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The paper presents a qual i tat ive analysis of the fol lowing systems of rr dif ferential equations:
" r ; : . t ; x ; -x1  l f=1-x" - t ,  ( i  : i -1* r id , ,  and .s : r ' -1* r r0 , , ) .  wh ich  show cyc l i c  symmet ry .
These dynamical systems are of part icular interest in the theory r: f  sel lbrganization and
biological evolut ion as rvel l  as for appl icat ion to other f ields.

I . Introductiort. Selection and evolution of self-reproductive biological
macromolecules can be described appropriately by systems of differential
equations based on the formalism of deterministic chemical kinetics (Eigen,
l97l).In the theory of Eigen a closed loop of autocatalytic reactions as shown in
Figure 1 plays an essential role. It was found to be most likely that kinetic systems
of this type were the only candidates which can develop a biochemical machinery
for reduplication and translation of nucleic acids. Referring to their dynamical
structure (Figure l) these kinetic systems were called "hypercycles". The
prerequisites of hypercycle formation, their physical properties and the relations
between hypercycles and the origin of the genetic code have been discussed
extensively in a recent paper (Eigen and Schuster,1917).In the present paper we
concentrate on some mathematical aspects, especially on the topological
dynamics of the simplest class of differential equations comprising all important
features of hypercycles:

- i 'This work has been supported f inancial ly by the Austr ian Fonds zur Förderung der
Wissenschalt l ichen Forschun-u. Project N. 2261.
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. r .)'ij ' i :  x i l )  j - i f t , - ! ' " , ! ' " ,  i : 1 , 2 . . . r t ( l  )
n

\-
/J

j : i -  l  + t t ö ' , .  . s : l ' - l  * t t ö , . r  a n d  . :  1  r ' , .
i =  I

"i ' i denote population or concentration variables for individual macromo-
lecules, ") ' , :U,] .The indices j  and s simply refer to the precursors of i  and
r in the catalytic cycle respectively. c represents the total concentration of
polymers. In case c is constant, the system of equations (1) corresponds to
the select ion constraints of constant organizat ion (Eigen, l91l) .

Figure 1. Catalyt ic hypercycle (closed cycles (]  represent self- instructed re-
prication. u"o*5----ipoint;,i"[?il,1::,,;rj,,._ali,::,,n., correspond ro the

Superficially looking, the system of difierential equations (1) could be
underst'ood as a special case of the continuous Fisher-Wright Haldane
model frequent ly used in populat ion genet ics (Hadeler,  1974; Crow and
Kimura .  1970) .

i , : l l r x ,_ r ; - . \ ; I l , / " . - t , r " ;  i :1 ,2 . . . r t  (2 )
j t . s

0 ( r i (  1 ,  I t ' :  l t . / t : : j i i .

One basic assumption of this model for the evolut ion of gene distr ibut ions,
however, is that the matrix of coefficients F: (.f,i) i: symmetric, whereas in
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case F shows a rather simple monomial

DIFFERENTIAL  EQUATIONS

but not symmetr ic form:

745

our

F : 00
lrt o
o k.,

For equal rate constants, k,  -  kz: .  .  . :  k, :  k,  F begrtmes u c\ '
n lutat ion matr ix.  Cycl ic symmetry as we wi l l  show later is an
feature of hypercycles and therefore. the solution curves of (2)
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000
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(3  )

clic per-
essential
do not

resemble at al l  those of (1).
Recently, Jones (1977) made an attempt to find an analytically solr,able

system of differential equations which are related as closely as possible to
( l  ) .  For this purpose he introduced logari thmic funct ions as catalyt ic
coupl ing terms, i .e.  he used terms k,1' , ln- l ' ,  instead of k '1r1'r .  Al though the
solut ions obtained thereby have much in common with the solut ions of
our system of differential equations (1), the origin of logarithmic catalytic
terms is hard to explain on the basis of physical ly meaninglul  k ir ,et ic
mechanisms.

For a more convenient presextat ion dimensionless var iables . t , :  1 ' r l1r
are introduced into (1).  In order to simpl i f l , the fol lowing analysis the rate
cons tan ts  a re  assumed to  be  equa l :  l i r : l ; r : . . . k , :k .  The in f luence o f
var iat ions in the distr ibut ion of rate constants wi l l  be discussed in a
forthcoming paper.  Final ly,  an appropriate choice ol  t ime and con-
centration scales enables us to set k: r' I and we obtain the foliowing
systen of differential equations which shall be subjected to a detailed
analysis:

\ , . r .  I  i : 1 . 2 t1

j : i - 1  + n ö i 1  a n d  . s : r ' - 1  + n d , ,

At äxed total concentrations c, the physically meaninglr-ri range of
relat ive populat ion r . 'ar iables, r , ,  is represented by an n-simplex (S,) which
wi l l  be cal led "rr-populat ion simplex" here. E,ach actual composit ion of the
sys tem can be  descr ibed by  a  s ta te  vec tor  x : ( , r r , . \2 , . . . , - r , , )e  S , .S , ,  i s  de f ined

( 4 )
n

t
/2
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S,:  {"  e ! } l ' ] r ,  > 0 V i , I  
" , :  

1}

For manr purposes i t  \ \ i l l  be useful  to dist inguish between pure states (r ,
:1 ,  . r i - i :0 )  wh ich  cor rcs l - rond to  corners  o f  the  s imp lex .  and mixed s ta tes .
Clearly,  the inter ior of  the r i -s implex is the set of  mixed states for which no
population r,'ariable is vanishing:

1S, :  { x  e l l ' l r ,>0V i ;  I r ,  :  1 } .

Thus, the whole n-simplex consists of two disjoint sets, the interior and
boundary. BS,:

Sn: lS ,uBSn and IS ,nBS, :  g j .

