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Abstract

In many cases, the orbits of deterministic systems displaying highly inegular oscillations

yield smoothly converging time averages. It may happen, however, that these time averages

do not converge and themselves display wild oscillations. This is analyzed for heteroclinic

attractors and hyperbolic strange attractors.

1. Introduction

Whether one plots stock exchange prices (e.g. I1 , 2l), population densities [3]'
medical indicators [4], chemical concentrations [5], atmospheric variables [6] or
what not, one regularly encounters irregular fluctuations. Mankind has long been
accustomed to unpredictable oscillating time series, and recently modellers too are
getting used to them (see e.g. t7-91). In fact, these are nowadays enjoyed by most
system analysts. But when it comes to tasks of evaluation and decision making, the
recipe is usually to wait for the fluctuations to die down and, if they show no sign
of doing this of their own accord, to average them out. In most cases, this is indeed
a sensible thing to do, validated by some law of large numbers or by an ergodic
theorem (see e.g. t10-121). To quote Ruelle t10l: . . .  there are many situations in
which a geometric description [of the attractor] is no longer feasible, due to the
extreme complications of the dynamics ... These cases are those in which statistical
analysis becomes really releyant ... If we analyse a sufficiently long record of a
chaotic signal generated by a deterministic time evolution, we may find that the
signal amplitudes are within a definite range for a well defined fraction of the time
... More precisely, this means that the expected time average does existfor suitable
initial points, providing a well defined invariant probability measure (in the sense
that the time average of the observable is equal to its space avarage).

Nevertheless, there are situations where the time average refuses to converge,
no matter how long one waits. The purpose of this article is to highlight such
situations by some simple examples of deterministic dynamics. What we have in
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mind are models describing the repeated interactions of players in some social,
economic or biological game, or some hypothetical dynamics underlying the fluctuations
of prices or population numbers. In the first part, we deal with heteroclinic attractors:
such cycles exemplify unpredictable behaviour where almost all orbits fail to converge.
In the second part, we tum to strange attractors of hyperbolic type. There is an
interesting contrast, here, between the probabilistic point of view (where almost all
initial data lead to converging time averages) and the topological point of view
(generically, the time averages do not converge: in fact, they exhibit an extreme
form of misbehaviour). If the initial conditions are only known statistically, i.e. as
probability distributions, the former point of view becomes meaningless and the
latter one gains interest.

Thus the two types of deterministic but unpredictable behaviour which we
consider here lead to very different asymptotic behaviour of the time averages. For
heteroclinic attractors, Lebesgue-almost all initial conditions lead to time averages
which diverge, but they all diverge in precisely the same way. For hyperbolic
strange attractors, Lebesgue-almost all initial conditions lead to converging time
averages, but there exists nevertheless a huge variety of different divergent behaviours,
and for each possible type of divergence there is a dense set of initial conditions
leading to it.

2. Heteroclinic attractors

Let us consider a dynamical system on a subset X of lRn. If the state at time 0
is given by r e X, then it will be given by r(r) e x at time r. we shall consider
both continuous time (r e lR) and discrete time (r e Z) dynamical systems. A fixed
point r satisfies r(t) = r for all r. A heteroclinic cycle consists of several fixed
po in ts  l tQ=7 , . . . , k : k>2 )  and  o rb i t s  t+z r ( t )  connec t i ng them,  i n  t he  sense  tha t
zr ( t ) -+J/  {or  l?- -  and z i ( t ) -y j *  I  for  r -++@. (We ie t  yr t ,  =y l  so that  z t
connects J* to Jt and thereby closäs the cycle)The fixed points are saddle points
(since some orbits approach them for positive, some for negative time) and the
connecting orbits are saddle connections.

We note in passing that dynamical systems with heteroclinic cycles are not
structurally stable. The saddle connections can be broken up by arbitrarily small
perturbations (where "small" can be defined, here, in a variety of ways). This seems
to be the reason why heteroclinic cycles have been neglected by the mainline theory
of dynamical systems (see, however, Guckenheimer and Holmes [13]). Nevertheless,
they occur robustly in a variety of models, in the sense that if the perturbation
respects some essential feature or symmetry, it also preserves the saddle connections
and hence the heteroclinic cycles.

