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Indirect reciprocity is one of the basic mechanisms to sustain mu-
tual cooperation. Beneficial acts are returned, not by the recipient,
but by third parties. Indirect reciprocity is based on reputation and
status: it pays to provide help because this makes one more likely
to receive help in turn. The mechanism depends on knowing the
past behavior of other players, and assessing that behavior. There
are many different systems of assessing others, which can be inter-
preted as rudimentary moral systems (i.e. views on what is ’good’
or ’bad’). In this paper, we describe the competition of some of the
leading assessment rules by analytic methods, and show that the
sterner rule has a slight advantage. Stable polymorphisms can sub-
sist, but lead to moral consensus: all players’ images are the same
in each observer’s eyes.

replicator dynamics | Prisoner’s Dilemma game | indirect reciprocity | leading

eight | second-order assessment

In indirect reciprocity, helpful acts are returned, not by the
recipient, but by third parties [1, 2, 3]. If Alice helps Betty,

then Alice is helped in turn, not by Betty, as in direct recipro-
cation, but by some Conny or Claire. Indirect reciprocity has
been amply documented in human populations [4, 5, 6, 7, 8].
In order not to be subverted by exploiters (for instance by
defectors who never help others), the help must be chan-
nelled away from them, and directed preferentially towards
the helpers. For this, two requirements are needed: (a) in-
formation about previous interactions, even those in which
one has not been involved; and (b) an assessment of these
interactions. Thus indirect reciprocity is based on constant
monitoring of the other members of the population, and on
judging whether they deserve to be helped or not, or in other
words whether they have a good image or not [9, 10, 11, 12].
This can be viewed as an elementary form of moral judgment.
Individuals assess other players’ actions as good or bad even
if they are not directly affected by them.

The most elementary way for C to assess A simply reflects
whether A gave help to B or not. In the first case, A is viewed
as good and in the second case as bad. But this leads to an
interesting inconsistency: if C refuses to help A, then C is
perceived by third parties as bad irrespective of whether the
potential recipient A is good or bad. As a result, C is less
likely to be helped. Acting on a moral judgment can thus
be costly. This suggests that a better assessment rule should
also take into account whether a refusal to help was justified
or not (see [2], [8], [9] and [11]). However, there exist sev-
eral ways for doing this, and it is not clear which assessment
should evolve in the long term. To give an example: should
the act of helping a bad individual be considered as good or
as bad?

There are many possible moral systems. How do they
compare? In a first approach, we may consider three different
classes of assessment rules [13]. A first-order assessment rule
only takes into account whether A helps B or not. A second-
order assessment rule takes also into account the image of the
recipient B. A third-order assessment rule takes moreover into
account the image of the donor A. A strategy in the indirect
reciprocity interaction consists of an assessment rule together

with an action rule telling the player which decision to take,
as a donor, depending on the image of the recipient and the
own image [13, 14].

Ohtsuki and Iwasa have shown that among the 4096 re-
sulting strategies, only 8 lead to a stable regime of mutual co-
operation, if adopted by all members of the population. These
are said to be the leading eight [14, 15]. Two of these strate-
gies are based on second-order assessment, none on first-order
assessment. In this context, ’stable’ means that the corre-
sponding population cannot be invaded by other action rules.
However, this does not settle the issue whether other assess-
ment rules can invade. In the set-up considered by Ohtsuki
and Iwasa, the image of an individual is the same in the eyes
of all members of the population. Clearly, this does not allow
to compare different assessment rules.

If one wants to analyze the evolution of even the sim-
plest system of morals, one has to consider the competition
of several assessment rules in the population. This is what
we propose to do in the present paper: we consider the two
second-order assessment rules belonging to the ’leading eight’,
as well as the first-order assessment rule which only registers
whether help is given or not. We find that this first-order as-
sessment rule is eliminated (not surprisingly), and that among
the second-order assessment rules, the sterner rule has a slight
advantage. Stable polymorphisms exist, but interestingly, the
population always converges to a state where both assessments
coincide: evolution leads to moral consensus.

In the following sections, we describe the model, derive
the results, and discuss both outcomes and methods.