In order to facilitate reading we shall split the analysis of (a) into three
parts. At first general results which are valid for all dimensions n will be
presented. Then we wi l l  descr ibe the inter iors (1S,) of  the n-simpl ices by
means of cornplete phase portraits for systems with n { 4. Examples of
higher dimensional systems (n25) are discussed with the aid of t rajector ies
obtained by numerical  integrat ion. Final ly,  the boundaries (BS,) of  the n-
simpl ices wi l l  be analysed in detai l .  A complete descr ipt ion is given lor al l
types of dynamical s,vstems occurring as restrictions of (4) to the simplices
Sn, with nr{4 which belong to the boundaries BS, (n>n).

2. Generul  Resu/rs

2.1. The c:ontplete populut ion sintplex unt l  i ts restr ict ions. The dynamical
syslem of dimension /r on S, as it is defined in (4) will be denoted
"complete simplex" since i t  contains al l  r r  populat ion var iables. For short
we shal l  use the notat ion (rr) .  These dynamical systems (rr)  have an
important property:

r t  : 0 + ' t - : 0

All simplices occurring in the boundaries 8S,,, therefore. are (globally)
invariant sets.

In general, there are several possibilities for restrictions of the dynamical
systems (n) to S-(rn<n).  Figure2 shows the hierarchy of these restr ict ions
of (n) with n {  8.  The individual types of dynamical systems wi l l  be
denoted by (mA), (ntB),  (mC) etc.  We shal l  descr ibe al l  cases up to rn<4

( 5 )

(6 )

the

(1)

( 8 )
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in Sect ion 4. Here, we consider only one example (m:2) which we wi l l
need in the following discussion. There are three different types of
dynamical systems on simplices of dimension two (Sr ) which correspond to
invariant sets or subsets of (n) (Figure3):

Fisure 2 Rest r ic t ions  o f  . l , ,  to  S , , , .  r r> r r r22  (The genera l  recurs ive  a lgor i thm
for the dia-erams is derired in Section 4.4)

( r.0 ) (1/ztlzl (0.1)
<:H

( 2 )

m
t t  ^ l

ffi

ffi
ca u9

l 2 l

@

(9

Figure 3. Schematic
complete simplex Sr.

H
r l

j = i + l - n . ö 1 n

O #  k * i - l + n ' ö ; 1

i  k  k * i
k l i + l - n ö ; n

graphs for al l  simplices S. ((2) is the
(2,4) represents a f lowing edge, and (28)

eo-qe

graph for the
a f ixed point
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(1) The complete simplex (2) which is characterized by three fixed

points, two at the ends and one in the middle of the segment [(rL.
r r  ) l x ,  e  [0 ,  1 ] ,  x1  *x r  :  l ]  ,

(2 )  t l re  f low ing  edge (2A)  { (x , ,  x ; ) l x ;e  [0 ,  1 ] ,  x '+x j : l ;  i : i+1-nö in )1
with two fixed points, one on each end, and

( 3 )  t h e  f i x e d  p o i n t  e d g e  ( 2 8 )  [ ( x ' , r u ) j r ' e  [ 0 ,  1 ] ,  r , * . r * : 1 l k 7 i ,  k 7 i - I

*nö , r  and k+ i+ l -  nö , , \ , .  In  the  las t  case every  po in t  o f  the  se t  i s

invariant.

2.2. Stabi l i t l 'of  points on the n-populct t ion simplex v ' i t l t  respect to the

neighbourhood in !1'.f Appropriately, we distinguish two different cases:
( l )  Start ing from any point x0e !B' in the neighbourhood of 15, with c '0

: I , "1+ t  and "x f>OV;  the  to ta l  concent ra t ion  w i l l  approach c : l
asymptotically.

Prool. i i : r ( 1 - c )

wherein x i x i ,  j : i - 1 * n ö i ( 10 )

From -x f  >0Vl  fo l lows, 'n : I ,r lr l  > o. whiclr leads to

c '>0  fo r  r :  <1  and

i < 0  f o r  c > 1

thus pror, ing asymptot ic stabi l i ty of  the f ixed point ol  (9) at  c:1.
The "neighbourhood" of a flowing edge (2A) on BS,, shows the same

dynamical behaviour as the neighbourhood of IS, as long as the corners
are excluded:

F r o m  x ! t 0 , r ? > 0  w i t h  . i : i +  1 - r t ö , , ,  f o l l o w s  t ' 0 > 0  a s  a b o r e .

(2) Approaching the neighbourhood of a pure state or of a fixed point edge
(28) on BS, the tangent vector along tlie c-axis vanishes and hence the fixed
po in t  a t  . : I * , :1  i s  no t  a  s ink .

tFor the sake of brcvity lvc use "neighbourl-rood" for the set theoretic dif ference bctr.rccn
the neighbourhood of S,, and S,, rcstr icted to the cone of non ncgative \ectors x.

(e)
n

, : -  !r -  / )

n

r : f' / -
i -  I
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ProoJ.

(a) xi

l'"

xo e $l ' ,

>0 ;  " x ;o :0V i *  i

:0>r1 :0  or

x l > 0 , , x f l > 0 ;  * r q : 0 Y i f  i , k  o n t l  k + i , i - l + n ö i t  o r  i * 7 - n ö , n

r o  : 0 > i  : 0  .

2.3. Fixed points oJ the dyrumicul sJ'stenx.s (n). All dynamical systems of

type (n) have one fixed point in 1S,. According to our choice of equal rate

constants this fixed point coincides with the center of the simplex:

(b )

Furthermore, there are fixed points in BS, which for convenience can be
grouped into several classes.

(1) Al1 corners of the simpl ices (n) represent f ixed points

x ; : ( r ; : 1 ,  r l : 0 V j : 1 . 2 . . . n . . i + = i ) .  ( 1 2 )

(2) Fixed point edges (28) connecttng two non consecut ive corners ( i ,  i ;
j+ i ,  j+ i  -1+nä, ,  and j+ i+  1 -nd , , )  a re  one-d imens iona l  man i fo lds  o f
äxed points. According to Figure 2 they occur in BS,, with rr > -1.

(3) Two-dimensional manifolds of fixed points are represented by the

tr iangles (S.,)  of  type (3C). They are spanned by three pairwise non
consecut ive corners and consequent ly are found in BS, with rr  )  6.

