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NI**, in silicate glasses from a tetrahedral to an octahedral
environment. In addition, the band positions of octahedral Ni?*
move, indicating an increased electrostatic field strength around
the Ni ion at high pressure. All of these structural changes are
quenchable and therefore not due to simple elastic deforma-
tions.

A change of Co?*from tetrahedral to octahedral coordination
in a melt will increase the CFSE of this ion by about 29 kJ mol~1;
for Ni2*, the increase in CFSE is 61 kJ mol~! (ref. 13). This effect
will stabilize both Co?* and Ni?* in silicate melts relative to
crystalline silicates as well as relative to a metal phase.
Crystal-silicate melt and metal-silicate melt partition coeffi-
cients will be reduced by 1 (for Co) to 2 (for Ni) orders of
magnitude at 1,500 K, if a complete change from four to six-fold
coordination occurs. Our data suggest that this will hold true for
Co?* at about 200 kbar.

This effect will not be quite as large for Ni?+, because in most
melt compositions only a small fraction of this species is in
tetrahedral sites at low pressures. A similar effect, however, will
be caused by the observed increase in field strength with
pressure around the octahedrally coordinated Ni2*. At high
pressures, Co?* and Ni2* will therefore behave in a much less
compatible and much less siderophile way than at low pressures.
This prediction is consistent with the few available experimental
data on olivine/melt partitioning at high pressures?’. It is likely
that other transition-metal ions will show similar behaviour.

This means that pressure-induced coordination changes in
silicate melts have to be taken into account when modelling the
global chemical evolution of the Earth and the terrestrial planets
Mercury, Venus and Mars. a
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THE Prisoner’s Dilemma is the leading metaphor for the evolution
of cooperative behaviour in populations of selfish agents, especially
since the well-known computer tournaments of Axelrod' and their
application to biological communities™. In Axelrod’s simulations,
the simple strategy tit-for-tat did outstandingly well and subse-
quently became the major paradigm for reciprocal altruism* 2,
Here we present extended evolutionary simulations of heterogene-

- ous ensembles of probabilistic strategies including mutation and
selection, and report the unexpected success of another protagon-
ist: Pavlov. This strategy is as simple as tit-for-tat and embodies
the fundamental behavioural mechanism win-stay, lose—shift,
which seems to be a widespread rule'®. Pavlov’s success is based on
two important advantages over tit-for-tat: it can correct occasional
mistakes and exploit unconditional cooperators. This second
feature prevents Pavlov populations from being undermined by
unconditional cooperators, which in turn invite defectors. Pavlov
seems to be more robust than tit-for-tat, suggesting that cooper-
ative behaviour in natural situations may often be based on win—
stay, lose—shift.

Two players engaged in the Prisoner’s Dilemma have to
choose between cooperation (C) and defection (D). In any given
round, the two players receive R points if both cooperate and
only P points if both defect; but a defector exploiting a coopera-
tor gets T points, while the cooperator receives S (with
T>R>P>Sand2R>T+S). Thus in a single round it is always
best to defect, but cooperation may be rewarded in an iterated
(or spatial'®) Prisoner’s Dilemma.
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The conspicuous success of the tit-for-tat (TFT) strategy (start
with a C, and then use your co-players previous move) relies in
part on the clinical neatness of a deterministic cyber-world. In
natural populations, errors occur”'”. TFT suffers from stochastic
perturbations in two ways: (1) a TFT population can be ‘soft-
ened up’ by random drift introducing unconditional coopera-
tors, which allow exploiters to grow (TFT is not an
evolutionarily stable strategy'>'®); and (2) occasional mistakes
between two TFT players cause long runs of mutual backbiting.
(Such mistakes abound in real life: even humans are apt to vent
frustrations upon innocent bystanders.)

Within the restricted world of strategies reacting only to the
co-players previous move, TFT has a very important, but transi-
tory role: in small clusters, it can invade populations of defec-
tors, but then bows out to a related strategy, ‘generous tit for
tat’ (GTFT), which cooperates after a co-player’s C, but also
with a certain probability after a D°.

But as soon as one admits strategies which take into account
the moves of both players in the previous round, evolution
becomes much less transparent'’. We first conjectured that
GTFT (or variants thereof) would win the day, but are forced -
to admit, after extensive simulations, that the strategy Pavlov
did much better in the long run. A Pavlov player cooperates if
and only if both players opted for the same alternative in the
previous move. The name'® stems from the fact that this strategy
embodies an almost reflex-like response to the payoff: it repeats
its former move if it was rewarded by R or T points, but switches
behaviour if it was punished by receiving only P or S points.
This strategy, which went by the name of ‘simpleton’'®, fares
poorly against inveterate defectors: in every second round, it
switches to cooperation. It cannot gain a foothold in a defector’s
world; defectors have to be invaded by other strategies, like

TFT®. But Pavlov has two important advantages over TFT:

(1) an inadvertent mistake between players using TFT causes a
drawn-out battle; between two Pavlovians, it causes one round
of mutual defection followed by a return to joint cooperation®.
Thus Pavlov is fairly tolerant, like GTFT, and can correct mis-
takes. (2) Whereas TFT and GTFT can be invaded by drift by
all-out cooperators (to the eventual profit of exploiters), Pavlov
has no qualms in exploiting a sucker, once it has discovered
(after an accidental mistake) that it need not fear any retaliation.
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Softies cannot subvert a Pavlov population. In this sense,
cooperation based on Pavlov is a safer bet than TFT. Pavlov’s
advantage shows best among nice strategies.

