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Super- and Coinfection: The Two Extremes

Martin A. Nowak and Karl Sigmund

9.1 Introduction
As is well known, the “conventional wisdom” that successful parasites have to
become benign is not based on exact evolutionary analysis. Rather than min-
imizing virulence, selection works to maximize a parasite’s reproduction ratio
(see Box 9.1). If the rate of transmission is linked to virulence (defined here as
increased mortality due to infection), then selection may in some circumstances
lead to intermediate levels of virulence, or even to ever-increasing virulence (see
Anderson and May 1991; Diekmann et al. 1990, and the references cited there).

A variety of mathematical models has been developed to explore theoretical
aspects of the evolution of virulence (see, for instance, Chapters 2, 3, 11, and 16).
Most of these models exclude the possibility that an already infected host can be
infected by another parasite strain. They assume that infection by a given strain
entails immunity against competing strains. However, many pathogens allow for
multiple infections, as shown in Chapters 6, 12, and 25. The (by now classic)
results on optimization of the basic reproduction ratio cannot be applied in these
cases.

The mathematical modeling of multiple infections is of recent origin, and cur-
rently booming. Levin and Pimentel (1981) and Levin (1983a, 1983b) analyzed
two-strain models in which the more virulent strain can take over a host infected
by the less virulent strain. They found conditions for coexistence between the two
strains. Bremermann and Pickering (1983) looked at competition between parasite
strains within a host, and concluded that selection always favors the most virulent
strain. Frank (1992a) analyzed a model for the evolutionarily stable level of vir-
ulence if there is a trade-off between virulence and infectivity, and if infection
occurs with an ensemble of related parasite strains. In Adler and Brunet (1991),
Van Baalen and Sabelis (1995a), Andreasen and Pugliese (1995), Lipsitch et al.
(1995a), and Claessen and de Roos (1995), further aspects of multiple infection
are discussed.

In this chapter, following Nowak and May (1994) and May and Nowak (1994,
1995), we deal with two opposite extreme instances of multiple infection by sev-
eral strains of a parasite. These simplified extreme cases, which are at least partly
amenable to analytical understanding, seem to “bracket” the more general situa-
tion. The first case deals with superinfection. This approach assumes a competitive
hierarchy among the different parasite strains, such that a more virulent parasite
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can infect and take over a host already infected by a less virulent strain. Multi-
ply infected hosts transmit only the most virulent of their strains. The opposite
scenario is that of coinfection. In this case, there is no competition among the dif-
ferent strains within the same host: each produces new infections at a rate that is
unaffected by the presence of other strains in the host.

Both these extremes are amenable to analytical understanding, at least in some
simplified cases. Mosquera and Adler (1998) produced a unified model for mul-
tiple infections (by two strains), which yields both superinfection and coinfection
(as well as single infection) as special cases (see also Chapter 10). The long-term
goal is, of course, to combine the full scenario of multiple infections in a single
host with the adaptive dynamics for evolution within and among hosts. Such stud-
ies will mostly rely on computer simulations, but it is important to understand the
basics first.

What happens when many different strains are steadily produced by mutation?
Both for superinfection and for coinfection, the virulence will become much larger
than the optimal value for the basic reproduction ratio. There are interesting differ-
ences, however, in the packing of the strains and in the increase of their diversity,
depending on whether superinfection or coinfection holds. Furthermore, in the
case of superinfection, removal of a fraction of the hosts implies a lasting reduc-
tion of the average virulence. This last fact has obvious implications for virulence
management: it is quite conceivable that even an incomplete vaccination campaign
will have a decisive impact on population health, not by eradicating the pathogen
but by making it harmless.

