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16.1
Introduction

Ernst Mayr [1] argues that the ‘greatest conceptual revolution that has taken place in
bioclogy’ is the replacement of typological thinking by population thinking. In some
way, the tremendous progress in molecular biology during the last decades has
threatened to obscure this fact. It is certainly essential to understand the chemical
mechanisms going on between specific molecules — how viruses, for example, use
binding proteins to attack and penetrate hosts cells, But this does not suffice to
tackle basic problems like, for instance, disease progression or the co-evolution of
hosts and parasites. It is populations of virus particles, or immune cells, or hosts, or
genes, that regulate each other’s frequencies.

Although he had no mathematical training, Darwin was aware of the intricate dy-
namics of interacting populations. ‘Throw up a handful of feathers’, he wrote in The
Origins of Species, ‘and all must fall to the ground according to definite laws. But how
simple is this problem compared to the action and reaction of the innumerable
plants and animals.” And more explicitly, he describes how, ‘if certain insectivorous
birds wete to increase in Paraguay, a species of flies would decrease’, how this de-
crease would cause cattle to become abundant, because the flies parasitise newborn
calves, and how this in turn ‘would certainly greatly alter the vegetation,..., and this
again would largely affect the insects; and this again the insectivorous birds ... and so
onwards in ever-increasing circles of complexity.’ As another example of ‘how plants
and animals, most remote in the scale of nature, are bound together by a web of com-
plex relations’, Darwin wrote: ‘It is quite credible that the presence of a feline animal
in large numbers might determine, through the intervention first of mice and then
of bees, the frequency of certain flowers!” Such feedback loops are too complex to be
understood by verbal arguments alone. The biological community has come to ac-
cept that basic aspects of evolutionary ecology, and related feedback mechanisms in
immunology and epidemiology, can only be analysed by mathematical means.

The corresponding non-linear control mechanisms are gold mines for mathemati-
cal modellers. These mines have been exploited throughout the past century, and gi-
ven rise to many important mathematical techniques and concepts (for instance
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chaotic dynamics, branching processes or travelling waves, to name but a few). The
mathematical work of Fisher, Haldane, Wright and Kimura has shaped genetics, that
of Volterra and May ecology, and that of Kermack and McKendrick epidemiology.
During the last decades, mathematical models have blossomed in these fields, and
are increasingly used to shape experimental research in virology, epidemiology, con-
servation biology or animal behaviour. The degree of mathematisation is unlikely to
reach that in physics, but mathematical concepts like evolutionary stability, replicator
dynamics, or basic reproductive ratios have become essential tools in biological dis-
cussions.

We propose to sketch here a few recent developments. Our aim is to emphasise
the basic similarity of frequency-dependent selection across all scales of nature,
from RNA viruses to human societies. In order to highlight the interplay of demo-
graphic variables, we purposely neglect other factors which often affect the dy-
namics, like time-delays, stochastic fluctuations or spatial distributions (see e.g. [2]
or [3)). In this survey, we sketch

(1) the mathematical framework based on ordinary differential equations;

(2) some applications in mathematical ecology, including in particular virus dy-
namics and epidemiology;

(3) some concepts of evolutionary game dynamics and the dynamics of adaptation,
and

(4) their impact on the investigation of the emergence of cooperative societies.

16.2
The Framework: Population Dynamics

Let x; (1) denote the density of population i at time t and let «; be its time derivative.
The per capita increase to population growth, i.e. %;/x;, will in general depend on the
frequencies of some or all of the other species in the ecosystem. This yields the eco-
logical equation

7&i=xiﬁ{xl----vxu} (1)

on the positive orthant R!. This state space is invariant, and so are its boundary
faces, where some of the population densities vanish. In the scenario considered
here, if a population is absent, it remains so: we neglect the possibility that migra-
tion, or mutation, can introduce it into the ecosystem. Depending on the biological
interaction, the growth rate f, can take many forms. Often, for instance, a population
is self-limiting, i.e. f; is decreasing in x; (in other situations, we may have an Allee ef-
fect, where f; is an increasing function of the density x; as long as it is small (more in-
dividuals would mean more chances to find a mate). Whether f; grows or decreases
as a function of density x; (with j # i) depends on whether population j competes for
the same resources, or predates on i, etc. The very simplest case, when the f; are lin-
ear function, leads to the class of Lotka-Volterra equations
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x,-:x,-(r,-+2au-xj) i=1,...,n (2)

j=1

which covers a wide spectrum of possible types of interaction and displays many pos-
sible dynamical behaviours (for a survey, see [4] or [5]). In the case of a prey-predator
interaction, for instance, the trajectories either converge to the boundary (if the prey
is unable to support the predator population) or else they spiral in damped oscilla-
tions towards an equilibrium with both populations coexisting. In the case of two
competing species (the r; are positive and the a;; all negative) three outcomes are
generically possible: dominance of one species which, for every initial condition,
eliminates the other species; coexistence of both species in a stable equilibrium; or
bistability (one species eliminates the other, but the outcome depends on the initial
condition).

Two-dimensional Lotka-Volterra equations are easy to classify, but for three dimen-
sions, the behaviour is much more complex. If two predator species depend on one
common prey species, chaotic dynamics are possible: irregular oscillations which do
not damp down, and display a very sensitive dependence on the initial condition.
With three competing species, chaotic behaviour can be ruled out, but nevertheless,
a complete classification has not been achieved yet. One of the reasons for this is the
existence of so-called heteroclinic attractors. It can happen that in the absence of the
third species, species 1 is dominated by 2; similarly, 2 is dominated by 3, and 3 by 1
(see [6]). Such rock-scissors-paper cycles are not a mathematical artefact: they have
been observed in lab experiments on microorganisms (see [7]), and are likely to play
a role in real ecosystems.