(4) Three-dimensional manifolds of f ixed points occur in BS, with rr28
and are shown in Figure2 as tetrahedra of type (48).

This sequence may be cont inued easi ly up to higher dimensions.

2.4. Normctl motles uncl eigent:ectors ol tl 'te.lixetl poirtts lrt 1S,,. General
results --valid for all rr-can be obtained by linearization of the dynarnical
system (4) around the central fixed point x6:

l r  |  1 \
i n : l - . ' . '  l ."  \ f l  n  n f

L:Az+o( l i z l l )  w i th  z :x - io .

The Jacobian matrix at the central fixed point xn

( 1 1 )

( 13  )

n: 
{r , ,

-  / " i ' \  |- t  .  t l
\ ( \ l / J \ :-al
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becomes very simple as a consequence of our initial
rate constants:

assumption of equal

A _ _? _? _?
n n n

_? _? _?
n n n

222
1 -

n n n

_?
n

_? _?
n n

_? _?
n n

22
1 - -

n 1 1

_? _?
n n

_? _?
n n

_? _?
n n

_? _?
n n (14 )

Due to cycl ic symmetry of A the eigenvalues (Dl j ) ,  i :1, . . . ,n and the cor-
respond ing  e igenvec tors  6 [ j ' ,  r :1 . . . . , r r  can  be  ca lcu la ted  eas i l y :

. , l i ) : -1 ; 6 t i ) :  (1 ,  I  . . .  1 ) .

; : )  7  t 1  '
. /  - r  

" r " ' r " .

( 1 5 a )

(trl) : (1, )"; 1 (1sb)

Depending on whether rr  is odd or even we f ind one or two real
eigenvalues respectively and [(n -l)12] complex conjugate pairs of eigen-
values. For two- and three-dimensional systems (n:2,3) al l  e igenvalues
have negative real parts. The central fixed point therefore is asymptotically
stable. In the case of rr:3 we obtain one pair of eigenvalues with non zero
imaginary parts indicat ing the existence of a rotat ional component.
Trajectories therefore will spiral into the central sink.

The four dimensional system f i :4) represents a special  case since we
find two purely imaginary eigenvalues roft : I and (D(.ft : - : besides the
tuo  add i t iona l  degenera te  modes ro$) : ro [ ] r :  -  l .  The l inear ized  sys tem
with rr :4 thus conlains a center xu€1.S,, .  Centers are inherent ly instable

-?
n

( ) r i  l
o l i ' : exp { - " 'U -  l ; t  - ;

I  t t  l - ' ' i '
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systems and in contrast to sinks or sources may change into spiral sinks or
sources when non-linear terms are included (Coddington and Levinson,
1955; see also Sect ion 3).

The central  point in 1S,,  n)5, represents an unstable equi l ibr ium point
since there is at least one pair of complexes conjugate eigenvalues with
positrve real parts.

Turning now to the eigenvectors we find that {$), the vector belonging
to c,-rf), corresponds to simultaneous and equal changes in all variables x,.t
Thus (f;) points in a direction perpendicular to the simplex S,. u.,ll) is negative
and real in agreement with asymptotic stability derived for i: Z*,,at the point c
:1 (see Sect ion 2.2).

Tlre four dimensional system (n-4) wi l l  be of some interest in Sect ion3
and therefore we will now describe the corresponding eigenvectors of the
l inearized system in some detai l .  The eigenvector 68) :  (1,  1,  1,  1),
perpendicular to So, need not be considered any further. For the other
three we find:

a t f , t : i ,  € 8 t  : ( 1 ,  - i ,  -  1 ,  i )

o rb ' ) :  -  1 ,  6b t ) :  (1 ,  -  1 ,  1 ,  -  1  )

c, t f )  :  -  i ,  €f '  :  (1,  t ,  -  1,  -  t )

([]) points from the center of the simplex towards the middle of the fixed

point ed-ees of type <28> 13 or 24. According to the eigenvalue tu[3r:  -  1
trajectories approach asymptotically the plane through .xo perpendicular to

ib3).  This plane is spanned by the remaining two eigenvectors ( !2) and (!a)
and contains the purely rotational component of the center in the
l inearized system;thus the trajector ies in the plane spanned by ( [2) and ([a)
form a set of closed orbits surrounding the midpoint of So.

2.5. Normal modes and eigent,ectors oJ some Jixed points in BSn. Normal
mode analysis in the linearized dynamical systems around the fixed points
in BS,, is less straightforward than the previous examples. We will restrict
ourselves to the fixed points at the corners of S,,. In this case tlre Jacobian
matrix A is almost completely fil led with zeroes. For the fixed point xi: (xi

f ln  case r r  i s  an  even number  the  e igenva lue  ro$) :p [1 ' r t1 ) :  -1  i s  twofo ld  degenera te .
Without loss of general i ty we can always choose the eigenvectors in such a way that {[ ' l
: ( 1 , 1 , . . . ,  1 ) ,  s e e  ( 1 5 a . b ) .
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x i : 0 V i  f  i )  w e  f i n d :

A- -

l

0  . . .  0

1- t

I

0

;  j : i + l - n ö , n .

l l :  - , I 1 . X 2 , .  .  . ,  X ,

( I )  ü :  -  u ( l  -  n r )

( l l )  u :0  i n  BS ,

(III) r i :0 in BS, and at *0, the center of S,

( IV)  u :min  in  15 ,  a t  i6 .

Proof . (I) Making use of the previously definedfunct ion (see (10))

\ i x i ,  j : i - n ö 1 ,

it is easy to verify that

u :  - u * , * , ) :  _  u ( 1 _  r t r \ , l :  k -  I  +  r ? d e 1  .