9.2 Superinfection
In this section we expand the basic model for single infections (Box 9.1) to allow
for superinfection. We consider a heterogeneous parasite population with a range
of different strains j (with 1 ≤ j ≤ n) having virulence αj , with α1 < α2 <

. . . < αn . Furthermore, we assume that more virulent strains outcompete less
virulent strains on the level of intra-host competition. For simplicity we assume
that the infection of a single host is always dominated by a single parasite strain,
namely that with maximal virulence. In our framework, therefore, superinfection
means that a more virulent strain takes over a host infected by a less virulent strain.
Only the more virulent strain is passed on to other hosts. The translation of these
assumptions into mathematical terms is given in Box 9.2.

To arrive at an analytic understanding, we consider the special case that all
parasite strains have the same infectivity, β, and differ only in their degree of
virulence, αj . For the relative frequencies i j of hosts infected by strain j we obtain
from Equation (c) in Box 9.1 the Lotka–Volterra equation

i ′j = i j (rj +
n∑

k=1

ajkik) , (9.1)
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Box 9.1 Population dynamics of pathogen diversity in SI models

We consider the model of Box 2.1 with the recovery rate γ set equal to zero,

d S

dt
= B − d S − βSI ,

d I

dt
= I (βS − d − α) . (a)

The basic reproduction ratio of the parasite for this model is

R0 = β

d + α

B

d
. (b)

If R0 is larger than one, then the parasite will spread in an initially uninfected
population, and damped oscillations lead to the stable equilibrium

S∗ = d + α

β
, I∗ = βB − d(d + α)

β(d + α)
. (c)

To understand parasite evolution, consider a number of parasite strains competing
for the same host. The strains differ in their infectivity βj and their degree of
virulence αj . If Ij denotes the density of hosts infected by strain j , and excluding
the possibility of infection by two strains at once, then

d S

dt
= B − d S − S

∑
j

βj Ij ,

d Ij

dt
= Ij (βj S − d − αj ) . (d)

For a generic choice of parameters there is no interior equilibrium, and coexistence
between any two strains in the population is not possible. To see this, consider
two strains, which, without loss of generality, are called 1 and 2. Now h1,2 =
β−1

1 ln I1 − β−1
2 ln I2 is introduced, which gives

dh1,2

dt
= d + α2

β2
− d + α1

β1
. (e)

So h1,2 goes to −∞ or +∞ depending on which of the two terms is the larger.
Since the model does not allow Ij to go to infinity, the conclusion is that strain 2
always outcompetes strain 1 if

β2

d + α2
>

β1

d + α1
. (f)

This is exactly the condition that the transversal eigenvalue λ2 = ∂ I ′
2/∂ I2 at the

two-species equilibrium E1 = (S∗, I∗
1 , I2 = 0) is positive, while the transversal

eigenvalue λ1 = ∂ I ′
1/∂ I1 at the two-species equilibrium E2 = (S∗, I1 = 0, I∗

2 )

is negative; that is, strain 2 can invade 1, but 1 cannot invade 2. Applying
continued
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Box 9.1 continued

Condition (f) to any pair of two strains shows that ultimately, out of the full diver-
sity, only one strain remains, which is the one with the highest value of R0.

If there is no relation between infectivity and virulence, then the evolutionary
dynamics will increase β and reduce α. In general, however, there is some rela-
tionship between α and β, see Box 5.1. This can lead to an intermediate degree of
virulence prevailing, corresponding to the maximum value of R0. Other situations
allow evolution toward ever higher or lower virulences. The detailed dynamics
depends on the shape of β as a function of α.

on the positive orthant Rn+, with rj = β − αj − d (here, d is the background
mortality of uninfected hosts) and A = (ajk), given by

A = −β

⎛
⎜⎜⎜⎜⎜⎝

1 1 + σ 1 + σ . . . 1 + σ

1 − σ 1 1 + σ . . . 1 + σ

1 − σ 1 − σ 1 . . . 1 + σ
...

...
...

. . .
...