Indeed, the heteroclinic cycles and networks become more and more likely if the
number of interacting species increases. In their simplest form, such networks con-
sist of finitely many equilibria which are all saddle-points, and of orbits connecting
these saddle points in the sense that they lead, for t — —o0, to one equilibrium and
for t — +0o to another. The corresponding network is supposed to be transitive
(which means that one can journey along such saddle connections from any equili-
brium to any other one). It can be shown that such networks can occur as limit sets
of orbits: there are trajectories which, for arbitrary large time, visit arbitrarily small
neighborhoods of every point of such a network {and of no other point). The beha-
viour of such trajectories is quite striking: they hover for some time close to one equi-
librium point, then switch relatively fast to another equilibrium, where they linger
for a much longer time, then switch brusquely to the next equilibrium etc. This is
not a periodic oscillation: the times spent near saddle points increase exponentially.

In the case of three competing species dominating each other in a rock-scissors-
paper cycle, a trajectory attracted by such a heteroclinic cycle will spend more and
more time closer and closer to the boundary. A small stochastic fluctuation will even-
tually wipe out whichever species happens to be here in a marginal quantity only. Of
the two remaining species, one will be eliminated by the other, and hence we end up
with one species only. But such an one-species equilibrium is unstable: if the ‘right’
missing species is introduced in a tiny minority, it will be able to invade and even-
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tually take over; but the resulting one-species equilibrium is again prone to invasion
by the next species, etc. It is quite likely that many of the sudden transitions and re-
current instabilities which we are witnessing in real ecosystems are based on such
heteroclinic networks.

As we have seen, a heteroclinic cycle on the boundary of the state space R} (where
some x; are 0) which attracts orbits from the interior of the state space (where all spe-
cies are present) spells the doom for some species and hence implies a type of ecolo-
gical instability. In contrast, we shall say that an ecosystem modelled by (1) is ecologi-
cally stable, or more precisely permanent, if the interior of R7 contains a compact set
K which attracts all orbits in the interior, Whenever the system starts from a state
with all populations present, then after some transition period, the trajectory will be
close to K and hence cushioned away from the boundary: if fluctuations are suffi-
ciently small and rare, they will not be able to eliminate some population. A system
is permanent, therefore, if the boundary of the state space is a repellor. This new,
ecologically motivated notion of stability has proved quite successful (see [4] and [8]).
Especially in the case of Lotka-Volterra equations (2), there exist quite a few useful
necessary conditions for permanence, and also some sufficient conditions (but so
far, no useful necessary and sufficient condition).

Permanence concerns the extinction of some populations in the ecosystem. The
other side of the coin is the invasion of a resident community by a small minority of
a newly introduced population n + 1. If the resident community is at an equilibrium
(21, ..s Z,), the success of such an invasion attempt will depend on the sign of the
growth rate f,,1(z;, ..., 2,, 0), i.e. the eigenvalue at the equilibrium (z;, ..., z,, 0)
which is transversal to the boundary face x,,,, = 0. If it is positive, the missing species
can invade. This in itself, of course, says nothing about the further development. If
population n + 1 invades, it can simply join the other populations, so that the num-
ber of resident populations increases, or it can eliminate some of the residents, or it
can even, after an initial growth phase, eliminate itself! The problem becomes much
more complex if the attractor of the resident system is not a point, or a periodic orbit,
but a strange attractor. Obviously, in such a case the growth rate of population n + 1
has to be averaged, but with respect to which measure? This leads to interesting er-
godic problems concerning intermittency, riddled basins etc. (see [9], [10], [11]).

16.3
Applications in Ecology, Epidemiology and Immunology

An intriguing aspect of classical population ecology concerns the top predator -
a species at the top of the food chain, with no predator preying on it. Top predator po-
pulations are usually small, and vulnerable to extinction. What happens if a top pre-
dator is removed, either through natural causes or through human intervention?
One would tend to assume that the elimination of such a supreme exploiter im-
proves the conditions of the other species in the ecosystem. In fact, ecologists have
repeatedly found that this is not the case. The diversity of the remaining ecosystem
drops drastically, often to less than half the former number of species.
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Mathematical models show that this should not come as a surprise.The fact that a
permanent system admits only considerably smaller permanent subsystems is the
rule rather than the exception. This has interesting applications to the field of com-
munity construction (see [12], [13], [14]). Let us consider a given (often fictitious)
‘species pool and construct an artificial ecosystem by drawing, at random, some
members of that pool and introducing them, in small number, into some habitat.
This experiment can be viewed as a sequence of invasion attempts. Some attempts
will succeed, some will fail. The diversity of the resulting ecosystem can grow or de-
crease. It often happens, in such experiments, that at some stage no further invasion
attempt can succeed. It can also happen that the composition of the ecosystem cycles
indefinitely. Many of the resulting ecosystems cannot be constructed by simply add-
ing one resident after another. It often happens, for instance, that the permanent n
population system admits no permanent (n - 1)-subsystem. The n-species system
has to be constructed in a more roundabout way involving some extra species, in a
way which resembles the construction of an arch: the extra species play the role of a
scaffolding which is later removed. The current emphasis of population ecology on
the contingency and history-dependence of evolving ecosystems fits well with this
modelling approach.

A particularly important chapter of population dynamics concerns the spread of
infectious diseases (see e.g. [15]). The simplest model in the monumental book by
Anderson and May [16] describes the frequencies x and y of uninfected and infected
individuals in one (well-mixed) population by the equation:

x=k—dx+cy— Py 3)
y=Pxy—dy—vy—cy.