0

0
0

0

(16 )

( r7 )

( 18 )

(1e )

(20)

(2r)

The mat r ix  A  has  on ly  one nonzero  e igenva lue  (o i :1  w i th  ( ; : ( r i -  -1 .

x j : 1 ;  x r : 0 V k + i , j ) : ( 0 , 0 , . . . ,  - 1 ,  + 1 , . . . , 0 , 0 )  a s  t h e  c o r r e s p o n d i n g
e igenvec tor .  ( ,  thus  po in ts  f rom the  corner  x i :  I  in  the  d i rec t ion  o f  the
outgo ing  f low ing  edge towards  the  nex t  f i xed  po in t  i r : x j :1 ,  . j : i+  1 - r rd , , .
The eigenvalue ro,: 1 indicates that the corners of S,, are unstable. Since
there are ri-l zero eigenvalues an analysis of the linearized system
provides only very limited information on the behaviour of the correspond-
ing non linear dynamical system (4) around the fixed points i, (see
Sect ion 4).

2.6. Lemmo. In the next section it will be useful to introduce a function r.r
defined in (17) which has the following properties:

il

, ._ s' -  / ,

i (,,- i
i = 1 \  l ( = l
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(II) In BS, there is at least one vanishing variable,

x i  : 0 = + t t  : 0  V  t  : 1 , 2 , .  .  . , n .

( I I I )  From (I)  and (I I )  fol lows t t :O=>ti :0 in BS,;

* , : ( ! .1 , ,1 ) - , . :1 -  ( r  _  nr ) :o- r i :0 .
\ ,1  11  n /  n

n  / : , , \  n

( lV )  a r :  f  (  11  
' | a . * ' : ,  

f  d  l n  x ,
r?r \ ix,/ ,?,

i n  15 , :  . l  4 " , :O

n  n  i . -  n

at  xn :  |  ö lnx , :  I  ? :n  I  ö r , :g+c iu :0
, - ,  x ,

/  i 2 , t \
ö2u :2u I I d  l nx ,a l n r r .  s i nce  {  -  ) : 0V  i  : 1 . 2 . . . . . n

i < 1  \ (  x i /

n n n

in /S, :  I  a* , ' I  a . . * :  f  {ö . r ; ) ' z+z l f  ö r ,ox^ :g
t = 1  k = t  i = l  i < k

l l öx ,ö ru :  - j l  (dx , )2
i < k  t

at  xo :  , ) ' r :  - - ' , I  (o r , , ' : f l ) ' "  I , r " , ; :  >o-u :min
"  t 1 ' =  \ n l  =, '  i  \ , , . /  i

3. The Interior of the n-Population Simplex

3.1 .  D in tens ion  1 .  (n :2 ) .  Pu t t ing- { : - \ r  in  (4 )  ( fo r  n :2 )  one ob ta ins  the
Abel ian di i ferent ial  equat ion x '  :2.xr -  r :  on [0,  l ] .

S ince  r :2 -x r (1  -x r )S I l2  (w i lh  equa l i t y  i f f  . x , : ,1 r : l l2 ) ,  one has  by
Lemma (2.6) u<0, with equal i ty i f f  xr :ar:112. Hence u is a Ljapunov
funct ion for the stable attractor.Xl:x2: l  2.The phase portrai t  consists of
three f ixed points on 52 and two nonsingular orbi ts having rr :1,  resp. x2
:1  as  e- l im i ts  and , r ,  : - \1 :  l i2  as  c r . r - l im i t .
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3 . 2 .  D i m e n s i o n  2  ( n : 3 )  A g a i n ,  r i < 0  w i t h  e q u a l i t y  i f f  x , : 1 2 : x 3 : 1 , 3 ,
u is a Ljapunov function and the center of the simplex is a stable attractor
whose basin ol  at tract ion is the inter ior of  S..  This can be pictured in
a n o t h e r  w a y  b y  n o t i n g  t h a t  i , : 0  i f f  r , ? - r : x i - x i + r  Q - 1 , 2 , 3 ,  . x o : . r .  a n d
x+:xr).  I t  is easy to see that this condit ion is ful f i l led by a circ le through
the center r .vhich is tan-eent to the edge ,r ,  r  :0 at the point -x i-  r  :1 and
to  the  edge r , .  r  :0  a t  t l i e  po in t  . t r  r  :1 .  Hence the  edges o f  a  hexagon as
shown in Figure 4a are crossed from the outside to the inside. This shows
that the points in the interior of S. have the center as cr;-limit and the loop
1 2- 3-l as a-limit. An example of an orbit obtained by numerical
inte-urat ion is shown in Figure 5.

( c )

Figure 4.

^  
( d )

Dynamical systems on some simplices S-,
simplex (3).  l , :  (3A),  c-<4A>. d:( .4C>

and S. (n:the complete
a n d  e : ( 4 B )

( e )

3 .3 .  D imens ion  3  (n :4 ) .By  the  change o f  coord ina tes  x :x1 ,  j ' : x2 ,  Z
: X:, and elimination of the fourth linearly dependent variable, (4)
becomes

r : x (1 - . x - J ' - z - f )

i ' : ,y '(r - r.)

2  :  z ( l ' -  r )
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-It -.

F i uu re  5 .  Phase  po r t r a i t  o f  ( 3 )

. * :  -  ( 1  +  z ) ( l ' -  x z )

t :  ( r - zJß- t ' z )

+ - - 3 - - L - 2 - , ' 2
L t ^ r .

t
I

i

(w i th  r : (x+z) (1  -x -z ) ) .  Another  change o f  coord ina tes

t'l lo -2 -21 t'l t I
l l l l l t l l

l ' l+l'2 oll. ' l+l-'l
L' l  12 0 2l  Ll  L- l

puts the origin into the center {S* u4_the r-, 1'-, and z-axes throu-eh

the midpoints of the edges 23,34 and 13 respect ively.  The system then
becomes

Note that the equat ion is invariant for the

. i ' ' . r .  The ei-uenvalue - 1 of the Jacobian

F

translofmatton Z,-+ -;, -\ + -J'.

a t  the or ig in corresponds to a
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con l rac t ion  a long the : -ax is .  On the  p lane; :0  (wh ich  cor responds to  the
condit ion - \1 +.x3 : I i2 l  the previous system reduces to

