This asymmetry at the corners of the concentration simplex reflects
the cyclic symmetry of the dynamical system and the complete irreversi-
bility of catalytic actions presumed in our model.

5.6. Relations between the eigenvectors of the dynamical systems li-
nearized around X, and the cyclic groups €,. It seems interesting to relate
the symmetry properties of our dynamical systems (4) to group theory. The
analysis can be performed in a straightforward way by linearizing the set
of differential equations around the central fixed point x,. For that
purpose we define the permutation

P — 1234....n
" A\nl23....n—1
as an element of the group T',. It is easy to verify that the set (E, P,
P2.....P"" 1) fulfils the group postulates. Furthermore I', is isomorphic to
the cyclic group €,. The operation P, is equivalent to the rotation C,.

Additionally, we find that the eigenvectors &Y' are also solutions of the
following eigenvalue equation:

P& =8 7. (34)

Thus, /; represents the character y; of the corresponding one dimensional
irreducible representations or the character of one dimensional components
of two dimensional representations.t Finally, we realize that the eigenvec-
tors ¢ can be assigned to the irreducible representations of €, in a one to
one relation (TableI).

5.7. Structural and Ljapunov stability. The dynamical system (4) is
certainly not structurally stable since the fixed points in the corners have
+In the cyclic groups €, there are one- and two-dimensional irreducible representations.

The two-dimensional representations however, can be split into two one-dimensional
components, provided complex numbers are admitted as characters.
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TABLE 1
Eigenvectors &Y and Irreducible Representations
of €, (McWeeny, 1963).

n:odd integer n:even integer
re,) J(eg" re,) (€8
A 1 A 1
2 n
E, B -+1
n 2

Ty

3 2
Ez {n—l : {n
] 4 3
Es {H—Z . {11—1

oy
o

zero eigenvalues. Thus there exist arbitrarily small perturbations of the
differential equations which lead to completely different phase portraits.
On the other hand, (4) is Ljapunov stable in IS,, i.e. small changes in the
initial conditions produce only small changes in the solutions. This holds
also for most of the restrictions of (4) to the interior of the subfaces S,, of
S,
5.8. Comparison with Hopf bifurcation. The equations (4) seem to exhibit
a phenomenon somewhat reminding of Hopf bifurcation (Marsden and
McCracken, 1976): for n <4, the fixed point in the center is a sink and an
attractor for IS,, while for n>4, it is a saddle point and the attractor of
the system is a closed orbit. In contrast to the ordinary Hopf bifurcation,
however, the critical parameter in our dynamical systems is a discrete
quantity, namely the dimension of the system, n.

The authors want to express their gratitude to Prof. Dr. Manfred Eigen for
numerous stimulating discussions and his continuous encouraging interest
in this subject. Financial support by the Austrian “Fonds zur Forderung
der Wissenschaftlichen Forschung” and generous supply of computer time
by the “Interuniversitires Rechenzentrum, Wien” and by the “Institut fir
technische Mathematik, Technische Universitit Wien” is gratefully ac-
knowledged. We are indebted to Prof. Schnabl, Dr, Vogl. Dr. Hortlehner,
Dr. Rattay and Dr. Fuchs for helpful conversation.



TOPOLOGICAL ANALYSIS OF NON-LINEAR DIFFERENTIAL EQUATIONS 769

LITERATURE

Coddington, E. A. and N. Levinson. 1955. Theory of Ordinary Differential Equations, pp.
371-388. New York: McGraw-Hill.

Crow, J. F. and M. Kimura. 1970. 4n Introduction to Population Genetics Theory. Harper
& Row.

Eigen. M. 1971. “Selforganization of Matter and the Evolution of Biological
Macromolecules.” Die Naturwissenschafien, 58, 465--523,

Eigen. M. and P. Schuster. 1977. “The Catalytic Hypercycle--a Principle of Precellular
Organization.” Die Naturwissenschafien, 64, 541-565.

Hadcler, K. P. 1974. Mathematik fiir Biologen. pp. 96 97. 147 149, Berlin: Springer.

Jones, B. L. 1977 "A Solvable Sclfproductive Hypercvele Model for the Sclection of
Biological Molecules.” J. Marth. Biol., 4, 187-193.

Marsden, J. E. and M. McCracken. 1976. “The Hopf Bifurcation and its Applications.”
Springer Series in Applied Mathematical Sciences 19. New York: Springer.

McWeeny, R. 1963. Symmetry: pp. 96-100. Oxford: Pergamon Press.

Nemytskii, V. V. and.V. V. Stepanov. 1960. “Qualitative Theory of Differential Equations.”
Princeton Mathematical Series 22. Princeton University Press.

Schuster, P., K. Sigmund and R. Wolff. 1978. *Dynamical Systems Under Constant Organization
III: Cooperative and Competitive Behaviour of Hypercycles.” Submitted for publication.

RECEIVED 5-10-77
REVISED 9-14-77