In the absence of the infection (y = 0) the frequency x converges to the uninfected
equilibrium k/d. But if infected individuals are present, then random contacts trans-
form uninfected into infected (this corresponds to the term fxy). Conversely, infected
can recover (cy) and become uninfected again (for the sake of simplicity we neglect
to consider the effects of acquired immunity in this model). The term v describes the
additional mortality due to the infectious disease — the so-called virulence. One sees
immediately that the number of uninfected, y, can only grow if the number of in-
fected x exceeds the threshold #/(d + v + ¢). Hence the pathogen carrying the disease
(usually a parasite, for instance a virus or a bacterium) can only invade if this thresh-
old is smaller than k/d. This means that the so-called reproductive ratio
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has to be larger than 1. R, is the average number of infections caused by one infected
individual in an otherwise uninfected population, As soon as this model is extended
to cover more realistic situations (by taking account of spatial or temporal effects,
the multiplicity of risk groups, immune reactions etc) it becomes considerably more
complex (see [17] and [18]).
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Models of this type describe the population ecology of parasites and their host spe-
cies. They are obviously closely related to predator-prey models: the more parasites,
the worse for the host, the more host, the better for the parasite. Hence we may ex-
pect a similar dynamical behaviour. Thus parasites can, in their role as keystone spe-
cies, mediate the permanence of an ecosystem. Many biologists see in microbes a ba-
sic cause for the biodiversity prevailing in nature. The models lead to damped or
chaotic oscillations, and to heteroclinic cycles. In the simplest case, this happens
when two strains of the host population live in a bistable equilibrium, each one at-
tacked by its own specialised strain of parasite. In a population of host species 1, the
host species 2 cannot take hold. But the parasite strain 1 can invade, and weaken the
host population 1 to such an extent that host 2 can invade and, in fact, eliminate host
1 (together, of course, with its parasite 1). But now, parasites of type 2 can enter, etc.

So far, these models describe the evolution of the parasite population at large, and
its interaction with the entire host population. But an important new chapter of po-
pulation ecology describes the dynamics of parasite populations within one host or-
ganism. This has been first studied for HIV (for a survey of such models, see [19)). It
is well known that a long latency period with a median value of ten years or more se-
parates infection from the outbreak of the full-blown AIDS-symptoms. For a long
time, this seemed to reflect a strange period of apparent quietness in the behaviour
of the virus. But clinical research based on the applications of methods of mathema-
tical demography has shown that during this so-called latency, the body of the in-
fected host contains usually more than 10" free virus particles, and that its immune
system is engaged in a tremendous battle. On average, free virus can only survive for
a few hours, and infected cells for one or two days. The fast dynamics and the huge
population numbers offer excellent conditions for modelling the immune reaction
by methods developed in mathematical ecology.

HIV plays a double role in this context (see [20]). On the one hand, the virus is ob-
viously a predator exploiting certain cells of the infected body - the blood cells, the
lymph cells, so-called target cells. On the other hand HIV is the prey of certain
highly specialised cells of the immune system, whose mass production is stimulated
by the infection — so-called killer cells (B-cells, CTH4 cells etc). Which role is more
important for the viral population dynamics, that of predator or that of prey? Mea-
surements have shown that they are of comparable importance [20]. Hence models
have to include both effects. But as is well-known from mathematical ecology, the dy-
namics of prey-predator-superpredator models can be quite involved.

A basic model (see [19]) is the following:

% =k —dx — flaw

y = fxw — ay — pyz (5
w = hy — dw

z=cyz —bz.

Here x is the frequency of uninfected target cells, and y that of infected target
cells. w is the frequency of free virus and z that of killer cells. These killer cells de-
stroy infected cells, and thereby increase their own reproduction (this corresponds to
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the zy terms), When infected cells burst, they release free virus, and these enter un-
infected cells (xw). This leads to damped or undamped oscillations and even to Hopf
bifurcations. Mathematical demographers work in close contact with clinical re-
search teams, since it is clear that verbal, qualitative arguments are not sufficient to
deal with the complex feedback loops occuring in such systems.

As an example of the intricacies involved, let us stress that each HIV contains sev-
eral loci (so-called epitopes) which stimulate specific immune responses which
otherwise would remain dormant. There may be seven or ten such epitopes, but let
us assume, for the sake of the argument, that there are only two such loci, A and B,
each with two possible molecular configurations. A; and A, stimulate the production
of immune responses with the frequencies x, resp. x,, whereas B; and B, stimulate
responses of magnitude y, resp. y,. If v;; describes the frequency of virus of the type
A;B; (with i,j = 1,2) then the very simplest ansatz yields already an eight-dimen-
sional Lotka-Volterra equation. This system is not permanent: the important part of
the dynamics occurs close to the boundary of the state space. If, for instance, only
the type A, B, is present in the viral population, then one immune response — for in-
stance x; — prevails over all other responses (and in particular over y,). This is the so-
called immunodominant response [21]. But if mutation on the epitope A introduces
a small minority of the viral strain A,B,, then the immune system can either not re-
actat all, or react by producing x;, or by producing y;. In the latter case, we observe a
shift in immunodominance: the immune response is now centered on the other epi-
tope, although it had not been affected by the mutation. This phenomenon must be
taken into account for the design of drugs and vaccines. One has to consider whether
it is better to attack an epitope with a high responsiveness, or an epitope which is
consetvative in the sense that it is unlikely to mutate and hence to escape from the
immunodominant answer.

HIV spends on average 1500 generations in the body of an infected host. Since it
replicates very sloppily, many mutations occur during this period, leading to a con-
tinuous increase in genetic diversity. It may well be this diversity which overcomes
the immune system in the end. Other viral and bacterial parasites also display high
mutation rates (although in general not of the same magnitude as HIV). This pro-
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Fig. 2 The basic reproductive ratio of viral dynamics is defined
a number of infected cells that are produced by any one infected
cell (when almost all cells are still uninfected). In terms of the ba-
sic model of virus dynamics (Fig. 1) each infected cell produces
on average k/a virus particles, a quantity that is usually denoted
as ‘burst size’. These virus particles produce Ry newly infected
cells. If Ro<1 the infection cannot proceed. If Ry>1 the infection
can proceed. Succesful anti-viral therapy has to reduce Rq below
1. Resistance to antiviral therapy can be interpreted as Ry values
of certain mutants exceeding 1.

vides constantly new variants submitted to natural selection. On the one hand, these
variants have to multiply quickly within the host, on the other hand, they must be
good at transiting from one host organism to the next. These are in general quite dif-
ferent selective forces. Fach genetic variant of the parasite corresponds to a different
strategy.