Since ; :0 i f f  , r :  * , i ' .  one sees that ap:rr t  f rom the f ixed point in the center
there are no orbi ts on the plane,rr  f  -x: : l  2.  The f i rst  two equat ions show
that the systcm has a strong rotat ional component around the :-axis.
In t roduc ing  cy l inder  coord ina tes  z :2 ,  x : r ' cos  0 ,  ) ' : r ' s in0  one sees  tha t

h : t -  ) - s i r r r ) t ' l  t - - l tt '  -  I  
\  

- -  J r r l  \ - "  / t  a ,

i s  independent  o f  r  and a lways  pos i t i ve  i f  l z l<1 t2 .
This strong rotat ional component is also shown in the uumerical

solut ions (see F-igures 6a, b) and tends to suggest that there might be
closed orbi ts around the :-zrxis,  ly ing on the center manifold corresponding
to the eigenvalues * i  of  the Jacobian at the l ixed point xu. This evidence
is rnisleading. however.

I
I
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Figure  6 .  Phase por t ra i t  o f  (4 ) .  (a )  p ro jec t ion  on to  the  p lane ( -x , . , r r ) ;  (b )
pro.ject ion onto the plane (.x,.  x-1 )

Note. indeed. that

r : . x rx2  f  x2x1 *  x3 ,x , r  * ,x4xr  :  ( . r1  * r : ) ( .xz  * , r r )  :  s (1  -  s )

w i th  "s : ,x r  * ,x . .  C lear ly  0Sr {1 , .4 ,  w i t l . r  r :114 i f f  s :  \ i2 ,  i .e .  i f f  , x ,  * ,x .
:1 , '2 .  Thus  ü :u (L-4r )30  in  the  in te r io r  o f  Sr  w i th  equa l i t y  i f f  . x ,  * r j
:1t2. However,  as we har,e seen above. there are no orbi ts on this plane;
more  prec ise ly ,  the  se t  [ re  ! t : r r ( r ) * r r f t ) : l i 2 ' i  i s  a t  most  countab le  fo r
every orbit -x(r) except the one corresponding to the fixed point in the
center.  Thus t---+u(.r(r))  is monotonical ly decreasing. l  is a Ljapunov
function, and the center of the simplex is a stable attractor whose basin of
attract ion is the inter ior of  Sr.  This is in contrast to lhe behaviour of the
linearized system described in 2.4.

3.4. Dintensiort  n25. For rr)5 the central  point is a saddle point the
Jacobian has eigenvalues with posit ive and negat ive real parts-.and is
certainly no longer ar- l  at tractor.  There is strong numerical  er, idence (see

I
I

-x t  .
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Figure 7a, b) that there exists a closed orbit which is a stable attractor. We
are unable, however, to present a proof of this conjecture.

4. The m-Dimensional Boundaries of the n-Population Simplex

4.1. The case m:2. Apart from the complete 2-population simplex, there
are two possible cases:

(1) Flowing edge (2A): This system occurs as edge between two
consecut ive states of the n-hypercycle, n)3. For example, i f  r . :0 in the
three population simplex, one obtains the differential equations

r r : x r ( - r )

i z : xz$ t - r ' ) (22)

(w i th  r :x rXz . ) ,  on  the  s imp lex  Sr .  Put t ing  x :Xr ,  th is  reduces  to  the
Abel ian di i ferent ial  eq uat ion

x : x 3 - x 2 (23 )

on the  in te rva l  [0 ,1 ] .
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- X l

Figure  7 .  Phase por t ra i t  o f  (5 )  p ro jec ted  on to  the  p lane ( . r , . . t2 ) .  (a ) :51411 ing

from a point near the center of S.; (b):start ing from a point near the corner
( 1 - ö :  ) , 4 ,  ö 1 4 .  ö , 4 .  ö ' ' 4 ) .  t j : 1 0 - l

The inter ior of  52 consists of a single orbi t  with the point ,xr: l  as
e-l imit  and the point x2:1 as ro- l imit .  Note that the eigenvalue of the
Jacobian, i .e.  the i i t 'x der ivat ive of the r ight hand side of (23),  is 0 for .x:0
ancl 1 for .x:1. Thus the systern is not symmetr ic under t ime reversal.

(2) Fixed point edge <28>. This system occurs as the edge between
two nonconsecut ive pure states of the n-hypercycle. n24. For example, i f
, \ :  - -x+ :0 in the 4-populat ion si tnplcr.  ot tc obtains ,x r  :  , i ' :  :  t . r  :  x+ :0.

Thus al l  ooints on such an edee are inr, ' i t t ' iat t t .

4.2. The cuse m:3. Apart  f rom the complete 3-populat ion simplex, there
are three cases:

(1) Two f lowing edges (3,4):  This system occurs on the boundary of the
r i  populat ion simplex for rr)4.  For example, i f  ,x*:0 in the 4-populat ion

I

I
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the system
' t r  : ' x r  ( -  r )

j z : ' \ z ( ' r t  -  r )

t r  : -x :  ( r ,  -  r  ) (241

( r .v i th  r : -XrXz* r r r - , ) 'on  t l ,e  s imp lex  S. , .  The edge iJ  i s  f i xed ,  the  o ther
two are flowing. Since ("xr *xr) : -xl.xt {0, rr *x, is a Ljapunov function
lbr the inter ior of  S-, ,  and thus the point . \ : :1 is a stable attractor for
every point in the inter ior.  By a change of coordinates x:xr,  - t : .x:  ooe
obtains

j  :  r i ' ( " i ' -  l )

i : . r ' ( r - j . - - 1 . 2 ) .

760  P .  SCHI IS ] ' FR .  K

simplex, one obtains

The Jacobian at the point 1': g,

Introducing polar coordinates,
obtains

"r:  d has eigenvalues

r : r r , " t + F  a n d

(25)

0  and  d  (0<  d< l ) .