As an instance of a system featuring heteroclinic cycles we mention the
hypercycle which models the evolution of concentrations of several types of self-
replicating molecules in a flow reactor, each type acting catalytically upon the
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growth of the next type, thereby forming a closed loop of catalytic actions [14].
This mechanism from chemical kinetics has also been used in economic or social
contexts to describe the self-organization of cooperating units. Other examples of
heteroclinic cycles occur in game dynamics, where the variables denote the frequencies
of certain strategies, and the successful strategies spread (see e.g. [15]). Whenever
there exists a cyclic structure (like for the stone-scissors-paper game), heteroclinic
cycles occur. This happens for strategies in the repeated Prisoner's Dilemma [16];
it also occurs whenever there are two players with two strategies each, if no pure

pair of strategies is a Nash equilibrium [17,18]. Further examples of heteroclinic

cycles can be found in population ecology, as when (for instance) two competing
species 7 and 2 are beset by two strains a and b of predators (or parasites): if the
four equil ibria ( l ,c), ( l ,b), (2,b) and (2,a) (each with only two species present) are
cyclically connected, in the sense that predator b outcompetes 4 on a regime of
prey 1, that prey 2 replaces prey I if only predator b is around, and so on ..., this
yields a heteroclinic cycle [19]. For discrete dynamics there are analogous cycles:
in a sense, they occur even more readily [7].

Now let us assume that the heteroclinic cycle f is a limit in the sense that
there exists an orbit x(l) such that the points of f are the accumulation points of
sequences x(ro), with t1,i*a, i.e. that f is the olimitof .r. The continuity of the
dynamical system implies that the motion of r(r) proceeds in fits and starts. If it is
near one of the fixed points of f, it remains there for a long time; then it follows
the outgoing saddle connection to the next fixed point, where it hovers for a much
longer time; then it proceeds along the next saddle connection to the following fixed
point, remains there for some Still longer period of time, etc. Since r(f) converges
to f, it comes closer and closer to the fixed points and consequently remains there
for longer and longer times. If the fixed points are hypcrbolic (the generic case,
which we shall assume from now on), the periods of near-stationarity increase
exponentially. On the other hand, the lengths of the time intervals for switching
from a neighbourhood of one saddle to a neighbourhood of the next one do not

change much: asymptotically, they are given by the time needed by the saddle
connection to cross from one neighbourhood to the other. Compared with the amount
of time spent within the neighbourhoods, the duration of the joumeys in between
can be neglected.

The dynamics is highly unpredictable: close-by orbits may leave the
neighbourhoods of the fixed points at very different times, and evolve quite out of
phase. It is difficult to tell in advance, for some given large T, near which fixed
point r(7) will be lingering.

Averaging will not help with such highly erratic oscillations: the time averages

, \  r  & l
i I x t r )dr  or  * I r f t ll J' o  " t * o

(depending on whether the dynamics is continuous or discrete) will fail to converge.
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As an example, let us consider a game with three strategies such that strategy
I beats 2,2 beats 3 and 3 beats 1. The payoff a;1for a player using strategy i against
a j-player is given, without restricting generality, by

43

0
-4

with a;,b; > 0. (For the rock-scissors-paper game, we can uS€ 4; - bi= l.) Let us
consider a population consisting of three types, each playing one of the strategies.
Let rr(t) be the frequency of the i-players at time l. The state of the population at
any time is given by a vector x = (x1, x2, \) on the simplex 53 (since x; > 0 and
Lx;= 1). If we assume random encounters, the expected payoff for strategy i is
(Ar); = 2a;1x1 and the average payoff for the population is x 'Ax = Ixt(Ar)i. In
game dynamics, one assumes that (due to some effect of inheritance or leaming)
therateof increase * ; lx ;o fs t rategy i  isg ivenby(Ax) ; -x .Ax, i .e .bythedi f ference
between its payoff and the average payoff. Hence, the state evolves according to

* i  =  x i  [ (Ar) i  -  x 'Ax] .  (1)

It is easy to see that the simplex 53 and the boundary faces are invariant. The
comers e; are saddle points, the edges are saddle connections (see fig. l). Thus the

-b r )
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; )
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boundary is a heteroclinic cycle. In [15] it is shown that if bft2fu) ay42a3'.
then all orbits r t+ r(r) in the interior of 53 (with the exception of the centre
m = i0,1,1))converge to the boundary: it is a heteroclinic attractor.