For a long time biologists assumed that natural selection would always lead to a
decrease in virulence: indeed, it is obviously in the basic, selfish ‘interest’ of the para-
site to keep the host organism alive and mobile for as long as possible. Mathematical
models have shown that this textbook wisdom was erroneous ([16], [22], [23]). An op-
timal parasite must have a basic reproductive ratio Ry which is as large as possible.
Equation (3) suggests that this entails a virulence v which is as small as possible. But
this is wrong: in general, the infectiousness f is an increasing function of v and
therefore the optimal value for the virulence need not be the minimal value.

If co-infection occurs within the host organisms, i.e. if several strains of parasites
compete within the same host, then optimisation of the virulence will not occur. A
restraint in the exploitation of the host would only be to the benefit of the rival
strains. The situation is similar to the so-called tragedy of the commons. Competi-
tion for a common ressource leads to its over-exploitation. For such scenarios, opti-
misation arguments lead to the wrong conclusions. They have to be replaced by
game theoretic arguments.
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16.4
Evolutionary Games and the Dynamics of Adaptation

Natural selection essentially means that whenever an inheritable trait occurs in sev-
eral variants within a population, then those variants which yield more offspring in-
crease in relative frequency. Sub-optimal variants vanish if the reproductive success
is independent of the frequencies of the variants. Such situations are doubtlessly
common: for instance, the aerodynamical qualities of a birds wings are independent
of what other birds are doing. On the other hand, the sex ratio is a trait whose suc-
cess depends on the sex ratio of the other members of the population. If there is a
surplus of males, it pays more to produce daughters, and vice versa.

Game theory can be used to analyse such instances of frequency dependent selec-
tion (see [24], [25] or [4]). The strategies are the different variants of some inheritable
trait, and the payoff is the increase in fitness (i.e. reproductive success). The game
dynamical replicator equation describes the time-evolution of the frequencies x; of
strategies i. They increase if i has more than average success, and decrease other-
wise. But the changes in frequency can affect the success. The game dynamical repli-
cator equation is given by

N=x(fi—-f) i=1...n (6)

where f; = 3. a;;x; is the fitness of strategy i and f=Y,%f is the average fitness of
the population. The payoff for i versus j is given by a;.

The state space is the unit simplex S, (since }_x; = 1 must always hold). Again,
the state space is invariant, and so are its boundary faces, where some strategies do
not occur in the population. Transversal stability, permanence, invasion etc can be
treated as before.

If there are only two strategies, then dominance, coexistence or bistability are again
the three options. Let us assume, for instance, that there are only two possible beha-
vioural types for conflicts within one species: individuals can either be ready to esca-
late the conflict until it is settled by the injury of one contestant, or else they can stick
to some conventional display of strength and flee as soon as the rival starts to escalate
the fighting. In this case, each of the two strategies will be able to invade a population
where the resident type uses the other strategy: if all residents escalate, it is better to
avoid a fight, whereas if all residents stick to conventional displays, it is better to esca-
late. As a result, natural selection will lead to a mixed population where the two beha-
vioural morphs coexist, at a stable frequency. The proportion of individuals ready to
escalate is given by G/C. Here, G is the gain in fitness from winning the object of the
contest, and C is the cost of an injury (we assume G<C). It follows that the species
which are heavily armed (high C) will be those most reliably sticking to conventional
fighting — a result that was well known among students of animal behaviour long be-
fore Maynard Smith succeeded in explaing it by means of game theory.

If more than two strategies are present in the population, the dynamical outcome
can be much more complex. In particular, heteroclinic cycles of rock-scissors-paper
type can occur. Nothing may seem more abstruse than the idea of animals playing a
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rock-scissors-paper game, but there exists actually a well documented case of three
inheritable morphs A, B, C for male lizards of a certain species, where A is domi-
nated by B, B by Cand C by A again. These three morphs are characterised by differ-
ent types of mating behaviour (which most conveniently correlate with throat col-
our). Type A males live monogamously, and guard their female jealously. They can
be outcompeted by type B males, who have a larger harem, but cannot guard their fe-
males as closely. A type B population offers opportunities for type C males, who do
not guard any females, but drift around and look out for opportunities to mate
sneakily with an unguarded female. In a type C population, the more bourgeois type
A can invade in turn, etc (see [26]).

By now, methods from evolutionary game theory are well established in animal
behaviour. But these methods are also enriching classical game theory (see [27)), in
spite of the fact that one of its basic assumptions, the rationality axiom, clearly has to
go overboard. For instance, problems in bounded rationality or in equilibrium selec-
tion have become much more tractable. Arguments using population dynamical
concepts (like migration, selection or invasion) are increasingly used even in social
or economic applications of game theory. In particular, a plethora of approaches to
learning mechanisms can be subjected to game dynamics. Strategies, here, are no
longer inherited but imitated.

Although there always exist Nash equilibria, which are fixed points of the game dy-
namics, such equilibria need not be attractors. It may easily occur that under the ef-
fect of selection, or learning, almost no trajectory converges to such an equilibrium.
Often, the behaviour is much more dynamical. This is the case, for instance, when
we consider virulence as the strategy of a parasite. In the case of co-infection, or of
superinfection (where it is assumed that the more virulent parasite instantaneously
takes over in the host organism, see [28]), there is no evolutionarily stable degree of
virulence. There is always the opportunity for new variants to enter the parasite po-
pulation, and to eliminate some residents, in endless cycles which reflect the emer-
gence and re-emergence of virulent strains.

