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9.1 Introduction

During his childhood, Andrei Nikolaievitch Kolmogorov found biology very
interesting. In fact, in the book Kolmogorov in Perspective, one can read that
he made the following comment about himself as a schoolboy:

“I was one of the best in my class in mathematics, but my real scientific
passions were, first of all biology, and then russian history™ ([Kol00], p. 5)

He kept these centers of interest for the rest of his life. Thus, in 1940,
Kolmogorov dared to confront the feared Lysenko by defending Mendel’s laws
— a very dangerous move to make in the middle of Stalin’s regime. And,
according to V. I Arnold, the last research done by Kolmogorov [KB67],
published in 1967, was motivated by biological ideas about the structure of
the brain ([Kol00], p. 94).

In fact, Kolmogorov made only a few isolated contributions to biomath-
ematics; but they all demonstrate, as one would expect, a remarkable origi-
nality. In particular, the short note [Kol36] about the predator-prey equation
is a model of perspicacity and has had great influence on the deterministic
theory of population dynamics. It is one of the rare articles that Kolmogorov
published in Italian, doubtlessly in honor of the mathematician Vito Volterra
who inaugurated what would later be called The Golden Age of hiomathemat-
ics [SZ78]. Kolmogorov's note represents a qualitative jump in the theory of
predator-prey systems.
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9.2 From Volterra equations to Gause equations

The beginning point of the study of Kolmogorov discussed here is the famous
model that Volterra! used. as early as 1925, to explain a surprising discovery
of his son in law, the ecologist Umberto D'Ancona [Kin85]. Because of his
research in marine biology, based on statistics from fish markets. 12" Ancona
noticed that during World War 1, the number of predators among Adriatic
fauna had increased while the number of prey had diminished. This seemed
to be an effect of the reduction of Gshing due to the Austro-Italian hostilities:
but why did it work in this manner and not in another?

Volterra based his argument on an ordinary differential equation: if a(f)
and y(1) are the densities of prey and of predators, respectively, then the rate
of increase @:/a of the prey should be a decreasing function of y, positive for
y = 0, and the rate of increase ¢/y an increasing function of r, negative for
r = 0. If we suppose that these functions are linear, we see that

i = x{a — by) (9.1)
J = y(—c+ dr) (9.2)

where the constants a,b.c,d are positive. In the positive quadrant, the
phase portrait consists of periodic orbits around the equilibrium position
(7.9) = (¢/d.a/b). Volterra showed that the temporal averages of z(t) and
y(1) along periodic orbits coincide with the values & and 4, which gave him
a way to explain D’Ancona’s observation: in fact. the supplementary contri-
bution due to the fishermen's work diminishes the quantity a (the rate of
increase of the prey in the absence of predators) and increases ¢ (the rate of
decrease of predators in the absence of prey), without affecting the values of
the coefficients b and d, which measure the effects of the interaction hetween
the predators and their prey. The corresponding effect on the temporal av-
erages of the densities of the two populations is just that which D’Ancona
observed.

The elegance of Volterra's reasoning stands in clear contrast with the plau-
sibility of his equation. In fact, (9.1)-(9.2) is unstable from many points of
view. In particular, the model implies that a prev population. in the absence
of predators, would grow exponentially towards infinity. This evident flaw in
the (9.1) can be easily corrected, one way is to introduce a self-limiting term
for the growth of the prey, reducing the equation, for y = 0, to a logistic
model & = ar(] — 2/K). Georgii Frantsevitch Gause proposed another svs-
tem of mich more general equations ([Gan3d], [GSW36]). which, using modern
notation. take the following form:

i=uwg(r) - yplr) (9.3)
g =yqlx) (9.4)

time. independently of Volterra, and in a different context. (Editor’s note.)
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Here, g describes the rate of increase of prey when the predators are absent:
it is a function which is positive on an interval [0, K| and negative for x >
K (because, for example, the food resources being limited, the prey are in
competition with each other when there are too many of them), and the
density of prey thus converges. in the absence of predators, towards the limit
K. The functions p and q. which are called the response functions, describe
the predator-prey interaction: we suppose that p is a positive function with
p(0) = 0. while q is strictly increasing for @ > 0, has a negative limit when x
decreases to 0, and a positive limit when r increases to +00 (an abundance
of prey). These equations are much more reasonable and more flexible than

(9.1)-(9.2).