In [20] Gaunersdorfer shows that the corresponding time averages z(I), with
coordinates

1 r
z ; (T )= * l x ( t ) d t'  l r

fail to converge. Instead, they approach the boundary of the triangle spanned by

Ar= -1 + ü (bzh,a1b2,a1a3),' atctz * aftz + bzk ' -

and the corresponding points A2and Ä3 defined similarly. We note thatA3, Ä1 and
€1are colinear. Asymptotically, during the period where r(r) is bogged down in a
vicinity of e1, the time average, which was close to Ä3, moves straight towards e1.
When r(r) jumps over to 02, the motion of time average changes its direction
towards ezt this happens at the comer A1 of the triangle. (This behaviour seems to
have been first noticed by E.C. Zeeman; see also [15].)

One way of proving this uses a Poincard-section type of argument, applied
to the heteroclinic cycle instead of a periodic orbit. The saddle e;has a; as positive
and -b; as negative eigenvalue. An orbit coming in at a distance x from the orbit
converging to the saddle leaves at a distance proportional to *""' from the orbit
issuing from the saddle. For the time average, one can neglect the time spent on
switching from one saddle to the next. The time spent by r(t) near e; is approximately
the b;-tla;th of the time spent near the previous comer and hence the time spent
by r(0 on the nth round grows likep', with p =ll(b,lai). This allows to compute
the asymptotic behaviour of the time average.

The same method can be used quite generally for heteroclinic attractors, with
-b; and 4; &S corresponding negative and positive eigenvalues of the ith saddle
point. For example, we may consider the Lotka-Volterra competition equation

*r = xt(l- xr - Mz - Fxt),

iz = x2( - Fq - x2 - ar3), Q)

*3 = xz1-  wt-  F*z-  x t ) ,

where the x; are population densities of three competing species. This equation was
introduced by May and Leonard t2ll and is at the origin of much recent work on
competition (see e.g. [22,23D. We assume 0 < b< 1 < a and a + b > 2. There is a
heteroclinic cycle on the boundary of the state space IR3.: it consists of the saddle
points e; and connecting orbits. With the exception of the orbits on the diagonal
xt= x2= rr, äll orbits x(r) in the interior of lR3- converge to the heteroclinic cycle.
Again, the time average spirals closer and closer to a triangle A1A2A3, slowing
down but never converging. one has
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Ä,  =  (a  -1 )2  , ( t  -  p )2  ,@ -1 ) (1 -  p ) )'  ( l  -  F ) ' + ( l - 0 )@-1 )+ (  a -  t ) -

and similar expressions for A2 and Ä3.
It follows that both for the game dynamical eq. (1) and the competition eq. (2),

almost all orbits have time averages which do not converge. This seems at first
glance somewhat at odds with the ergodic theorem, according to which almost all
the time averages converge. But of course almost c// is used with two different
meanings. In the former case, it is with respect to Lebesgue measure (on s3 or on
IR3*), and in the latter case, with respect to any invariant measure. It is easy to see
that an invariant measure for the dynamical system (l) has its support contained in
the setof f ixed points {yryz,yt,m}:for such measures the statement of the ergodic
theorem is obviously trivial.

Similar behaviour is found for a great variety of dynamical systems. For
example, the fixed points of the heteroclinic cycle can be replaced by periodic orbits
(see [24] for a seven-dimensional example) or by a strange attractor on some lower-
dimensional submanifold. The orbit approaches the attractor for some time, then
moves off to visit another attractor, but retums after a while for a much longer time
etc. The oscillatory regime of such an orbit seems to switch, at exponentially
increasing times, into different modes (similar to distinct climates in meteorology):
the time averages, again, do not converge. Analogous results also hold for the
corresponding discrete systems.