Clearly, it is not only the parasite that evolves: the host is also submitted to a
strong selective pressure. This leads to a co-evolutionary arms race, with alternating
moves and countermoves by both populations. At first glance, the host seems hope-
lessly handicapped, since the parasite, usually, has a much shorter generation span.
As soon as an immune system is fairly common, adaptation will bring forth para-
sites that are able to resist. Hence, an immune system can only be successful if it is
rare. But if it is successful, it will spread and hence stop being rare.

However, there exists a way leading host species out of this impasse. By recombin-
ing sexually, they can keep all immune systems rare. Parasites will encounter a shift-
ing target — or more precisely, a permanently reshuffled pool of genotypes controling
the immune answer. The corresponding models show endlessly repeated oscillations
in the gene frequencies of both host and parasite species (see [29]).

This is an instance of the so-called Red Queen theory of coevolution. In the coun-
try of the Red Queen (a figure from Beyond the Looking Glass, the sequel of Lewis Car-
roll's Alice in Wonderland), all have to run as fast as possible just to stay at the same
place. And indeed, the endless sequence of adaptations and counteradaptations may
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appear like a treadmill leading nowhere. Nevertheless, there have been some unde-
niable instances of progress in biological evolution — the so-called major transitions
in evolution, encompassing the discovery of sexual recombination, cell differentia-
tion, the immune system of mammals or the nervous system (see [30]). In contrast
to virulence, where the evolution takes place under our eyes, the major transitions
are not subject to our direct observation. To understand them, one has to use
throught experiments and mathematical models.

The evolution of sex is arguably hardest to understand. Aside from the parasite-
driven Red Queen theory for sex, there are several other contenders, most of them
relying heavily on mathematical arguments (see [31]). And once we assume sexual
recombination as given, other problems do come up (see [32]). Why are there usually
two ‘sexes’ - two mating types A and B so that individuals of type A can mate with
type B individuals, but not with type A individuals [33]? And why are there usually
two and not three sexes? Why are the two sexes usually producing sex cells of differ-
ent type, one of them producing few, but large gametes (the eggs) and the other one
many tiny ones (the sperm), which often possess a high degree of mobility (see
[34])? Once this basic difference between males and females has developed, other
conflicts occur. Some of them concern parental investment. Males can have many
more offspring than females. They are tempted to desert their mates, since females
have much more to lose from failing to raise their brood. Females can counteract,
for instance by insisting on a long engagement period. If females have the option of
being coy (mate only after a long engagement) or fast, and males the options of
being faithful (i.e. accept the engagement period) or philanderers, then adaptation
and counteradaptation can lead to heteroclinic cycles in the strategies of the two
sexes. Furthermore, the potentially higher reproductive success of males leads, on
one hand, to combats between males, and on the other hand, to female choice based
on male signals (for instance the peacock’s tail). All these are examples of frequency-
dependent selection in action: the success of a trait depends on how abundant it is
in the population. Evolutionary game theory has provided a theoretical framework
for dealing with each of these questions (see [24]).

Sexual replication does not only bring drama into life. It also provides challenging
tasks for mathematical modellers. They can no longer proceed on the assumption
that like begets like if the genome of an individual stems from the combination of
maternal and paternal genes. If we describe the frequencies x; of the alleles (differ-
ent types of genes at one chromosomal locus), we obtain again a replicator equation,
but with more complicated interaction terms. In addition, most relevant traits de-
pend not on one, but on several loci which can be recombined by genetic cross-over,
and the investigation of the dynamics becomes particularly arducus (see e.g. [36]).

A promising alternative is to simplify the dynamics by ignoring the intricacies of
some particular genetic system and analysing evolution, not in the space of gene fre-
quencies, but in the trait space. In the simplest example, this consists in assuming
that all individuals in the population are monomorphic (share the same trait-value),
with the exception of occasional mutations introducing minorities having a slightly
different trait value. Selection will then decide the fate of that minority. If one pro-
ceeds on the assumption that it will either get eliminated, or else eliminate the resi-
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dent, before the next mutation introduces another minority, then one can model evo-
lution by following the corresponding trait substitution sequence [36]. This se-
quence, which depends on the random order of arrival of mutants and therefore is a
stochastic process, can often be approximated by a deterministic dynamics in trait
space, the so-called adaptive dynamics. This adaptive dynamics usually provides a
good tool for understanding long term evolution [37), even in the case of evolution-
ary chases of the ‘Red Queen’ type, which do not settle down to an evolutionary stable
standstill - arms races between predators and their prey, for instance, or between
hosts and parasites.

16.5
The Evolution of Cooperation

Returning to the major transitions which, in a way, transcend long term evolution,
we note that occasionally, the fusion of independently replicating entities leads to en-
tities of a higher order. For instance, the linkage of many genes results in a chromo-
some; the symbiosis of some protocells leads to the ‘modern’ eukaryotic cell, whose
mitochondria and organelles retain only traces of their former independence; cells
combine to form multicellular organisms; and organisms form societies. In each of
these cases, such a cooperation can be threatened by the selfishness of parasitic ex-
ploitation. There exist so-called ‘selfish genes’, for instance, that rebel against the
Mendelian rules of segregation and sabotage their opposite number on the partner
chromosome, in order to be represented with more than their fair share in the next
generation ([38] and [39]). This segregation distortion usually works to the detriment
of the whole genome. Similarly, cancer cells multiply without regard to the multicel-
lular organism, etc. Evolutionary game theory allows to model this tug-of-war be-
tween selfish interests and group benefits.

Not surprisingly, it is the last transition - the one leading to societies — which has
attracted the most attention from evolutionary game theorists. After all, classical
game theory was motivated by social questions. Societies built on mutual assistance
are also one of the major themes of ethology. It is easy to sce that they constitute a
problem for Darwinism (and were in fact adressed by Darwin himself). Let us sup-
pose that an act of help yields a benefit b for the recipient, and entails a cost ¢ to the
donor, with benefit and cost measured in terms of reproductive success. How can
natural selection lead to the emergence of helping behaviour?