9.3 The Kolmogorov equations

Kolmogorov did not mention these equations in his note [Kol36], even though
he must have known about the work of Gause — who also lived in Moscow
in the thirties and, at the age of twenty-two, revolutionized mathematical
hiology with his book The Struggle for Ezistence (Gau34]. After noticing that,
in Volterra’s work, there was an arbitrary postulate of linear rates of increase
that could not be justified as anything but a first approximation of real rates
of increase, Kolmogorov considered the most general case possible

r=axS(r.y) (9.5)
y=yWi(r,y) (9.6)

and was led to postulate (assuming that the rates of increase S and W were
continuously differentiable) some minimal conditions which are satisfied in
any realistic predator-prey interaction.
The first group of conditions requires that, if the number of predators
increases. then the rates of increase of the two populations decrease:
a5 oW
-~ <0, —— < 0. (9.7)
iy
These conditions (the second of which was not satisfied in Volterra's and
Tause’s models) are, in general, accepted without objection by ecologists (even
though, for example, one can imagine predators who only manage to attack
their prev when there are enongh of them to surround it, which would imply
that the second condition is not valid for small values of y). The hmmediate
consequence of the postulate (9.7) is that the two isoclines in the interior of
the positive quadrant, {(x,y) T = 0} and {(r.y) 1§ = 0}, can be viewed
as the graphs of two functions of .. Their intersections are, evidently. the
fixed points of (9.5)-(9.6), which correspond to equilibria of the system with
coexistence of the two populations.
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The other conditions of [Kol36] deseribe the behavior of (9.5)-(9.6) on the
bonndary of the positive quadrant. that is, in the absence of one population
or of the other. Theyv imply, more precisely, that the unigue equilibrinm (KA. 0)
which is composed of prey but not. of predators. can be invaded by predators,
so that

W(K.0) > 0. (0.8]

This implies that there is at least one equilibrivun with coexistence of the two
species.

What is still missing is a condition to guarantee that there is only one such
equilibrinm, that is, a unique point in the intersection of the two isoclines in
the interior of the first quadrant. This would be a simple consequence of a
condition analogous to (9.7):

W

a5 § o

p < 0, 3 0. (9.9)
Kolmogorov noticed that the validity of this condition is not clear if a, the
number of prey, is small. Today. all ecologists are farniliar with the Allee effect,
which is the fact that the rate of increase (of a prev population for example)
can decrease and even become negative if the density of the population is
sufficiently small. Kolmogorov, who could not yet know of this effect, seems
to have suspected that there was such a mechanism, even though the argument
he gave, invoking the presence of a large number of predators, does not seem
very clear. According to a note on the bottom of a page, as long as the
density o of the prey is small, the probability of survival of the prey would
be an increasing function of 2 (maybe because the predators have eaten their
fill, while the competition effect within the prey species can not yet be felt).
Having understood that (9.9) is not necessarily valid. Kolmogorov introduced
another condition, that S decrease and W increase along rays starting at the
origin. This is therefore a condition concerning directional derivatives. Today
this condition is often wriften in the form

as 0S aw on )
O < 0, € 4 y— >0 9.10
! dr ty dy h ! da Y dy ( )

Imagine, indeed, that a large habitat become smaller because of some external
force. In this case the densities » and y increase while the ratio hetween them
stays constant. The individuals would be obliged to get closer to each other,
the predators would have less distance to travel to find their meal, and each
prey wonld be tracked by more predators. Thus, the predators would have the
benefit of the new circumstances. while the preyv would suffer from them.

The condition (9.10) implies that there is only one equilibrimin Z in the
interior of the positive quadrant. aud that it is divided by the isoclines (which
intersect in Z) into four regions depending on the signs of & and of y.