1 − σ 1 − σ 1 − σ . . . 1

⎞
⎟⎟⎟⎟⎟⎠ , (9.2)

where the parameter σ describes the vulnerability of an already infected host to
infection by another strain (with higher virulence). In the extreme case σ = 0,
infection confers complete immunity to all other strains (an effect similar to vac-
cination); for σ = 1, an infected individual is as vulnerable as an uninfected one;
for σ > 1, infection weakens the immune system so that invasion by another strain
becomes more likely.

In Nowak and May (1994) it is shown that Equation (9.1) has one globally
stable fixed point, that is, one equilibrium that attracts all orbits from the interior
of the positive orthant. If this equilibrium lies on a face of the positive orthant,
then it also attracts all orbits from the interior of that face. In Nowak and May
(1994) this equilibrium is computed.

The important special case σ = 1 offers a quick solution. The unique stable
equilibrium is then given recursively in the following way,

i∗n = max{0, 1 − αn + d

β
} , (9.3a)

i∗n−1 = max{0, 1 − αn−1 + d

β
− 2i∗n } , (9.3b)

i∗n−2 = max{0, 1 − αn−2 + d

β
− 2(i∗n + i∗n−1)} , (9.3c)
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Box 9.2 SI models accounting for superinfection

In this box the simple model of Box 9.1 is modified to cope with superinfection.
We now have to deal with a number of different strains of parasite, which will be
labeled with the index j . If Ij denotes the density of hosts infected with strain j ,
then we obtain

d S

dt
= B − d S − S

n∑
j=1

βj Ij ,

d Ij

dt
= Ij (βj S − d − αj + σβj

j−1∑
k=1

Ik − σ

n∑
k= j+1

βk Ik ) , j = 1, . . . , n . (a)

Here αj denotes the virulence of strain j . Without restricting generality, we assume
α1 < α2 < . . . < αn . In our model a more virulent strain can superinfect a host
already infected with a less virulent strain. The parameter σ describes the rate at
which infection by a new strain occurs, relative to infection of uninfected hosts.
If either the host or the parasite has evolved mechanisms to make superinfection
more difficult, then σ would be smaller than one. If already-infected hosts are more
susceptible to acquiring a second infection (with another strain), then σ > 1, that
is, superinfection occurs at increased rates. The case σ = 0 corresponds to the
single-infection model discussed in Box 9.1.

To arrive at an analytical understanding we make the simplifying assumption
that the immigration of uninfected hosts exactly balances the death of uninfected or
infected hosts, B = d S + d I +∑n

j=1 αj Ij . In that case we can divide through by

N = S +∑n
j=1 Ij to obtain an equation for the relative frequencies

dij

dt
= i j [βj (1 − i) − d − αj + σ(βj

j−1∑
k=1

ik −
n∑

k= j+1

βk ik)] , j = 1, . . . , n ,

(b)

where i =∑n
j=1 i j . This is a Lotka–Volterra system of equations,

dij

dt
= i j (rj +

n∑
k=1

ajkik) , j = 1, . . . , n , (c)

with rj = βj − αj − d and the matrix A = (ajk) is given by

A = −

⎛
⎜⎜⎜⎜⎜⎝

β1 β1 + σβ2 β1 + σβ3 . . . β1 + σβn
β2(1 − σ) β2 β2 + σβ3 . . . β2 + σβn
β3(1 − σ) β3(1 − σ) β3 . . . β3 + σβn

...
...

...
. . .

...

βn(1 − σ) βn(1 − σ) βn(1 − σ) . . . βn

⎞
⎟⎟⎟⎟⎟⎠ . (d)
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Figure 9.1 For σ = 1 there is a simple geometric method to construct the equilibrium
configuration. Suppose there are n strains, given by their virulences α1, . . . , αn , and let i∗j
be their relative frequencies. We set xj = (αj + d)/β. (a) We only have to consider strains
with 0 < x1 < . . . < xn < 1 and their corresponding frequencies. (b) Draw verticals
with abscissae xj and construct a polygonal line with 45◦ slopes, starting on the horizontal
axis at abscissa 1, at first to the north-west until the first vertical is reached, from there
to the south-west until the horizontal axis is reached, then to the north-west until the next
vertical is reached, then south-west again, etc. The vertices on the verticals correspond to
the i∗j values that are positive. The strains with other virulences, marked by a star in (a), are
eliminated. Source: Nowak and May (1994).