A first answer is based on kin selection. If the kinship between donor and recipi-
ent exceeds ¢/b, then a genetic disposition to help can spread under natural selection
([40] contains a historical introduction to this subject by its founder; see also [41]).
Loosely speaking, a gene for helping relatives helps copies of itself. This explains co-
operation in eusocial insects (in bee hives or termite hills, most individuals are very
closely related, due to the fact that reproductive power is concentrated in a few
queens). But it does not suffice to explain the cooperation in bands of hominids or
stone age dwellers. An explanation, in this case, has to rely on economic rather than
genetic arguments. An act of assistance will be of value to the donor whenever it is
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returned with a high likelihood. But this, of course, provides an opportunity for
cheating, by not returning help received.

In game theory, this free rider problem is often encapsulated in a game called the
Prisoner’s Dilemma. In this game, the two players have two options each, called C
and D (to help or not to help, i.e. to defect). The payoff matrix is of the form

R S
(23)

with T> R> P> § (if the role of a potential donor or recipient are equally likely, one
has T=b, R=b-¢, P=0and S = ~¢). Obviously D is the better move, regardless of
whether the other player opts for C or D. Hence both players will play D and there-
fore obtain P instead of R — no cooperation.

Research in animal behaviour has uncovered many situations which are likely to
reflect a Prisoner's Dilemma situation. Feeding or grooming each other, emitting
warning calls, helping in territorial defense, inspecting or mobbing a predator are
likely candidates (cf. [42]). In each of these cases, however, it remains possible to
doubt whether the payoff matrix — whose terms are fitness increments — really satis-
fies the required inequalities T> R > P > S. It is extremely difficult to measure the
fitness of fish darting in and out of shoals, of bats clustering in cave-roofs and of
monkeys hiding in the bush. But recently, a well documented example of a Prison-
er's Dilemma type of interaction has been uncovered for RNA-phages - virus repro-
ducing in the inside of a bacterium ([43]). Here, the common type cooperates,
whereas a certain mutant defects, by producing less than its share of the intracellular
products needed for viral reproduction. Interestingly, the virus has found a way to
overcome the dilemma, and therefore to do better than the fictitious rational player
engaged in a Prisoner's Dilemma game. This makes one wonder if rationality is
really the gift it is supposed to be.

It often happens that the probability to repeat another round of the Prisoner’s Dilem-
ma game with the sume partner exceeds c/b. Computer simulations show that in this
case, cooperation is quite likely to emerge. In the first series of computer tournaments
adressing this issue, a very simple strategy did particularly well (see [44]): this was Tit-
ForTat, which tells a player to cooperate in the first round and then to opt for whatever
move the co-player had chosen in the previous round. Such a strategy is nice, in the
sense that it is never the first to defect, and it is quick to retaliate, answering a D with a
D in the next round. Game theorists and evolutionary biologists have criticised the ex-
treme error proneness of TFT, however. If, in an iterated game between two TFT
players, one player defects by mistake, then the other player will retaliate, and this will
cause a series of mutual defections which greatly reduces the average payoff and is
only stopped by another mistake (such a mistake is equally likely to lead back to mutual
cooperation as to make both players keep defecting simultaneously). Errors in the im-
plemention of a move, or in the perception of the co-player's move, are inevitable in
every real life type of interaction. What happens in the presence of such ‘noise’?

In the simplest case this can be investigated by means of strategies specified by
their first move and by a vector (pg, ps, pr pe), Where p, is the probability to play C if
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Tit-for-tat = Generous Fig. 3 Evolutionary chronicles of the iterated Prisoner’s Di-
Tit-for-tat lemma reflect cycles of cooperation and defection. Populations
{‘r of selfish defectors (ALLD) can be invaded by small clusters of
{L Tit-for-tat players. Once cooperation is established more forgiv-

ing strategies, such as Generous Tit-for-tat, are favoured by nat-

AlID <= AlC ural selection. Unconditional cooperators can invade TFTor
0 GTFT populations by neutral drift, thereby undermining a popu-

lation's ability to reciprocate, which in turn allows the invasion
of defectors. These endless cycles between cooperation and
defection are interrupted when cooperative populations are
invaded by Win-stay, lose-shift (Pavlov) players. Unlike TFT and
GTFT, Paviov dominates ALLC.

Win-stay, lose-shift

the payoff in the previous round was k € (R, S. T, P}. For instance, (1,0,1,0) is the
strategy TFT. In the presence of a small error probability, this is dominated by the
strategy (1,0,1,1) (called FirmButFair, FBF) which plays C after a mutual defection.
This more tolerant strategy is dominated both by the strategy (0,0,0,0) (Always De-
fect) and by the strategy (0,0,0,1) (Bully), which both in turn are dominated by TFT.
There is, of course, no reason to restrict oneself to these four strategies only (which
constitute a heteroclinic attractor, incidentally). Mutation will keep introducing small
amounts of new strategies, which then will be subjected to natural selection. De-
pending on the composition of the population, they will increase or decrease in fre-
quency. It turns out (see [45]) that if b > 2¢, then evolution leads in the long run to
populations whose members all play the so-called Pavlov strategy (1,0,0,1).

Pavlov is the simplest conceivable learning rule. Whenever the payoff in the pre-
vious round was high (a Tor an R), the previous move will be repeated by a Pavlov-
player. After a low payoff P or S, the other move will be tried. Two Pavlov players will
cooperate almost always. If one of them erroneously plays D, then he (or she) will re-
peat the D move in the next round (since it yielded the high payoff T). But the other
player, who has been cheated, will switch from the former C move to D. As a result,
both players defect (on purpose) after an erroneous defection. Both will be dissatis-
fied by the outcome P and therefore both will switch back to C.