3. Strange attractors

There is no commonly agreed definition for a strange attractor yet, but one
certainly expects oscillations there to exhibit a livelier behaviour than for heteroclinic
attractors: instead of bogging down for long periods of near-immobility, they should
be restlessly wiggling around. It is not paradoxical to expect that these wilder
oscillations in tum should make for tamer time averages.

The simplest example is the discrete dynamical system on the unit intervai
[0,1] given by the map

x v-+ 4x(1 - x). (3)

This map plays a star role in theoretical population ecology t3l; if x denotes the size
o f thepopu la t i on ( resca ledso tha tx€  [0 ,1 ] )and i f t hepopu la t i ong rows fo rsma l .
x, but decreases for large x, then the behaviour can be modelled by the logistic map
x t-+ ax(l -,r). For small values of c, there is a unique equilibrium (a - l)/a attracting
all orbits in (0,1), but if one increases the value of a, a sequence of period doubling
occurs, and ultimately chaotic motion. Erratic bchaviour caused by some very
simple regulatory mechanism is found not only in population ecology, but in economics
and other fields as well. It also underlies many continuous dynamical systems.
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Other examples of chaotic motion occur for hyperbolic attractors, whose
ergodic behaviour is well understood. They are the prototypes of strange attractors
(in spite of the fact that no differential equations arising in applications have been
shown to belong to this class). Hyperbolicity means that transversal sections to the
orbits decompose into exponentially contracting and expanding directions in a smooth
uniform way (for a more precise definition we refer to [10,11,261). The Bowen-
Ruelle-Sinai theorem [26] implies, as we shall see, that almost every orbit in the
neighbourhood of such an attractor has a converging time average. In spite of this,
there remain plenty of orbits without converging time averages.

Let us first fill in some background, starting with a continuously dynamical
system on a compact metric set x (see e.g. t27)). A subset A is transformed, after
a t ime t, into a subset A(t)= {.r(r):r € A}. A probabil i ty measure p is said to be
invariant if 1t(A(t)) = tL(A) holds for all measurable A cX and all r e IR. The ergodic
theorem of Birkhoff implies that if/:X -+ IR is integrable with respect to p, there
exists a set Qf c X with It(Q) = 1 such that the time average

I
1  r  ^ .
TJff r?>la,  

(4)
0

converges for T -+ +€ whenever r € O1. It does not hold, in general, that Qf = X
iflis continuous, i.e. that all time averages of continuous functions converge. The
example in the previous section shows how wrong this can be (as continuous
function/, we can use in this case the i th coordinate function x H .r;). On the other
hand, since the set of continuous functions is separable, there exists a set QcX
such that

(a) for all x e Q and all continuous/the time average (4) converges for 7 -+ +*;

(b) tr(Q) = 1 for all invariant probability measures /r.

The points of Q are called quasiregular [28] or statistically regular [10]. The results
we mentioned so far show that points are almost surely statistically regular, both
with respect to every invariant probability measure and (in the neighbourhood of
a hyperbolic attractor) with respect to Lebesgue measure. There can be many points,
nevertheless, which are not statistically regular.

Let us denote by M(X) the space of probability measures on X (we always consider
Borel measures, i.e. measures defined on the smallest o-algebra containing all open
sets). If p e M(X), the integral

f r+ I fdtt
tt

is a linear functional on the space of continuous functions on X which maps the
positive function l; to 1. In fact the probability measures correspond precisely to
these functionals.
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The space M(X) is obviously convex, and X can be imbedded into it: to each
x e X we associate the point measure 6, (where ö,(Ä) is I if r e A, and 0 if not).
The point measures are, incidentally, just the extremal points of M(X). Now the
topology of X extends in a natural way to the so-called weak topology in M(X). We
say that a sequence of probability measures p,, converges to the probability measure
u i f' t t

J fdtr^ -+ J fdtt

holds for all continuous functions/: X -+ IR. The imbedding x H ör of X into M(X)
is then a continuous mapping onto the closed set of all point measures. Since X is
compact, M(X) is also compact. The measures with finite support, i.e. the finite
convex combinations of point measures, are dense in M(X).