The model
We consider a large, well-mixed population. From time to
time, two individuals are randomly matched in a one-shot in-
teraction, a so-called donation game. A coin toss decides who
is the potential donor and the potential recipient (we suppress
the ’potential’ from now on). The donor can, at a personal
cost c, provide a benefit b to the recipient, with b > c. We
shall actually assume (as is usually done) that both players
are simultaneously donor and recipient: this does not affect
the outcome of the model. The interaction is an example of
a Prisoner’s Dilemma game. We assume that each individual
experiences an infinity of such interactions, always with dif-
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ferent partners. (This can be replaced by the assumption that
the probability w for another round satisfies w > c/b.)

Furthermore, we assume that the players can observe each
other. (If not, cooperation cannot evolve.) Each player A has
an assessment rule by which to judge others according to their
behavior as donor in their previous interaction. Player A’s
judgment is binary: it assigns either γ (for ’good’) or β (for
’bad’) to all other players. The action rules of all players are
the same: they give help if they assess the recipient as γ, and
they refuse help otherwise. (In technical terms, all action rules
are of Co-type, see [13]). The assessment rules, however, can
be different. The corresponding strategies, therefore, depend
entirely on the assessment rule. We shall consider only the
following assessment rules: (1) AllC (view everyone as γ); (2)
AllD (view everyone as β); (3) SUGDEN, also known as Sim-
ple Standing (view everyone as γ except those who, in their
previous round, refused help to a γ-recipient); (4) KANDORI
(view exactly those as γ who, in their previous round, gave
help to a γ-recipient or refused help to a β-recipient); and
finally (5) SCORING (the first-order assessment that views
exactly those as γ who, in their previous round, gave help,
no matter to whom). We see that the second-order assess-
ment rules SUGDEN and KANDORI differ in their view of
those who give help to a β-player: KANDORI, the sterner
assessment, condemns this.

We shall moreover assume that players sometimes commit
an error. With a certain probability ǫ, they fail to implement
an intended help. Following [11], [12], [14] and [15], we assume
that an intended refusal is always carried out (see also [16],
[17] and [18]). Finally, we assume that from time to time, a
randomly chosen individual switches strategy by adopting the
strategy i of a model chosen with a probability proportional
to that model’s fitness Fi = (1 − s)F + sPi. Here, F is a
baseline fitness (the same for all), Pi is the average payoff for
an individual of type i, and s ∈]0, 1] is a parameter measuring
the importance of the game for overall success. The resulting
dynamics is given (up to a change in velocity) by the repli-
cator equation ẋi = xi(Pi − P̄ ), where xi is the frequency of
strategy i in the population and P̄ =

P

k
xkPk is the average

payoff in the population (see [19] p. 87).
Ohtsuki and Iwasa showed that SUGDEN and KANDORI

belong to the leading eight: if everyone in the population
shares the corresponding assessment rule, it is best to follow
the corresponding action module of giving help exactly to the
γ-recipients [14]. No other action module (such as, for in-
stance: ’always refuse help’, or ’help only if, in addition, the
own image is β’) can invade. But this does not settle the issue
of the assessment rule itself. Is there a selective advantage in
choosing one rule rather than another? For this, we have to
assume that any given player A can have different images in
the eyes of different observers. All individuals form their own
opinion on the interactions they observe. This approach is
not used by Ohtsuki and Iwasa, who assume that the image
is public (decided, for instance, by one observer who acts as
a referee). Private images are used in the individual-based
simulations in [13] and [20]. Here, we present an analytical
approach to deal with the competition of several assessment
rules.

Let us first consider the competition of SUGDEN and
KANDORI only. We allow for AllC and AllD players in the
population, but not for SCORING. Thus we consider only the
strategies (1) to (4). We denote γ as ’good’ respectively ’nice’
in the eyes of an SUGDEN- resp. KANDORI-player, and β
as ’bad’ resp. ’nasty’. We denote the proportions of players
of type i who are evaluated as (a) both bad and nasty by ri

00,

(b) bad and nice by ri
01, (c) good and nasty by ri

10 and (d)
good and nice by ri

11(= 1 − ri
00 − ri

01 − ri
10).