...

i∗1 = max{0, 1 − α1 + d

β
− 2(i∗n + i∗n−1 + . . . + i∗2 )} , (9.3d)

This fixed point is saturated, that is, no missing species can grow if it is introduced
in a small quantity. Indeed, for each parasite strain j with equilibrium frequency
i∗j = 0 we obtain ∂i ′j/∂ik < 0 for a generic choice of parameters, see Hofbauer
and Sigmund (1998). Hence this fixed point is the only stable fixed point in the
system.

Equations (9.3) correspond to a very simple and illuminating geometric method
for constructing the equilibrium (see Figure 9.1).

For a given σ , one can estimate αmax, the maximum level of virulence present
in an equilibrium distribution. Assuming equal spacing (on average), that is, αj =
jα1, Nowak and May (1994) derive

αmax = 2σ(β − d)

1 + σ
. (9.4)

For σ = 0, we have αmax = 0, that is, only the strain with the lowest virulence sur-
vives, which for our scenario (with all transmission rates equal) is also the strain
with the highest basic reproduction ratio [see Equation (c) in Box 9.1]. For σ > 1,
strains can be maintained with virulences above β−d. These strains by themselves
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are unable to invade an uninfected host population, because their basic reproduc-
tion ratio is less than one.

From Equation (9.4) it can be deduced that the equilibrium frequency of in-
fected hosts

∑n
j=1 i j is given by

i = β − d

β(1 + σ)
. (9.5)

Hence, with greater susceptibility to superinfection (larger σ ) one obtains fewer
infected hosts!

Let us now return to the model with different strains having different infectiv-
ities, βj , as given by Equation (c) in Box 9.2. Here the solutions need not always
converge to a stable equilibrium. For n = 2, either coexistence (i.e., a stable equi-
librium between the two strains of parasites) or bistability (in which either one or
the other strain vanishes, depending on the initial conditions) is possible. An inter-
esting situation can occur if σ > 1, and strain 2 has a virulence that is too high to
sustain itself in a population of uninfected hosts (R0 < 1), whereas strain 1 has a
lower virulence with R0 > 1. Since σ > 1, infected hosts are more susceptible to
superinfection, and thus the presence of strain 1 can effectively shift the reproduc-
tion ratio of strain 2 above one. In this way, superinfection allows the persistence
of parasite strains with extremely high levels of virulence.

For three or more strains of parasite we may observe oscillations with increas-
ing amplitude and period, tending toward a heteroclinic cycle on the boundary of
Rn+, that is, a cyclic arrangement of saddle equilibria and orbits connecting them
(comparable to those discussed in May and Leonard 1975, and Hofbauer and Sig-
mund 1998). Accordingly, for long stretches of time the infection is dominated by
one parasite strain (and hence only one level of virulence), until suddenly another
strain takes over. This second strain is eventually displaced by the third, and the
third, after a still longer time interval, by the first. Such dynamics can, for ex-
ample, explain the sudden emergence and re-emergence of pathogen strains with
dramatically altered levels of virulence.

To explore the case of nonconstant infectivities, Nowak and May (1994) assume
a specific relation between virulence and infectivity, βj = c1αj/(c2 + αj ) for
some constants c1 and c2. For low virulence, infectivity increases linearly with
virulence; for high virulence the infectivity saturates. For the basic reproduction
ratio this means that, for strain j

R0, j = c1 Bαj

d(c2 + αj )(d + αj )
. (9.6)

The virulence that maximizes R0 is given by αopt = √
dc2. For σ = 0 (no multiple

infection), the strain with largest R0 is, indeed, selected. For σ > 0, selection leads
to the coexistence of an ensemble of strains with a range of virulences between two
boundaries αmin and αmax, with αmin > αopt.