For our simulations, we consider all (stochastic) strategies
with memory one (that is, recalling only the previous round).
These strategies are defined by the conditional probabilities (p,,
p. P3. Pa) 10 cooperate, given the outcome of the previous round
was R, S, T or P, respectively. The game between two such
strategies can be formulated as a Markov process, and its sta-
tionary distribution syeciﬁes the payoff for the infinitely iterated
pPrisoner’s Dilemma®, Owing to noise, the initial move has no
effect in the long run. For mathematical simplicity we retain the
assumption of the infinitely iterated game, but note that the
outcome is essentially unchanged if we consider sufficiently long
iterated games. In our notation TFT is given by (1, 0, 1, 0) and
Pavlov by (1, 0, 0, 1), but mistakes in implementing the move
change 1to 1 £and 0 to &, where ¢ is a small number specifying
the minimal amount of noise. This is closely related to the ‘trem-
bling hand’ in Selten’s game theoretical notion on perfect
equilibrium'>?".

We start each simulation with the random strategy (0.5, 0.5,
0.5, 0.5). Every 100 generations (on average), we introduced a
small amount of a randomly chosen mutant strategy. the fre-

quencies of strategies spread according to the usual game
dynamics®*?, reflecting natural selection. Strategies with higher
payoffs produce more offspring. Strategies whose frequency
dropped below a certain threshold were discarded. Each run was
observed for 107 generations, generating a total of about 10°
different mutant strategies. (Note that the timescale is arbitrary,
because the difference equation can be seen as an approximation
of a differential equation. It is, however, very imiportant to study
the long-term dynamics and to try many mutants.) The evolu-
tionary chronicles display an extreme diversity. Nevertheless,
they allowed some clear and simple conclusions: (1) the plot for
the average payoff in the population is a show-piece of punctu-
ated equilibria (Fig. 1). Most of the time, this payoff is very close
to one of the extremal values P (a regime of defection) or R
(overall cooperation). The time for switching from one of the
regimes to the other is usually extremely short (only a few gener-
ations). The periods of stasis frequently last for millions of gener-
ations. The later in the run, the longer they last. But the threat
of a sudden collapse may never abate. (2) There is a clear tend-
ency for cooperation (Fig.2). After t=10* generations, only
27.5% of the runs exhibit cooperation (population
payoff >2.95); but 90% at ¢=10". There is also a clear tendency
towards Pavlov, which dominates 10% of the runs at ¢=10%, but
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FIG. 1 An evolutionary simulation (including mutation and selection) of
all strategies that consider the previous move in the iterated Prisoner's
Dilemma. Such strategies are defined by four probabilities
(1, P2, P3, Pa) that cooperate after having received payoff R, S, T or P
in the previous round. We start with the random strategy (0.5, 0.5, 0.5,
0.5). In each generation there is a 0.01 probability that a new mutant
strategy is generated at random. For technical reasons, we used the U-
shaped density distribution {zx(1—x)]*/? for sampling the p; in the
interval 0, 1. This distribution, which is familiar to geneticists, helps to
explore the corners of the four-dimensional cube of stochastic strategies
in a more efficient way. We assume that there is a minimal amount of
noise; thus we restrict 0.001 < p, <0.999. The frequencies of strategies
grow according to the usual game dynamics. Strategies with frequencies
below 0.001 are removed. In this example, the initial struggle for
cooperation is unsuccessful. An A/llD like strategy emerges as winner
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and dominates until t~92,000. Then a TFT mutant invades and estab-
lishes a regime of cooperation dominated by GTFT. This population is
undermined by more and more forgiving strategies (increasing p.),
which leads to a breakdown of cooperation and another period of defec-