These quantities determine the payoffs. In fact, if we de-
fine

ri = ri
10 + ri

11 (prop. of good players of type i), [1]

si = ri
01 + ri

11 (prop. of nice players of type i), [2]

the payoffs Pi are expressed by

P1 = −ǭc + ǭ(x1 + r1x3 + s1x4)b, [3]

P2 = ǭ(x1 + r2x3 + s2x4)b, [4]

P3 = −ǭ
P

i
xiric + ǭ(x1 + r3x3 + s3x4)b, [5]

P4 = −ǭ
P

i
xisic + ǭ(x1 + r4x3 + s4x4)b, [6]

where ǭ := 1 − ǫ is the probability that an intended help is
actually given. For example, ǭ

P

i
xisi in Eq.[6] is the prob-

ability that a player of type 4 gives a help to another player,
and thus incurs cost c. The term ǭ(x1 + r4x3 + s4x4) is the
probability that a player of type 4 is helped by a randomly
chosen donor, and thus provided with a benefit b.

In general, ri
mn is determined by the assessment dynamics

dri
mn/dτ = −ri

mn +F i
mn describing the relaxation to an equi-

librium ri
mn = F i

mn. Here τ represents the time measured by
the time scale of the assessment dynamics and F i

mn is given
by

F i
mn = (the probability that i actually helps

and the action is evaluated as m resp. n)

+ (the probability that i defects erroneously

and the action is evaluated as m resp. n)

+ (the probability that i defects intentionally

and the action is evaluated as m resp. n). [7]

Due to the linear dependence of F i
mn on {ri

mn} (see below),
if the time scale of assessment dynamics is much faster than
that of replicator dynamics (i.e., if xi is treated as a constant
in the assessment dynamics), the assessment dynamics con-
verges to a fixed point. For this reason, we assume that the
assessment dynamics is always at an equilibrium: ri

mn = F i
mn.

The above probabilities are expressed by the proportions
of (m, n)-players in the whole population, namely P, Q, R and
S:

P =
X

i

xir
i
00 (prop. of bad-nasty players), [8]

Q =
X

i

xir
i
01 (prop. of bad-nice players), [9]

R =
X

i

xir
i
10 (prop. of good-nasty players), [10]

S =
X

i

xir
i
11 (prop. of good-nice players). [11]

We note that R + S is the proportion of good players, Q + S
that of nice players, Q + P that of bad players and R + P the
proportion of nasty players.

This yields the following relations between ri
mn (or F i

mn)
and P, Q, R (and S = 1 − P − Q − R):

2

6

6

6

6

6

6

6

6

6

4

r1

11 = ǭ(Q + S) + ǫP r1

10 = ǭ(R + P ) + ǫQ
r1

01 = ǫR r1

00 = ǫS
r2

11 = P r2

10 = Q
r2

01 = R r2

00 = S
r3

11 = ǭS + P r3

10 = ǭR + Q
r3

01 = ǫR r3

00 = ǫS
r4

11 = ǭ(Q + S) + P r4

10 = ǫQ
r4

01 = R r4

00 = ǫS

3

7

7

7

7

7

7

7

7

7

5

. [12]
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How these equations are obtained is presented in the support-
ing information.

If we substitute these relations into Eqs.[8], [9] and [10],
we obtain a linear system for the unknowns P, Q, R:

c11P + c12Q + c13R = d1, [13]

c21P + c22Q + c23R = d2, [14]

c31P + c32Q + c33R = d3, [15]

with d1 = ǫ(x1 + x3 + x4) + x2, d2 = d3 = 0 and

2

4

c11 = d1 + 1 c12 = d1 c13 = d1

c21 = 0 c22 = 1 c23 = −d1 − ǭx4

c31 = −ǭx1 c32 = −d1 − ǭx3 c33 = 1 − ǭ(x1 + x3)

3

5 .

[16]
By solving, we obtain the payoff values as functions of the

frequencies (x1, x2, x3, x4) of the strategies.