Just as the linear functional

f t-+ f (x)

on the space of continuous functions corresponds to the point measure ör, so the
linear functional

' t T
f  r -+ * l  f  (x( t ) )d t-  I  r '

0

also yields a probabil ity measure: it corresponds to the time average of the value
of / along the portion of the orbit of x from time 0 to time f > 0. We denote this
average by 6,(D and define 6,10; = 5,.

If r is statistically regular then the limit

is also a well-defined linear functional on the space of continuous functions and
thus a probability measure. It is easy to see that it has the property of being
invariant, which translates into the property that the continuous functions x r+ f(x)
and x Hflr(t)) have the same integral for all r. Since there always exist statistically
regular points, there always exist invariant measures. Hence, the space M1(X) of
invariant probability measures is nonempty. It is also compact and convex.

There are dynamical systems such that every x is statistically regular: in
particular, there exist systems admitting a unique invariant measure pr. In this case
all averages ä,(7) converge to 1t, for ?" -+ +-. But in general, all one can say is that
the set

pQ) = {tt e M(X): l?"1 + +* such that 6,(T) -+ 1tl

is a nonempty subset of the set Mr(X) of invariant measures which is compact and
connected [27]. This latter property is a simple consequence of the fact that f p ö,(f)
is continuous.

/ - ''lT- |1"""0'

(s)
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In the game dynamics example (1), if the orbit of r has the boundary of 53
as limit set, then p(x) consists of three measures

Iar -- -----:i--, r^ t^ (bzk6", + arbr6r, + ap36q)' ataz I apz + bZ4

and the analogously defined a2anda3 as well as the line segments joining them in
the convex set M()a). This set is connected (but not convex!).

If A is a hyperbolic attractor, then the theorem of Bowen-Ruelle-Sinai
implies that there exists an invariant probability measure ,u on A such that for
Lebesgue-almost all x in a neighbourhood of A, the set p(x) reduces to {p}.
However, there exist points r € ^ without converging time average. In fact if R is
qny nonempty compact connected subset of the set M/(^) of invariant measures,
there exist points x such that p(x) = R, and the set of these x is actually dense in
Ä, see [27]. There exists a staggering variety of compact connected subsets of
M/1t): even if we look only at the two-dimensional convex subset spanned by three
distinct invariant measures on A, we find a huge diversity of such subsets. This

shows that there is an enormous repertoire of possible asymptotic behaviours for
the time averages.

In particular, if we take R = M//y), we find that the set L of all r e A with
p(r) = M/ly) is dense in A. Since a neighbourhood U of A is the union of stable
manifolds of points ofÄ (see e.g.1L2,p.2621), we can f ind arbitrari ly close to any
y e U a point z e U such that d(2,,x,)-+ 0 for some r € L, where d is the distance
and r + +*. Hence, the set

{x  eU :  PG)= MrQt) }

(the set of points whose time-averages display maximal oscillation) is dense in U.
Moreover, it is a G5-Set, i.e. the countable intersection of open sets: this follows
exactly as in [27, p.207]. Thus, it is not only dense but large, and even prevalent,
from the topological point of view: its complement is a meagre set (of first category).
Topologically speaking, then, the typical initial condition r leads to maximal oscillations
of the time averages: every invariant measure occurs as a limit point of 6lfo) for

some 11 -) +€. It should be emphasized that the set M {lv) is very large. In particular,
it has the interesting property that its extremal points are dense (see [27]) - something
that evidently can only happen if the convex set is infinite-dimensional.