tion, now dominated by the severe retaliator ‘GRIM’ (0.999, 0.001,
0.001, 0.001). Again TFT invades and catalyses the rise of cooperation.
After some small adjustments in p,, ps, and p., there is a long lasting
period of cooperation dominated by the Pavlov-like strategy (0.999,
0.001, 0.007, 0.946). This persists at least until t=10" (not shown).
The figure shows the average population payoff, the number of strateg-
ies present at a given time, and the population averages of the probabil-
ities p1, p2. pa; and pa. (The time is given in generations of the difference
equation, but the timescale is arbitrary if the difference equation is
understood as an approximation of a differential equation.) Payoff
values: R=3, §=0, T=5, P=1.
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82.5% at t=10". Only a few runs are eventually dominated by
GTFT-like behaviour. (3) Usually, the population is. mono-
morphic or very mildly polymorphic. We rarely find more than
10 strategies in one population. Cooperative populations (with
an average population payoff close to R) are normally domi-
nated by one or two strategies very close to Pavlov, although
some long hegemonies by larger mixtures of GTFT-like strateg-
ies can also be observed. (4) Pavlov can be invaded by A/D if
2R<T+P, but a prudent variant of it, (1, 0, 0, x) with
x<(R—P)/(T—R), is stable against 4//D. For 2R=T+P (asis
the case with Axelrod’s payoff values), Pavlov can be invaded
by AIlID, but the stochastic, Pavlov-like strategy (0.999, 0.001,
0.001, 0.995) cannot. We observe that strategies very close to
this ‘almost Pavlov’ win most evolutionary runs for R= 3. Figure
3 shows the outcome of computer simulations for various differ-
ent values of R. For most values of R, Pavlov clearly dominates.

How does this relate to real biology? It might well be that
many cases of cooperation based on reciprocal altruism are due
to Pavlov rather than to TFT. In more natural set-ups, retalia-
tion has usually been interpreted as evidence for TFT**". But
these experiments seem to be consistent with a Pavlov-like
strategy as well. It would speak for Pavlov if animals have a
tendency to exploit non-retaliators, or if they are apt to resume
cooperation after bilateral defection. (In a sense, we observe
Pavlov-type behaviour daily ourselves. Usually, a domestic mis-
understanding causes a quarrel, after which cooperation is
resumed; and the advice ‘never to give a sucker an even break’
is frequently adopted among members of our species.) Inciden-
tally, in natural encounters where different rounds are not clearly
separated, there is a problem in ‘timing’ the recovery—we may
expect signals to evolve as cues.

The simple learning rule, win-stay, lose-shift, seems to be
widespread and works in many other contexts. It is a particular
instance of the ‘law of effect’, which states that animals perform
more rewarded behaviours and less non-rewarded behaviours'’.
It is plausible that more sophisticated variants become estab-
lished among higher animals, which stick to a move as long as
a weighted payoff from the last few rounds is sufficiently reward-
ing (in the manner of Harley’s learning rule®®).

By and large, the iterated Prisoner’s Dilemma has been seen
as a story of TFT, but our results suggest that cooperation based
on win-stay, lose-shift may be more robust. The success of
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FIG. 2 There is a tendency towards cooperation and Paviov. The figure
shows the percentage of populations (at various times, arbitrary units)
that are dominated by GTFT, Pavlov, or cooperative behaviour in general
(population payoff average>2.95). Note that later in the runs
cooperation is always based on either Pavlov or GTFT-like behaviour. 40
simulations were performed. In each simulation ~ 10° different mutant
strategies were generated at random. For each strategy the conditional
probabilities to cooperate were within 0.001 and 0.999, thus the mini-
mal amount of noise was £€=0.001. Paviov-like behaviour is charac-
terized by strategies close to (0.999, 0.001, 0.001, 0.995), and GTFT
by strategies around (0.999, 0.33, 0.999, 0.33). Payoff values: R=3,
§$=0, T=5, P=1 (as in Axelrod’s simulations).
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FIG. 3 Pavlov clearly outperforms TFT-like behaviour for a variety of
different payoff values, R. According to the rules, R can vary between
(T+S)/2 and T. For low values of R, GTFT seems to be slightly more
successful than Pavlov, but in this case it is very difficult for cooperation
to get established at all. Here the Prisoner's Dilemma is obscured by
the fact that alternating C and D is almost as rewarding as cooperation.
For high values of R, the populations are quite often dominated by
GTFT, which for this parameter region is very close to AHC.- For each
value of R we performed 40 simulations, Paviov-like behaviour is
characterized by strategies around (0.999, 0.001, 0.001, x), where x=
0.999 for R>3, xx=0.995 for R=3, and x=(R—P)/(T—R) for R<3.
GTFT-like behaviour is characterized by strategies around (0.999, y,
0.999, y), where y=min {1—-(T—-R)/(R—S), (R—P)/(T—P)}. Payoff
values: S=0, T=5, P=1 and R as indicated.

Pavlov-like behaviour does not seem to be restricted to strateg-
ies, which only remember the last move. In other evolutionary
runs, where mutations can extend the memory length, similar
strategies have been found: typically, they resume cooperation
after two rounds of mutual defection®?®. Like Pavlov, they cor-
rect for mistakes and exploit unconditional cooperators. There
is, of course, no limit in the complexity of conceivable strategies.
But it may be expected that the simple, natural rule of win-stay,
lose-shift performs well under a variety of sophisticated condi-
tions. Pavlov is no simpleton. O
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