Thus superinfection has two important effects:
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� It shifts parasite virulence to higher levels, beyond the level that would maxi-
mize the parasite reproduction ratio;

� It leads to the coexistence of a number of different parasite strains within a
range of virulences.

We note from Figure 9.2 that strains have a higher equilibrium frequency if the
strains with slightly larger virulences have low frequencies. Conversely, if a strain
has a high frequency, strains with slightly lower virulence are extinct or occur at
very low frequencies. This implies a “limit to similarity,” that is, a spacing of the
coexisting strains, which agrees well with the construction of the equilibrium in
the special case of constant β and σ = 1, see Figure 9.1.

Limits to similarity are well-known in ecology and, indeed, the epidemiological
model above turns out to be equivalent to a metapopulation model introduced inde-
pendently, and in an altogether different context, by Tilman (1994). The different
strains play the role of distinct species and the hosts play the role of ecological
patches. This is further analyzed in Nowak and May (1994) and Tilman et al.
(1994); also see Nee and May (1992) for a related analysis.

If mutation keeps generating new strains with altered levels of virulence, then
there will be an ever-changing parasite population, in which the virulences are
restrained by selection to a range between αmin and αmax. Indeed, there will always
be new strains capable of invading the polymorphic population. Some of the old
strains may then become extinct, and many of those surviving strains with lower
virulence than the newcomer will have altered frequencies.

If this evolutionary dynamics is iterated for a very long time, then one can
define a distribution function i(α) that describes the long-term equilibrium fre-
quencies of strains as a function of their virulence, α. A semi-rigorous argument
suggests that i(α) is given by a uniform distribution over the interval [αmin, αmax].
Extensive numerical experiments suggest that this distribution is globally stable
for the mutation–selection process.

9.3 Coinfection
We now turn to the case of coinfection, and assume therefore that the infectivity
of a strain is unaffected by the presence of other strains in the same host. Again,
we derive a simple model and investigate it first analytically (after further simpli-
fications) and then by means of numerical simulations.

As before, we denote by i j the fraction of the host population infected by strain
j , and assume that the strains are numbered in order of virulence: α1 < . . . < αn .
Several parasites can be present in the same host, and so

∑n
j=1 can exceed the

fraction of all hosts that are infected.
If we assume that the death rate is determined by the most virulent strain har-

bored by the host, we obtain a simple dynamic model presented in Box 9.3.
The equilibria of Equation (a) in Box 9.3 must satisfy, for all j , either

i j = 0 , (9.7a)
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Figure 9.2 (a) to (e) Equilibrium distribution of parasite virulence for the superinfection
model. The horizontal axis denotes virulence, and the vertical axis indicates equilibrium
frequencies (always scaled to the same largest value). The simulation is performed ac-
cording to Equation (b) in Box 9.2 with B = 1, d = 1, n = 50, βj = 8αj/(1 + αj ) and
σ = 0, 0.1, 0.5, 1, or 2 [in (a) to (e)]. The individuals αj are assumed to be regularly spaced
between 0 and 5. Thus α1 = 0.1, α2 = 0.2, . . . , α50 = 5. For σ = 0 (the single-infection
case) the strain with maximum basic reproduction ratio, R0 [displayed in (f)], is selected.
With σ > 0 we find coexistence of many different strains with different virulences, αj ,
within a range αmin and αmax, but the strain with the largest R0 is not selected; superin-
fection does not maximize parasite reproduction. For increasing σ , the values of αmin and
αmax also increase. Source: Nowak and May (1994).

or

i j = 1 − (α j + d)/βj . (9.7b)

Using Equations (b) and (c) in Box 9.3, the equilibrium values of ij can be com-
puted in a recursive way, starting from in = 1 − (αn + d)/βn .