Results
The determinant of the matrix (cij) is zero only on the edge
between AllD and SUGDEN (i.e., if x1 = x4 = 0). The dy-
namics on that edge is bistable, with the unstable fixed point
determined by x3 = c/ǭb, see also [21].

If the unconditional altruists are absent, i.e. if x1 = 0
then c31 = 0, hence Eqs. [14] and [15] imply Q = R = 0.
This means that in the absence of AllC-players, SUGDEN and
KANDORI always agree in their assessment and hence do not
differ in their behavior. In this case,

P =
1 − ǭ(x3 + x4)

2 − ǭ(x3 + x4)
, [17]

S =
1

2 − ǭ(x3 + x4)
. [18]

On the face x1 = 0, P3 = P4 and hence x3/x4 is constant
(Fig.1-(c)). Each solution remains on a half ray through
x2 = 1; it is easy to see that the segment with x3 + x4 = c/ǭb
consists of fixed points. Depending on which side of that seg-
ment they start, orbits converge either to x2 = 1 or x2 = 0.
Hence the evolution, in the absence of AllC, leads either to
AllD or else to a stable mixture of KANDORI and SUGDEN.
These states are the only Nash equilibria.

In the appendix, it is shown that in the interior of the
state space,

Q < R, Q < P < S [19]

and
r2 < s1 < s3 < r4 < r1 = r3 < s4 [20]

are always valid. The proportion of nice AllD-players s2 is
somewhere between r2 and r1 = r3. This implies that P3 is
greater than P1 if x1 > 0. Indeed, using P̄i := Pi/ǭ, we see
that

P̄3 − P̄1 =
`

(r3 − r1)x3 + (s3 − s1)x4

´

b + (1 −
X

i

xiri)c > 0.

[21]
Hence x1/x3 converges to 0, so that all orbits in the interior
of the state simplex converge to the face x1 = 0, i.e. AllC is
eliminated.

Moreover, condition x3 ≤ x4 implies P3 < P4 (see Ap-
pendix). If KANDORI and SUGDEN are equally frequent,
the former wins whenever unconditional altruists are present.

The advantage of KANDORI can be understood by the
following argument: in order that a cooperative player A ob-
tains a nice image from KANDORI, A’s recipient must also

be nice, whereas A always obtains a good evaluation from
SUGDEN. Therefore a cooperative player who is nice is al-
ways good, whereas the inverse is not necessarily true; thus it
is more difficult to obtain nice images than good ones. The
inequality Q < R means that KANDORI-players incur less
cost than SUGDEN-players on average if AllC is present. At
the same time, the inequality s3 < r4 implies that the prob-
ability that KANDORI-players evaluate SUGDEN-players as
nice is less than that SUGDEN-players evaluate KANDORI-
players as good. Therefore, KANDORI-players are more likely
to obtain a cooperative offer from SUGDEN-players than
vice-versa. Moreover, we find from s3 < r4 < r3 < s4

that KANDORI-players are more likely to give a help to
KANDORI-players and less likely to give help to SUGDEN-
players. If the two types of discriminators are equally fre-
quent, KANDORI obtains a higher payoff than SUGDEN and
its relative proportion increases.

To describe the competition of SCORING with one of the
second-order assessment rules (for instance, KANDORI), we
can use equations up to Eq.[11], replacing the other assess-
ment rule with SCORING. Fig. 2-(a) shows the vector field
of the replicator dynamics if SCORING and KANDORI are
present in the population. The equations used in this simula-
tion are given in the supporting information. The fixed point
SCORING is unstable, as AllC and KANDORI can invade.
The edge AllD-SCORING consists of fixed points. But the
stable ones are only those with x3 ≤ c/ǭb. At these stable
fixed points, all players defect and their payoff is zero. These
fixed points cannot be invaded by KANDORI or AllC and
hence are Nash equilibria (Fig.2-(c)).

The segment given by x3 = c/ǭb and x4 = 0 also consists
of fixed points. However, these are unstable since these states
can be invaded by KANDORI, see Fig.2-(b).

The same holds for the competition of SCORING with
SUGDEN.