It can be shown that Pavlov is a social norm in a precise sense. Within a popula-
tion adopting such a norm, any individual who deviates at any stage of the game will
be penalised, even if the deviation occurs only after a mistake and is not expected in
the usual run of the interaction. However, it must be noted that Pavlov players can
never, by themselves, invade a population of Always Defect players. For this, it needs
a strongly retaliatory strategy like TFT or Grim (the strategy (1,0,0,0)). It is only
when such stern retaliators have eliminated the inverterate defectors that a more tol-
erant strategy like Pavlov can come to the fore, Such thought experiments (mostly
performed with the help of computer simulations) show how, under minimalistic as-
sumptions, such interesting aspects as learning rules, social norms or historical
stages come up quite naturally.

It should be noted that cooperation can also take hold if individuals play the game
for several rounds, but never with the same co-player twice (see [46]). It is enough to
assume that the information about the co-player exceeds the cost-to-benefit ratio cfb.
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Cooperation is then provided by discriminating strategies which only provide help if
the recipient, to their knowledge, has sufficiently often helped others. Such discrimi-
nators are sometimes refusing to provide help, which in itself can be risky because it
reduces the probability that they will be helped at some later stage, by other discrimi-
nators. The game dynamics is quite complex, but a basic aspect can be understood
easily by a further simplification of the model. Let us assume that each player, in his
or her entire lifetime, plays only two rounds, never meeting the same partner twice,
and consider the replicator equation describing the relative frequencies of three stra-
tegies: the discriminators, the indiscriminate altruists (who always help) and the in-
verterate defectors, who never help. In the absence of the defectors, discriminating
and undiscriminating altruists do equally well, since they always cooperate. This
means that there is no selective pressure, and that the composition of a population
consisting of these two types only will slowly change by neutral drift, with the fre-
quency of discriminators sometimes increasing and sometimes decreasing accord-
ing to a random walk. Random fluctuations will occasionally introduce, through mu-
tation, a small minority of defectors. How will they fare? If the frequency of discrimi-
nators is sufficiently large, they will immediately be selected against and eliminated.
If the frequency of discriminators is very low, on the other hand, then the defectors
will be able to exploit the unconditional altruists to the hilt and will eventually take
over the entire population. However, if the frequency of defectors is in a middle
range, not too high and not too low, then the defectors will initially be able to grow,
and to exploit the altruists. Eventually, however, the indiscriminate altruists will be
decimated to such an extent that the defectors will have mostly to deal with discrimi-
nators; and then, they will be eliminated, and the population returns to a mixture of
discriminate and indiscriminate altruists, but this time (in contrast to the initial si-
tuation) with such a high frequency of discriminators that any follow-up attempt by
the defectors to invade again will be instantly repelled. The short-term increase of de-
fectors, in this evolution, is a self-defeating move, therefore, a kind of Pyrrhic victory.
The next chance for defectors to invade will only come if, by random drift, the fre-
quency of discriminators has decreased again. The only way for cooperation to break

Fig. 4 Came dynamics of indirect reciprocity can re-
veal the surprising feature that invasion of a strategy is
only succesful when rare. The 3 corner points of the
simplex refer to unconditional cooperators, e, uncon-
ditional defectors, e;, and discriminators, e;, which co-
operate with individuals who have a good reputation.
There is neutral drift between cooperators and discrimi-
nators. If the frequency of discriminators is sufficiently
high, defectors cannot invade. If the frequency of discri-
minators is very low, defectors can invade and take
over. Between these threshold values exists a region
where defectors can invade, but become extinct again
after some time leaving the population in an uninvad-
able state with a high frequency of discriminators. Thus,
if invasion attempts of defectors are frequent the popu- 1’ - —-h__._js_,‘
lation will often be in a state with many disciminators. €1® - “2
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down permanently is when the time until the next invasion attempt by defectors is
large enough for the random drift to decrease the frequency of discriminators by a
considerable margin. It follows that the exploiters, if they are to take over, should not
try too often to invade. In other terms, a cooperative population will only be proof
against parasitic exploiters if it is challenged sufficiently often by their invasion at-
tempts. This is an intriguing parallel to the immune system, which only remains ef-
ficient if it is challenged sufficiently often.

Such parallels make it seem plausible that essentially the same methods of evolu-
tionary game dynamics are applicable in such a wide range, spanning all the way from
the evolution of virulence or the mating behaviour of lizards to molecular evolution
and the emergence of cooperative societies. Frequency dependent selection operates
across all scales of biological communities, and is instrumental in shaping societies.

References

1 Mavw E., Populations, Species, and Evolu- 10 Rawp, D., Witson, H.B. and McGLADE,

tion, Harvard UP, (1983) J.M. (1994): Dynamics and evolution:

2 LeviN, S.A. (1992) (Ed), Mathematics evolutionarily stable attractors, invasion
and Biology: The Interface Lawrence Ber- exponents and phenotype dynamics,
keley Laboratory, Univ. of California, Phil. Trans. Roy. Soc. London B 24, 261-
Berkeley, CA. 283.

3 Levin, S.A., GreNFELL, B., HasTINGS, A, 11 Horeaukr, ]. (1999) Invasion, perma-
and PereLson, A.S. (1997), Mathemati- nence and heteroclinic cycles, to ap-
cal and computational challenges in po- pear.
pulation biology and ecosystems 12 R.Law and ].C. Brackrorp (1992) Self-
science, Science 275, 334-343 assembling food webs: a global view-

4 ]. Horsauer and K. S16MuND, Evolu- point of co-existence of species in
tionary games and population dynamics, Lotka-Volterra communities Ecology 73,
Cambridge UP (1998) 567-578.

5 TaxeucHr,Y. (1996), Global dynamical 13 A. HasTings, ‘Food web theory and sta-
properties of Lotka-Volterra systems, World bility’, Ecology Vol. 69 (1988), pp. 1665~
Scientific, Singapore. 1668.