9 · Super- and Coinfection: The Two Extremes 133

Box 9.3 SI models accounting for coinfection

With i j denoting the fraction of individuals harboring strain j (possibly in addition
to various other strains), a simple model for coinfection is

dij

dt
= i j [βj (1 − i j ) − d − α j ], j = 1, . . . , n . (a)

The total population size of hosts is assumed to be held constant, and is normalized
to one. The infectivity (transmission rate) of strain j is denoted by βj . Strain j can
invade any host that is not already infected by strain j . Thus βj i j (1 − i j ) is the rate
at which new infections with strain j occur.

There is a natural death rate d and a disease induced death rate α j which denotes
the average death rates of hosts infected by strain j , and is assumed to be given by
the strain with the highest virulence in the host. We define pj as the probability that
a host is not infected with a strain more virulent than j . That is,

pj =
n∏

k= j+1

(1 − ik) . (b)

Note that pn = 1 and pi = (1−i j+1)pj+1. The fraction of hosts that are uninfected
is given by p0 = ∏n

k=1(1 − ik). The probability that k is the most virulent strain
found in a host is ik pk , and

α j = αj pj +
n∑

k= j+1

αk ik pk . (c)

This coinfection model is completely defined by Equations (a) to (c). We note that
infection and death rules are devised such that if the strains are randomly assorted
relative to each other, this continues to be the case, so that Equation (a) remains
correct.

If the transmission rates βi are all equal to some value β, then, as shown in May
and Nowak (1995), the following expressions for the average virulence α and the
fraction s∗ of uninfected hosts are approximately valid (see Figure 9.3)

α = β − d −√2β(β − d)/n , (9.8a)

and

s∗ = 4 exp[−√2n(β − d)/β] . (9.8b)

One can similarly investigate coinfection if the transmission rate is not constant,
but an increasing function of virulence, for instance

βj = c1αj/(c2 + αj ) , (9.9)

with constants c1 and c2. The basic reproduction ratio for strain j is given by

R0, j = c1αj

(c2 + αj )(d + αj )
. (9.10)
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Figure 9.3 Equilibrium distribution of parasite virulence for the coinfection model given
by Equations (a) to (c) in Box 9.3 with uniform transmission rate β = 2 and d = 1. The
individual parasite strains have randomly assigned levels of virulence ranging from 0 to 1.
For different numbers of strains n the equilibrium population structure is computed accord-
ing to Equation (9.7b). (a) n = 20 parasite strains. (b) n = 200 parasite strains. For large n
there is excellent agreement between the numerical calculations and the theoretical curve,
given by Equation (9.8a). (c) The basic reproduction ratio R0 as a function of virulence.
Source: May and Nowak (1995).

R0 is thus maximized by the strain with virulence α = √
dc2, and takes the value

c1/(
√

d + √
c2)

2. The minimum and maximum virulence values for strains that
have the potential to maintain themselves within the host population, α− and α+,
respectively, are given by

α± = 1

2

[
c1 − d − c2 ±

√
(c1 − d − c2)2 − 4dc2

]
. (9.11)

In Figure 9.4 the results for coinfection are illustrated for transmission rates that
increase with virulence.
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Figure 9.4 Equilibrium distribution of parasite virulence for the coinfection model with
a trade-off between transmission rate βj and virulence αj given by βj = 5αj/(1 + αj ).
The natural death rate is again d = 1, and the parasites have levels of virulence uniformly
distributed between 0 and 3. The virulences of the persisting strains are between αmin and
the maximum level of virulence that corresponds to R0 = 1, i.e., α+ = (3 + √

5)/2. (a)
n = 20 parasite strains. The average virulence is α = 1.9246 and the fraction of uninfected
hosts is s∗ = 0.5716. (b) n = 200 parasite strains. Here α = 2.3039 and s∗ = 0.1952.
(c) The basic reproduction ratio, R0, as a function of virulence. Source: May and Nowak
(1995).

