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J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical
Systems, Cambridge U. P., New York, 1988, viii+341 pp, cloth $65.00,
paper $19.95.

The steadily increasing collection of facts from molecular biology to ethology
makes it clear that a rigorous physical and mathematical theory of evolution is a
task of vast proportions. What gives hope is that the situation was hardly better
in many other scientific disciplines that have by now evolved into a stage of
remarkable explanatory power. Obviously it is a sound procedure to first focus
on modest problems compared to the ultimate aims. This has been done on
several levels of evolutionary theory: population genetics, population ecology,
molecular (prebiotic) evolution, and animal behavior (sociobiology). There is a
recurrent theme in discussions of genes, members of populations, self-replicating
polymers, and strategic phenotypes: reproductive success of the corresponding
entity or, as in the latter case, of its bearer. Hofbauer and Sigmund focus in their
book on ordinary differential equations that model this aspect. The first half of
the book consists of four parts, each dealing with one of the topics mentioned
above.

After the obligate Hardy- Weinberg law has been presented, Part I introduces
dynamical systems by means of the discrete time versions of Fisher's selection
equation and the fundamental theorem. The latter states that the average fitness
increases as long as the population is not in equilibrium. Part II is a primer on
population ecology as modeled by the Lotka—Volterra equation. Predator—prey
relations, competitive interactions, and food chains are briefly considered. At the
same time the qualitative theory of differential equations as a major tool for
investigating dynamical systems is presented. The qualitative theory seeks to
establish the asymptotic behavior of solutions. This allows the characterization of
the phase portrait and of robust features pertaining to the system. Hence
stability becomes the central notion. The principle of linearized stability and the
Ljapunov function concept are introduced.

Part III begins with the replication and mutation of noninteracting polynu-
cleotides, which leads to the molecular counterpart of the selection—mutation
equation for asexually reproducing individuals. Eigen’s explicit inclusion of
replication accuracy as a parameter sets a threshold to the length of a molecular
information carrier, beyond which its line faces extinction. The resulting ““infor-
mation crisis” is the starting point for considering the Eigen- Schuster solution of
this problem. An autocatalytic network might allow for the coexistence of its n
members if each needs at least one other member in order to replicate. If the
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mutual help is cyclic, then the network is addressed as a “ hypercycle.” Global
stability of the internal fixed point of hypercycles up to n =4 is proved. The
existence of periodic solutions for n>5 has been proved only recently (not
included in the present edition of the book). Lacking the latter fact it was
essential for the validity of the hypercycle concept that, given the initial presence
of all members, their individual concentrations would not vanish in the long time
limit. Hofbauer and Sigmund coin the term permanence for isolating the notion
of the boundary of the state space being a repellor. This feature of a dynamical
system becomes a major theme in the second half of the book. At this stage the
first sufficient condition is introduced as a function whose time average acts like
a Ljapunov function. A generalized version of the hypercycle equation is shown
to be permanent.

Part IV adopts the view of evolutionary game theory. Fitness as a measure of
reproductive success of a phenotype P will certainly depend on what other
phenotypes are likely to interact with P. Thus fitness will be frequency-depen-
dent in the same way as the payoff of a strategy depends on how the other
players behave during the game. Accordingly a phenotype may be viewed as a
strategy. Maynard Smith’s notion of an “evolutionary stable strategy,” that is, a
phenotype that is immune against invasion from mutants, is formally made
precise. The authors move on to emphasize the dynamical aspects of game
theory. Let x,, i=1,..., n, be the frequency of a (strategic) phenotype and f,(x)
its fitness (payoff) in a population whose phenotypic distribution is x. The
Darwinian view, then, identifies the growth rate X;/x, with the difference
between the fitness of i and the mean fitness level of the population:

.i,=x,(f,(x)—2x,f,(x)). i=1,...,n. (*)

This is a dynamical system on the unit simplex S, = {x =(x,,...,: x,) € R":
Lx,=1, x,20 for i=1,..., n}. Hofbauer and Sigmund proceed to show that
the n-dimensional Lotka-Volterra equation can be mapped onto the orbits of
(*). The time-continuous version of Fisher’s selection equation is also of the form
(*), and so is the hypercycle equation. Most of the book deals with binary
interactions. Thus f,(x) takes on the linear form (Ax), with some suitably
defined n X n matrix 4. Four distinct phenomenological levels of evolutionary
inquiry are described by the same type of equation. Actually this happened
independently in each field and reflects a common view of natural selection.
Equation (*) has been termed the replicator equation, thereby using a notion
proposed by Dawkins.

The parts of this first and more introductory half of the book are extensively
motivated, and the exercises remain feasible. The second half is definitely more
advanced.

In the game dynamical equation (*), every evolutionarily stable strategy is an
asymptotically stable equilibrium. The converse, however, does not hold. The
very fact that the solutions of the replicator equation need not converge to
evolutionarily stable states points to a more general stability concept captured by
the above-mentioned permanence.
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Part V, the longest part of the book, is entirely devoted to permanence. The
Poincaré index is briefly introduced as a topological tool for obtaining informa-
tion about the existence and number of critical points. Necessary and sufficient
conditions for permanence are subsequently derived. The possibility of checking
permanence by essentially computing eigenvalues of finitely many boundary
equilibria is particularly intriguing. A chapter on the stability of n-species
Lotka-Volterra equations exploits extensively the algebraic properties of the
interaction matrices and leads to their classification according to the different
kinds of stability they ensure. The exercises now become increasingly a collection
of results.

Part VI resumes the theme from population genetics beginning with a close
look at the time-continuous selection equation of the form (*) with f,(x) = (Ax),
and symmetric matrix 4. In view of the fundamental theorem, it is tempting to
look for the existence of a potential and to ask which replicator equations qualify
as gradient systems. It turns out that some replicator systems are indeed gradient
vector fields if one gives up the Euclidean metric. A redefinition of the inner
product, which essentially amounts to redefining the angle between two nonzero
vectors, leads to a (Riemannian) metric—the Shahshahani metric—in which the
replicator equation exhibits a potential if the functions f,(x) satisfy certain quite
severe conditions. At the end of part VI, Hofbauer and Sigmund consider some
selection models that result from relaxing the Hardy—Weinberg assumptions by
taking into account nonrandom mating and fertility differences of the mating
pairs. Multiplicative and additive fertility models lead again to equations of the
replicator type.

Up to now the game dynamical analysis did not take into account any genetic
mechanism. The last part of the book, Part VII, adds sex to the games. It
becomes evident that the genetic constraints superpose the Hardy—Weinberg
relation for genotype frequencies on the underlying game of strategies.

The recurrent implicit biological message of the book states that the *struggle
for life” is much less dominated by seeking optimality than by seeking stability.
The book, which is based on the many contributions of the authors to the
subject, is written lucidly for a target group that ranges from the advanced
undergraduate student in mathematics up to the research level. The avoidance of
an overly technical language is a wise concession to the mathematically inclined
reader coming from the life sciences.
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