Hence the question about the typical averaging behaviour receives different
answers, depending on whether "typical" is meant measure-theoretically or topologically.
(In no case is there an efficient classification for the initial conditions.) The option
for one or the other point of view is a matter of taste (see Oxtoby t29) for an
interesting discussion). Probably most (mayb we should say almost all) mathematicians
would favour the measure-thoretic answer. Nevertheless, it should be mentioned
that it is in some way limited by the assumption that the initial condition is perfectly
determined-i.e. given by a point r. In many cases of practical relevance the initial
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condition is not perfectly known, and corresponds to a probability distribution
which does not reduce to a point measure. This corresponds to models where the
dynamics is perfectly deterministic but the state stochastic. There seems to be no
natural measure on the space M(X) of probability measures-but, as we have seen,
a very sensible topology, namely the weak one. Just as we can consider orbits of
points, we can also consider orbits of statistical states, i.e. of probability measures.
The dynamical system sends a probability measure lt e M(X) into the probability
measure llt at time r, where p, is given by

Ir,(A) = tt,(A,)

for measureable A c X. Thus the dynamical system on X induces a dynamical
system on the extension M(x). The time average of the orbit r -+ 1t,inM(X) is given
bYr

1 ;

I t ( T ) : =  *  |  P d t .
l J

0

which corresponds to the linear functional

' tT  ,T ,
f  ä ; )  f  d t t ,  =  

7J  J  r< r r t )d1 td , t .
0  0 x

Again, one defines

pQ) = {tt e M (X) :3To --> +- such that v(T) -+ tt\

for v e M(x), and obtains a nonempty compact connected subset of Ml(X). If the
dynamics converges to some hyperbolic attractor^, then for every nonempty R c.M^ )
which is compact and connected, rhe ser {y:  p(.v) =R} is dense in M(^) t301.
Again, the set {v:  p(v)=M{L)} is a countable intersect ion of open dense sets.
Hence the typical probability distribution will have a time average which oscillates
maximally (where typical, here, is understood from the topological point of view,
while the measure-theoretic point of view does not enter into consideration).

In order to verify the extreme misbehaviour of the time averages, one uses
properties of the dynamics on the basic set Ä (see e.g. {121 or [27D:

(a) topological mixing: for every two nonempty open subsets {J, v cÄ, there is
a time I such that for all r> I, one finds an x e U with x(r) e V. Thus we
can move from every neighbourhood to every other one, provided we allow
enough time for it;

(b) a very weak form of the shadowing property: for every €, there is a p with
the property that whenever the points y and z in Ä satisfy d(y,z) <p then
thereexists anr e Äsuch thatd(x(t) ,y(r))  < e foral l  r< 0 and d(x(t) ,2(t))< e
for all r > 0. The orbit of r shadows that of y for negative time and that of
z for positive time.
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In [33], it has been convincingly argued that a stronger form of this shadowing
property is fundamental for what is meant by chaotic dynamics. All chaotic attractors
of this type have orbits whose time averages do not converge, and even generically
diverge in some maximal sense. There are other dynamical systems with only a
weaker form of the shadowing property for which this oscillatory behaviour of the
time averages still holds (see e.g [3a]). In particular this is the case for the discrete
system x r+ 4x(l - .r) on [0, 1]. The measure p corresponding to the Bowen-Ruelle-
Sinai theorem has the density

f  ( x \  =
x l x ( l -  x )

Lebesgue-almost all points in [0,1] have this measure as time-average: but again,
they form a set of firstcategory, whilethe setof points whose time average displays
maximal oscillation (i.e. has all invariant measures as limit-points) is generic.

To summarize, there are important classes of orbits whose time averages do
not converge. It should be interesting to have a method which, by evaluating time
averages in concrete situations, allows to characterize the type of underlying attractor.
This does not seem to exist yet. There can be combinations of the asymptotic
regimes described in sections 2 and 3, with heterocycles visiting strange attractors;
there could be altogether different types of behaviour. Furthermore, the transient
motion can subsist for a very long while, thus affecting the time averages. This
occurs, e.g. in non-linear networks, where thc attractors are fixed points and the
irregular oscillations of the approaching trajectories are due to the complicatcd
geometry of the basins of attraction.
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