If all 5 types of strategies are present, AllC is again elimi-
nated in the long run. If x1 = 0, the replicator dynamics leads
either to a mixture of AllD and SCORING (with the frequency
of defectors at least 1 − c/ǭb), or to a mixture of KANDORI
and SUGDEN (see Fig.3). The two types of players agree
in their assessment (in the former case, all are evaluated as
β, thus all defect, in the latter case, the assessment of SUG-
DEN and KANDORI are equivalent as mentioned above), and
moral consensus is achieved.

Discussion
There are several other papers highlighting the merits of
KANDORI. We mention, in particular, [20] and [22], which
apply numerical simulations to a group selection scenario.

Our paper relies entirely on analytic methods and uses
an individual selection scenario. We extend the investigations
of Ohtsuki and Iwasa in one direction, by allowing different
players to judge their co-players by different assessment rules.
This is an important issue, as it allows to investigate the com-
petition of different ’moral systems’. In particular, this ap-
proach no longer makes use of the assumption that one player
acts as a referee whose public assessment is adopted by all
other players [12, 14, 20]. It is common-day experience that
different people can assess one and the same action in different
ways. While gossip can greatly help to spread information, it
need not lead to consensual assessment [23].

Just as in [21], we have not considered third-order assess-
ment rules. We have made another departure from the model
by Ohtsuki and Iwasa, which concerns a technical point. In
that model, generations are separate: all players are born at
the same time and their rounds are synchronized. We assume

Footline Author PNAS Issue Date Volume Issue Number 3



that the strategies spread by imitation, rather than by inher-
itance. Instead of producing offspring, players switch their
strategy. This does not affect the mathematical model, but
makes the interpretation somewhat more natural. Moreover,
we assume asynchronous updating: players update their strat-
egy one at a time, and their rounds are not synchronized. This
modeling assumption, however, has hardly any effect on the
outcome. The assumption that the number of rounds is in-
finite is mostly made for notational convenience. Sufficiently
large probabilities of a further round lead to the same out-
comes. We only have to replace b by wb (see [24]).

Both our model and that of Ohtsuki and Iwasa suffer
from two limitations which are more serious. One concerns
the assumption that players are assessed according to their
last interaction only: their actions in previous rounds are not
taken into account. In reality, reputations are often based
on a longer data-base. Moreover, they are not ’binary’: the
moral world is not just black or white. The second limitation
is due to the assumption that players have perfect informa-
tion. Again, this is unrealistic. Usually, players often have
only limited information, and sometimes none at all [10, 25].
If they do not know the antecedents of their co-player, they
need a ’default’ rule. Since this rule describes whether the
individual is trustful or suspicious, this clearly introduces an
important distinction. Moreover, an assessment can be erro-
neous. Again, this is a possibility which we encounter every
day. Misunderstandings and mis-perceptions have possibly
a more devastating effect than mis-implementations (see [26]
on the role of errors in perception). Exchange of information
and opinions via gossip and other forms of communication is
important, but not faultless [26, 23].

If we admit that players can mis-perceive whether an act
of help has been given or refused, or that they can be con-
fused about the reputation of the recipient, we introduce a
source of errors which is extremely complicated to analyze. It
seems not unlikely that these errors affect the more complex
second-order assessment rules, such as SUGDEN and KAN-
DORI, to a greater degree than the more simple-minded first-
order SCORING. In fact, there is experimental evidence to
support the view that second-order assessment can overtax
human cognitive abilities [27]. We know no empirical work
permitting to conclude whether SUGDEN or KANDORI is
more frequent.

Indirect reciprocity based on reputation systems has a long
history [28, 29, 30, 31, 32, 33]. As mentioned in [34], there
are two main motivations to pursue its investigation. One
concerns the evolution of human communities: how does co-
operation work in villages and small-scale societies? (See [35],
[36], [37], [38],[39], [40], [41], [42] and [43]). Recently, evidence
for indirect reciprocation in other species has also been uncov-
ered [44]. The other motivation concerns the rapid growth of
anonymous interactions on a global scale, made possible by
the spread of communication networks: how can cheating be
avoided in on-line trading? (see [45] and [46]) In both cases,
simple, robust methods for assessing others are essential.