ü : arctg (-i'i x ), one

rit : r cost lt sinr!,r': r'2 sin r/ [rsin ü - 1 +sin ry' cos ry']

Thus we find

.. rü cos2 r/,
l i m
r - o  t '  S l n V / C o S t / - l

This result shows that rlr:nl2 ts the only critical direction (cf. Nemltskii

and Stepanov, 1960).  Thus the orbi ts become tangent to the edge 23 as
they approach the r , ; - l imit .xr:1.  On the other hand, since nl t l f  :  -1for r /
:0,  the orbi ts become paral lel  to the edge 12 near their  r- l imits on the

edge 13. The phase portrai t  is drawn in Figure4b.
(2) One f lowing edge (38):  This system occurs on the boundary of the

rr-populat ion simplex for r i  2 5. For example. i f  .x- ,  : .xs :0 in the 5-
populat ion simplex, one obtains the system:

x t :  - - \ t l '

i u :  ( " r r  * , r a ) r

ia : - -\+r' (26)
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(with r :-xrrz).  The only f lowing ed-ee is 12. I t  is easy to see that in the
in te r io r . .x , l r *  i s  cons tan t  wh i le ,x , , ' r r  and r r l r r  a re  decrcas ing .  Thus  the
orb i ts  po in t  s t ra igh t  to rvards-x : :1 .  A l l  po in ts  in  the  in te r io r  have. r r :1

as ro-limit and some point on the lixed edge 14 as z-limit.
(3) No f lowing edge (3C): This system occurs on the boundary of the

r r -popu la t ion  s imp lex  fo r  i r )6 .  For  example  i l  r r : - \+ : -x ( , :0  in  the  6-
populat ion simplex, the 3-simplex ( .xr,-x.r , ,x,  )  consists ent i rely of f ixcd
poir-rts.

4.3. The (use rn:4. Apart  f rom the compiete 4-populat ion simplex. there
are five cases:

(1) Three f lowing edges (zl ; l ) :  This system occurs on the boundary of
the rr-populat ion simplex for n 2 5. For example, i f  .x.  :  Q in the 5-
populat ion simplex, one obtains:

x z : - t r ( - t ' )

- t : : x z ( . x t - t ' )

-\-r :.x.t (.t: - t ')

i+  : . {+ ( r :  -  t ' ) ( 21 )

( w i t h  r :
: 0  a n d
the edges
there are
SINCE

r , -x2* . r rx - j * r : . x+) .Two o f  the  faces  o f  th is  s imp lex  (namely  r ,
r+:0) are of type (3,4),  the other two of type (38).  Three ol
a re  f low ing  and th ree  are  l i xed .  S ince  i ,  <0  in  1he in te l io r  o f  S* .
no f ixed points or closed orbi ts.  The rat io r j  . r ,  is increasing,

- \  t . \  1
:  I  : > 0

x 1(tl)
Thus the orbits through
i+l are directecl towards
ra t i o  r * . r ,  i s  i nc reas ing

the planes , \ : / rr  :const.  (which contain the edge

the plane .rr :0.  Once -t- . , l -xr is larger than 1. the

ro,x, /-x-.
-  ta-\ - \  1

The orb i ts  approach thc  f low ing  edgc  34 .  The po in t  . \+ :1  i s  thc  l r - l i rn i t  o f
al l  points in the inter ior of  S* (see Fi-eure 4c).

(2) Two consecut ive f lor 'v in-s cdges (4C): This system occurs on the

/ . - \  -
\ . r . /  

- , )
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boundary of the r i -populat ion simplex, rr)6.  For example i f  r* : \ t , :0
the 6-populat ion simplex, one obtains:

x r  :  r r  ( -  t ' )

x z : - x z ( - x r  -  t ' )

i : : x . r ( - x . - r )

x : : x s ( - l ' ) (28 )

with r :xrX2*x2-r- . .  The boundary has two faces of type (38),  one of type

(31) and one of type (3C). The edges 12 and l l  u."  f lowing, the others
are f ixed. The planes x., /x, :const.  are inrar iant.  Pr.r t t ing a coordinate
s y s t e m  ( - x , . 1 ) o n  s u c h  a  p l a n e .  w i t h  ( 1 , 0 )  c o r r e s p o n d i n g  t o , x r : 1 ,  ( 0 , 1 )
cor respond ing  to  x r :1and (0 ,0 )  cor respond ing  to  some po in t  on  the  edge

15. one obtains

* : ,x [  - " \ , ] .+  d (1  - ,x  -  i . ) (1  -  _ r  ) l

, r .  :  x-r . [ (1 *, / )(1 -  i ' )+ dr]

w i t h  0 < d <  1  g i v e n  b y . x s / - x r : 0 - d ) i d .
Since r ' )0,  the point (0.1) is an attractor for al l  the points (r ,_1')

belonging to the inter ior of  Sa. The phase portrai t  is s irown in Figure4d:
every point in the inter ior of  S* has xr:  1 as rr ;- l imit  and some pornt on
the face,xz:0 as ry- l imit .  r ,  increases for a t ime. then decreases to 0.

(3) Two non-consecut ive f lowing edges (,48):  This system occurs on the
boundary of the n-popr"r lat ion simplex for r i26. For example, i f  r . , : \ t  :0

on the 6-populzrt ion simplex we obtain:

. r r : ' x r ( - l ' )

i : : ' \ : ( r r - r )

i + : ' r + ( - t ' )

. i ' . : \ . ( r , - t ' ) (2e)

(w i th  r : r r - \z * ra . r . )  T .  four  faces  o f  th is  s imp lex  are  a l l  o i  t ype  (38) .