6 May, R.M. and W.J. Leonarp (1975} 14 NEg, S. (1990), Community construc-
Nonlinear aspects of competition be- tion, Trends in Ecology and Fvolution S,
tween three species, STAM J. Appl. 337-340.

Math. 29 243-253. 15 Grenreir, BT and A.P. Dosson

7 Wrssing, F. (1991) Evolutionary stabi- (1995), Ecology of Infectious Diseases in
lity and dynamics stability in a class of Natural Populations, Cambridge Univ.
evolutionary normal form games. In R. Press, Cambridge.

SELTEN (ed) Game Equilibrium Models 1: 16 AnpErsoN, A M. and R.M. May (1991},
Evolution and Game Dynamics. Berlin, Infectious Diseases of Humans: Dynamics
Springer, 29-97. and Control, Oxford Univ. Press, Ox-

8 V. Hurson and K. Scumitr, (1992) Per- ford.
manence and the dynamics of biologi- 18 Diekmann O, Heestereeex | A P, and
cal systems, Math Biosci. 111, 1-71 MEeTz | A ] (1990) On the definition and

9 Ferrierg, R. and M. Garro (1995) Lya- the computation of the basic reproduc-
punov exponents and the mathematics tive ratio Ro in models for infectious
of invasion in oscillatory or chaotic po- diseases in heterogeneous populations,

pulations, Theor. Pop. Biol. 48, 126-71. J Math Biol 28, 365-382



19

20

21

22

24

25

26

27

28

30

n

32

33

Nowak, M.A. and BANGHAM, C.R.
(1996), Population dynamics of im-
mune responses to persistent viruses,
Science 272, 74-9.

peBoer, R.J. and A.S. PERELsON (1998)
Target cell limited and immune control
models of HIV infection: a comparison,
Journ. Theor. Biol bf 190 201-14.
Nowak, M.A., R.M. May and K. Sic-
MUND {1995) Immune responses
against multiple epitopes, Journ. Theor.
Biol. 175, 325--53.

LEVIN, S.A. and D. PimMentTEL (1981) Se-
lection of intermediate rates of increase
in parasite-host systems Amer. Nat. 117
308-1.

Frank, S.A. (1996) Models of parasite
virulence, Quart. Rev. Biol. 71, 37-78.
MAYNARD SMITH, |. (1982) Evolution
and the theory of games, Cambridge UP.
CRESSMAN, R, (1992) The stability con-
cept of evolutionary game theory,
Springer, Berlin.

SiwERvo, B. and Livery, C.M. (1996},
The rock-scissors-paper game and the
evolution of alternative male strategies,
Nature 380, 24043,

WEiBULL, |. Evolutionary Game Theory,
Cambridge, MA, MIT Press.

Nowak, M.A, and R.M. May {1994),
Superinfection and the evolution of
parasitic virulence, Proc. R. Soc. London
B 255, 81-89.

Hamicron, W.D. (1980) Sex versus non-
sex versus parasites, Oikos 35, 282-90
MAYNARD SMITH, |, and SZaTHMARY, E.
(1995), The major transitions in evolution,
Freeman, Oxford.

STEARNS, S.C. (ed) (1987) The evolution
of sex and its consequences, BirkHau-
ser, Basel.

Siemunb, K. (1995), Games of Life, Pen-
guin, Harmondsworth.

Hurson,V. and R. Law (1993), Four
steps to two sexes, Proc. Roy. Soc. Lon-
don B, 253, 43-51.

34

35

36

37

38

39

fa

42

43

45

References

Hoexstra, R., The evolution of sexes,
in [31], pp. 59-92.

Iwasa,Y. and A. Sasakr (1987), Evolu-
tion of the number of sexes, Evolution
41, 49-65.

Metz, J.A.J., S.A. GeriTZ , G. MESZENA,
F.].A. Jacoss and |.S. vaN HEERWAR-
DEN (1996), Adaptive dynamics: a geo-
metrical study of the consequences of
nearly faithful replication. In S.J. Van
STrIEN and $.M.VerDUYN LUNEL (eds),
Stochastic and spatial structures of dyna-
mical systems, 183-231. Amsterdam,
North Holland.

EsHEL, 1. {1996): On the changing con-
cept of evolutionary population stability
as a reflection of a changing point of
view in the quantitative theory of evolu-
tion, J. Math. Biol. 34, 485-510.

Crow, ].F. (1986) Basic concepts in po-
pulation, quantitative and evolutionary
genetics, Freeman, New York

Hatc, D. and A. GrareN, (1991) Ge-
netic scrambling as a defense against
meiotic drive, J. Theor. Biol. 153, 531-
58.

Hamirron, W.D. (1996) Narrow roads to
gene land, Oxford UP, Oxford.

FRANKS, S.A. (1998) Foundations of So-
cial Evolution, Princeton UP, Princeton.
Ducarkin, L.A. (1998) Cooperation
among Animals: an Evolutionary Perspec-
tive, Oxford UP, Oxford.

‘Turnegr, P.E. and CHao, L. (1999) Pris-
oner's Dilemma in an RNA virus, Naf-
ure 398, 441-3

AxeLrop, R. (1989) The Evolution of Co-
operation, Penguin, London.

Nowak, M.A. and S1eMuND, K. (1993),
Win-stay, lose-shift outperforms tit-for-
tat, Nature, 364, 56-8.

Nowax, M.A. and Sicmunp, K. (1998),
Evolution of indirect reciprocity by im-
age scoring, Nature 393, 573-7.

343



	28012008001-1.pdf
	28012008001-2.pdf
	28012008001-3.pdf
	28012008001-4.pdf
	28012008001-5.pdf
	28012008001-6.pdf
	28012008001-7.pdf
	28012008001-8.pdf
	28012008001-9.pdf
	28012008001-10.pdf
	28012008001-11.pdf
	28012008001-12.pdf
	28012008001-13.pdf
	28012008001-14.pdf
	28012008001-15.pdf
	28012008001-16.pdf
	28012008001-17.pdf