The present investigation can clearly be no more than a
first step in analyzing the competition of different rudimentary
forms of moral systems. Within the context of second-order
assessment rules belonging to the leading eight, the sterner
rule has an advantage (see also [20] and [22] ), but evolution
converges to a state where both rules can coexist and always
agree.

Appendix

We mention some inequalities that help us understand the
system better. Let us assume x1 > 0, x3 > 0 and x4 > 0.
From Eq.[13] together with P+Q+R = 1−S, we immediately
find P = d1S < S. From Eq.[14] we have Q = −c23R < R.
This relation between R and Q together with Eq.[15] yields a
relation c31P + c32Q− c33/c23Q = 0 that is simplified to Q =
c31c23/(c33 − c32c23)P . Here c31c23 = ǭ

`

1− ǭ(x1 + x3)
´

x1 ≥ 0

and c33 − c32c23 = ǭ
`

1− ǭ(x1 + x3)
´

(x1 + x4) = c31c23 + ǭ
`

1−

ǭ(x1 + x3)
´

x4 > c31c23. Hence Q < P .
From these inequalities, Eq.[20] is derived. In fact from

Eq.[12], s4 − r1 = ǫ(R − Q) > 0, r1 − r3 = 0 and r1 − r4 =
ǭR > 0. The difference between r4 and s3 is calculated as
r4 − s3 = Q− ǫR. Substituting Q = −c23R from Eq.[14], we
have r4 − s3 = (−c23 − ǫ)R, where −c23 − ǫ = ǫ(x1 + x3) +
(x2 + x4) − ǫ(x1 + x2 + x3 + x4) = ǭ(x2 + x4) > 0. Further,
s3−s1 = ǭ(P −Q) > 0 and s1−r2 = ǭ(S−P )+ ǫ(R−Q) > 0.

We can also find an explicit expression for the region
P3 = P4, using

P̄4 − P̄3 = Ĉc + B̂b, [22]

where Ĉ is the cost term
P

i(ri−si)xi and B̂ the benefit term
(r4 − r3)x3 + (s4 − s3)x4. By the definitions of ri and si, we
have

Ĉ = R − Q > 0,

B̂ = −ǭRx3 + ǭ(Q + R)x4. [23]

Taking the relation between R and Q into account, we obtain

Ĉ = ǭ(1 + c23)R = ǭ(x1 + x3)R,

B̂ = −ǭx3R + ǭx4(1 − c23)R

= ǭ
`

−x3 + x4(2 − ǭx1 − ǭx3)
´

R. [24]

Therefore if −x3 + x4(2 − ǭx1 − ǭx3) ≤ 0 or equivalently
x4 ≤ x3/(2 − ǭx1 − ǭx3), P4 > P3 holds regardless of the
values of b and c. This region completely includes the plane
x3 = x4 in the state space.

P4 is larger than P3 if

c(x1 + x3) − x3b + (2 − ǭx3 − ǭx1)x4b > 0, [25]

which depends on the benefit-cost ratio c/b. In particular,
for x2 = 0, i.e., if AllD is absent, this region is given by
x3 < c/b(1 − x4) + (2 − ǭ + ǭx4)x4.
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Fig. 1. The vector field generated by replicator dynamics in the whole state space (a) and on each face (b-d). The vector field on the face x4 = 0 is similar to (d) (see

also [21]). The abbreviation S corresponds to SUGDEN and K to KANDORI. To produce the figure, we normalized the vector at each point (except for the case where

the vector vanishes) so that the direction is easily recognized. Parameters: c = 1, b = 3 and ǫ = 0.1.
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Fig. 2. Same as in Fig.1. Here the abbreviation Sco corresponds to SCORING and K to KANDORI. The segments EF and HF consist of fixed points.
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Fig. 3. The system with AllD and 3 types of discriminators. AllC is not involved. The

surface FGH given by x2 = 1 − c/ǭb consists of unstable fixed points, where x2 is the

frequency of AllD. Depending on which side of that surface they start from, orbits converge

either to the segment S-K or to the segment AllD-F.
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