The two ed-ues 12 and 14 are florving, the others are fixed. A-eain we find
invariant planes-\1,1x4:const.  Putt ing a coordinate system (-x, , t ' )  on such a
p lane.  w i th  (1 .0 )  cor respond ing  to  ,x r :1 .  (0 ,1 )  cor respond ing  to  r . :  l
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and (0,0) corresponding to some point on the edge 14. one obtains

r  :  x (1  -  x  -  ) ' ) [ (1  -  d )  - -x (1  -  d )  -  yd ]

r  :  : r ' (1 -  x - , ! ' ) [d - .x(1 -  d) -  y,1]

w i th  0<d< l  g iven  by  ,x r , ,x+ :  ( I -d ) ld . In te rchang ing  d  and 1- r l  has  the
same effect as permuting r and -y. The origin is a source with eigenvalues
d and 1-d .  For  d>112 one has  1>0 and the  po in t  (0 ,  1 ) is  an  a t t rac to r  fo r
al l  the points (r ,1 ')  belonging to the inter ior of  S*.  For d<112 the si tuat ion
is symmetr ic.  For d:1, i2,  the orbi ts point straight away from the or igin.
The phase portrait is shown in Figure 4e. The a-limit of any point in the

inter ior of  So is some point on the edge 14. The tr- l imit  is xr:1 in the
"ha l f  s imp lex"  x+)X1, ,X2:1  fo r , r+ { r ( r  and some po in t  on  the  edge 25  fo r
- \ + : X t '

(4) One f lowing edge (4D): This system occurs on the boundary of the
rr -populat ion s impiex for  n27.  For  example,  i f  x . : - {s : ,x i :0  on the 7-
population simplex, one obtains

' * r : x r ( - r )

-xr : (-xt *.x.1 *.x6, )r

x + : r + ( - r ' )

x o : r o ( - l ' ) (30 )

(with r :xrxz).  Two faces are of type (38) and two of type (3C). Only

the edge 12 is f lowing. Since,x+i,xr, , rn7' ,x,  and -x6i ' ,x.1 are constant and.-t ,
>0, one sees that al l  orbi ts point straight towards - \z:1. The points in the
in te r io r  o f  So have"xz :1  as  o ; - l im i t  and some po in t  on  the  face . \z :0  as
z- l imit .

(5) No f lowing edge (4E): This system occurs on the boundary of the n-
popu la t ion  s imp lex  fo r  n )8 .  For  example .  i f  i r :8  and i f  , \ r : . \ - r : , \ s : , \ r
:0 ,  one ob ta ins  , i z : i+  - to :  j ' o :0 .  Thus  the  s imp lex  S*  cons is ts  en t i re ly
of f ixed points.

4.4. Recurt 'errce relut ions betvt 'een 5,, ,  ut td S,, ,- , .  Denot ing a simplex S,, ,
as  M(a .0 . r ' . . . . . : )  rve  sha l l  unders tand by  M the  to ta l  number  o f  ed-ues  and
by u, h.r' the number of adjacent flowing edges following each fixed point
edge; a zero has to be put in places where two fixed point edges touch
each other.

Thus 6(2.1.0) descr ibes a simplex S,,  containin-e two adjacent f lowrng

763
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edges and one such edge separated lrorn the former by one and two fixed
point edges on each side respect ively.  Note that the simplex is lef t  invariant
under cycl ic permutat ion and under ref lect ion of the indices. Applying the
lol lowing recurrence relat ious to al l  indices " l"  of  a simplex S,, , ,  one
obtains all restrictions of S- to S- r

M ( .

M (

M(. . . . .  r ,

S =

, i , . . . ) : i : 0

s,, r

M- t ( . . . . , t , . . . )

NI - l ( . . . . , 0 , . . . . )

M - l ( . . . , 0 , i * 2 , . . . . 1

@M -1 ( . . . . ,  1 ,  i - 3 , . . . . )

@M -1  ( . . . . , '  _  2 ,0 , . . . . )

. . ) : i : 1

. ) :  i 22

5. Di.scussiorr

5.1. Stabi l i ty '  ol  h1'perc1'cles. One of the most i rnportant results obtained
here concerns the existence of an attractor in 1S,.  This attractor is a stable
equi l ibr ium point in systems with r i :2,  3 and 4 and a stable l i rni t  cycle for
ri 2 5. In the three systems of lower dimension we were able to derive an
analytrcal proof for asymptotic stability of the dynamical systems which
converge to  the  f i xed  po in t  xe : (1 ,  r t . l l n , . . . ,  l r i r ) .  For  dynamica l  sys tems
with n 2 5 *o was found to be a saddle point. There is strong numerical
evidence lor the existence of a stable closed orbit in these systems (rr 2 5 ).
Thus there is no point in 1S,, which has an c'r-limit on BS,.

As a consequence of the existence of an attractor in 1S,, no population
variable vanishes along a trajectory starting from any point in 1S,. Hence
no component of an intact or complete hypercycle of type (4) will be
ext inguished within the frame of the determinrst ic approach of chemical
kinetics.t

5 .2. Time aterage of population uariables. All sets of solution curves for the
system of differential equations in (4) have a common characteristic and
physical ly important property:The t ime averages of the relat ive (or normal ized)
population variables, u'i(r) t t,

l ' , ( r ) :  1 |  r , ( r ) d t  ( 3 1 . 1
r _ r o . , , , ,

, ; , - l ; * . , . r r r - l i *  
|

r l  i  
-  l l l l l  l t  i l {  I  -  , , r t ,  

,  _ ,
t  - t  | - t  I - L o t,r '  ( r  )dt (32  )

tA  r iqorous  proo l  fo r  th is  s ta lcmcnt  i s  g iven  in  Schus tc r  o  r r l . .  l97 l i
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converges very fast.  In systems with stable f ixed points in 15" (n:2,3 and
4),  of  course, l i ' i - i i :1, /n.  Systems with l imit  cycles in 1S, (rr)5) conyerge
to the same values u' , : l , ' t t  obtained by integrat ion over a whole period.
Aga in  we f ind  fas t  conr ,e rgence o f  r . r , , ( r ) .  In  F igures8a.b . r , ( t )and n ' , ( r )  a re
compared for two examples with osci l lat ing solut ions (n:4,5).  After a lew
rotat ions the t ime averages for al l  populat ion var iables remain constant for
pract ical  purposes; u,,(r)  exhibi ts strongly darnped osci l lat ions. We might
cal l  this approach towards stat ionary or osci l latory states " intemal equi l ib-
rat ion".  Complicated dynamical systems consist ing of hypercycl ic uni ts or
subunits can be studied appropriately under the simplifying assumption of
establ ished internal equi l ibr ium (Eigen and Schuster,  1977).  This approxi-
mation can be r,vell justiäed only for rapidly equilibrating systems like
those considered here.