9.4 Discussion
Multiple infections cause intra-host competition among strains and thus lead to
an increase in the average level of virulence above the maximal growth rate for a
single parasitic strain.

The simple models for superinfection (transmission only of the most virulent
strain within a host) and for coinfection (all strains transmit independently of other
strains present in the host) represent extremes that are likely to bracket the reality
of polymorphic parasites. In both cases, we find the expected tendency toward the
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predominance of strains with a virulence significantly higher than that maximizing
reproduction success of parasites in the single-infection case. The number of per-
sisting strains and the range of their virulence, however, differ in the two cases of
super- and coinfection. The latter allows for a larger number of coexisting strains,
more closely grouped around the virulence level with the maximal reproduction
ratio, than does the former.

The basic reproduction ratio is not maximized. With superinfection, the strain
with highest R0 may even become extinct, and strains with very high levels of
virulence can be maintained (even strains so virulent that they could not persist
on their own in an otherwise uninfected host population). Both superinfection
and coinfection lead to polymorphisms of parasites with many different levels of
virulence within a well-defined range.

Superinfection can lead to very complicated dynamics, with sudden and dra-
matic changes in the average level of virulence. The higher the rate σ of superin-
fection the smaller the number of infected hosts.

It is particularly interesting to investigate evolutionary chronicles. What hap-
pens if mutation, from time to time, introduces a new strain? In the case of super-
infection, according to the “limit to similarity” principle, only those mutants suf-
ficiently different from the resident strain with next-higher virulence can invade;
they then affect the equilibrium frequencies of the resident strains with lower vir-
ulence, possibly eliminating some of them. The average total number of strains
increases slowly (logarithmically in time). On the other hand, these limits to simi-
larity result in a wide range of virulence values persisting in the system.

By contrast, coinfection models have no limits to similarity, and surviving
strains are packed ever closer as time goes on, constrained to a narrow band of
virulence values. If we assume again that mutants are produced at a constant rate,
we find that, asymptotically, the total number of persisting strains increases with
the square root of time.

In the superinfection case, removing a certain percentage of potential hosts (for
instance by vaccination) results in a sharp drop in the number of strains, eliminat-
ing the most virulent strains. Indeed, if there are fewer hosts, then the overall inci-
dence of infection is lower, and fewer hosts are superinfected; thus strains favored
by their within-host advantage do less well than those favored by their between-
host advantage. After the onset of vaccination, the total number of strains slowly
recovers again, but not the average virulence (see Figure 9.5). Thus even if vac-
cination eliminates only a fraction of the potential hosts, and therefore has little
long-term effect on the number of strains, it produces a lasting effect by reducing
the average virulence.

At present, many instances of multiple infections are known, but there are dis-
appointingly few data on the coinfection function (the actual rate of invasion by
a more virulent strain). Mosquera and Adler (1998) make the point that many
previous models are based on the assumption that this coinfection function is dis-
continuous: even a marginally more virulent strain will immediately, and certainly,
displace its less virulent predecessor (see, e.g., May and Nowak 1994, 1995; Van
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Figure 9.5 (a) The number n of pathogen strains present at time t , in the superinfection
model, with mutations arising uniformly in the interval 0 ≤ α ≤ 1. At time t = 3 000,
the total number of hosts h is decreased by 50%. The number n(t) subsequently increases
again. At t = 6 000 the number of hosts is reduced to 10% (since the rate of new mutants
able to invade is 10% of the former value, the growth in n proceeds at a slower rate). (b)
Corresponding average values of the virulence as a function of time. Removal of a fraction
of the hosts permanently reduces the average virulence by that same fraction. Source: May
and Nowak (1994).

Baalen and Sabelis 1995a). Continuous coinfection functions produce different
results. Individual-based modeling and clinical research are needed to test the im-
plications of the current superinfection models on the evolution and management
of virulence.
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