5.3. Regulat iot t  ol  populut ion rar iables. As we have shown in Sect ion 5.2
al l  t ime averaged populat ion var iables w,(t)conrerge to l r ; :1r11. The equal
lalues for al l  var iables are just a consequence of the assumption of equal
ra te  cons tan ts  f t ,  -kz : . . . -k , : /< .  In  the  more  genera l  case one wou ld
have obtained:

I' : . J : r + r - t l o i n (33  )

Accordingiy, relative values of time averaged population variables are
automatical ly control led by the dynamical system. This property unites the
set of components to an organized system. In case of total populations,
c:c(t) ,  growing slowly enough to guarantee establ ished internal equi l ib-
r ium. the t ime averaged relat ive populat ion var iables remain constant for
practical pllrposes and the hypercycle is growing as a stable entity.

5.4. r t t - l int i ts of  points i r t  BSn. Let us assume that a hypercycle has
reached BS, by some catastrophic or stochast ic event which led to
ext inct ion of one component:  x,  :  Q. In this si tuat ion, which can be
understood properly as a break in the catalytic hypercycle the residual
dynamical system represents an open chain of catalytic reactions involving
autocatalysts. Such chains are not stable. A chain resulting from a cleavage
b e t w e e n  t h e  c o m p o n e n t s  k  a n d  /  ( k : i - l  * r i ö , , ,  l : i + l - n ö i , ,  r i : 0 )  o f  a
hypercycle will converge to the pure state lying just before the break : -xA : l. For
more details see Section 2 in Schuster et ttl.. 1978.

i t 1
r  / r -  ,' i  )  t { ,

i L ' t
l =  I
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curves , \ i (1 )  and the i f  t ime avcrages  i l , ( r ) .  (a )  a  typ ica l
(b )  a  typ ica l  curve  o f  (5 )  on  55 ,  absc issa : t ime ax is .  lu l l

range:1000 t i rne  un i ts

t
W;
I

Figure 8. Solut ion
curve of (4) on S.
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5.5. AsymmetrJ' oJ' Jlows and pure stotes. Turning now to more ma-

thematical aspects of the dynamical system (4) on S, we realize an

interest ing local asymmetry around pure states, x i :1.  The state is unstable

aga ins t  f luc tua t ions  o f  ru :  öxu>0,  k : i *1  -nö , , . In  case such a  f luc tua t ion

occurs, the state vector leaves with initially strongly increasing speed and

f lows along the edge lk towar<Js the next pure state-xr:1.  Fluctuat ions in

the opposite direct ion with respect to the cycle shown in Figurel :ö-rr>0, j
: i -1*nö,, ,  on the other hand, are not enhanced and wi l l  s lowly fade

out. This asymmetry at the corners of the concentration simplex reflects
the cyclic symmetry of the dynamical system and the complete irreversi-

bility of catalytic actions presumed in our model.

5.6. Relutions between the eigenuectors of the d1'namicol s!:stems li-
necu'ized around x6 and the c'yclic groups (5,. It seems interesting to relate
the symmetry properties of our dynamical systems (4) to group theory. The

analysis can be performed in a straightforward way by linearizing the set

of differential equations around the central fixed point x{r. For that
purpose we def ine the permutat ion

as an element of the group f,. It is easy to verify that the set (8. P",
P : , . . . ,P i1 ; fu l f i l s  the  group pos tu la tes .  Fur thermore  f ,  i s  i somorph ic  to
the cyclic group O". The operation P,, is equivalent to the rotation C,.
Additionally, we find that the eigenvectors (f) are also solutions ol the
fo l low ine  e ieenva lue  equat ion  :

P,€8) : €9 . )i .

/  1234  . .  . . n  \P' : f , , t23 .  ,_  r )

(3+1

Thus, 1", represents the character y, of the corresponding one dimensional
irreducible representations or the character of one dimensional components
of two dimensional representations.t Finally, we realize that the eigenvec-
tors ($) can be assigned to the irreducible representations of On in a one to
one relat ion (TableI) .

5.7. Structural  ond Ljapunou stabi l i ty.  The dynamical system (4) is

certainly not structurally stable since the fixed points in the corners have

' i ln the cycl ic groups C,, thcrc are one- and two-cl irnensional irreducible representations.
The two-dimensional rcpresentations however. can bc spl i t  into two one-dimensional
comoonents. orovided complex numbers ale admitted as characters.
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TABLE I
Eigenlectors {!) and Irreducible Representations

of O, (McWeeny, 1963).

n: odd integer
f  (c,,) l( i l l )

n: even lnteger
r(€,,) i (<1j')

+ 1
2

( )
l -
t ,

f 3
I
L
L / l -  I

1

{ :

{,1
{,,1

F

L 2

zero eigenvalues. Thus there exist  arbi trar i ly smal l  perturbat ions of the
differential equations rvhich lead to completely different phase portraits.
On the other hand, (4) is Tjapunov stable in 1S,, ,  i .e.  smal l  changes ir-r  the

ini t ia l  condit ions produce only smal l  changes in the solut ions. This holds
also for most of the restrictions of (4) to the interior of the subfaces Sn, of
s,.

5.8. Comparison v, i th Hopf 'hi furt 'ct t ion. The equat ions (4) seem to exhibi t
a phenomenon somewhat reminding of Hopf bifurcation (Marsden and
McCracken,1976):  for rr{4.  the f ixed point in the center is a sink and an
attractor for 1S,,  whi le for n>4, i t  is a saddle point and the attractor of
the system is a closed orbi t .  In contrast to the ordinary Hopf bi furcat ion,
however,  the cr i t icai  parameter in our dynamical systems is a discrete
quantity, namely the dimension of the system, r?.
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