The rest of the reasoning is surprisingly simple. The equilibrium with only
the prey population present. whichi is given by B = (A 0). is necessarily made
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up of a saddle point, and the two orbits which converge there are situated on
the r-axis. Thus the positive quadrant contains a unique orbit having B as
a-limit, that is, such that limz(t) = K and limy(t) = 0 for £ — —oco. This
orbit stays in a compact domain, and thus must have a non-empty w-limit?2,
If this w-limit contains a fixed point, it must be Z. In this case, it is easy to
see that all the orbits, in the interior of the positive quadrant, converge to
7. If this is not the case, the theorem of Poincaré-Bendixson implies that the
w-limit is a limit cycle around Z. In this case, all the orbits in the positive
quadrant which are in the exterior of this cycle converge to it.

9.4 Technical aspects

Kolmogorov, who didn’t like to dwell upon technical details, gave only a rough
sketch of his idea. Actually, what he wrote was not totally correct. In fact,
there is an obvious contradiction between the two parts of conditions (9.7)
and (9.10), as can be easily seen by setting z = 0 and considering y > 0.
This error is not, however, very serious and is easy to correct. For example,
in [AGW73] and [AGHWT4], it is shown that it suffices to assume that (9.7)
and (9.10) are valid in the interior of the positive quadrant and to specify the
behavior of S and W along the axes. The same type of proof, with all possible
details, can be found in [Fre75] and [Fre80]. Kolmogorov didn’t feel the need
to give the details of his argument as his milieu was extremely well informed
about the methods for studying ordinary non-linear differential equations in
two dimensions, and in particular conversant with results that had just been
obtained by mathematicians and engineers in the Soviet Union such as Pon-
tryagin, Andronov, Krylov, Bogoliubov, Moiseev and Bautin (see for example
[ALGM73]). We remark that in 1939 Moiseev showed that, if the functions
S and W are affine then an equation of type (9.5)-(9.6) never admits a limit
cycle.

The equations of Volterra (9.1)-(9.2) and of Gause (9.3)-(9.4) are not par-
ticular cases of Kolmogorov's equation because neither (9.2) nor (9.4) satisfy
the second condition of (9.7): the isocline in both cases is vertical. But the
conclusion stays the same. This is also the case for the so-called equation of
Holling-Tanner

& =ar(l - %) — yp(x) (9.11)
g=ys(l— %’,2} (9.12)

(with the constants 7, s, h and K positive and the response function p as in
(9.3)). Here the growth of prey (without predators) is logistic with a constant

2 The w-li_rllit. of the orbit (z(t),y(f)) is the set of all points (,y) such that & =
limz(tx) and § = limy(t;) for a subsequence tx — +20
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capacity, and the growth of predators is logistic with a capacity proportional
with 2. This model seems to be designed to describe real cases of the predator-
prey systems, when one has made a suitable choice of the response function p.

Kolmogorov makes clear that his reasoning implies nothing about what
happens in the interior of the cycle, but notes that, in the simplest cases,
the limit cycle is unique and attracts all the orbits coming from the interior
(excepting, of course, equilibrium). Afterwards, a great deal of research was
done to find conditions for the global stability of Z, and for the unicity of the
limit cycle [Che81], [KF88], [Kua90], [HH95], [GKT97], [Has00]. One often
hears the assertion that asymptotic stability of Z implies its global stability:
but this is false, in general (see e.g. [Bul70]).

9.5 The impact

At first the reaction to Kolmogorov's note was rather lukewarm. It was only
during the sixties that these results began to be appreciated, mostly because
of the appearance at this time of the articles of Rosenzweig and MacArthur
[RMG3], and of Rescigno and Richardson [RR67]. The detailed study of the
explicit form of the response function, in particular that done by Holling
[Hol65], also played an important role. It was no longer necessary to convince
the ecologists of the reality of non-transitory oscillations in certain systems
of predator-prey, or of the robustness of their period and their amplitude. It
became evident that models with limit cycles were necessary. Furthermore, by
using an elegant criterion proposed by Rosenzweig and MacArthur, one could
determine whether the equilibrium Z of the system (9.3)-(9.4) was locally
stable or not. Thus, the emergence of Hopf bifurcation became easy to verify.
Sometime around 1972 there was a real stampede toward limit cycles due to
three articles in Science written by Rosenzweig, Gilpin and May, respectively
([May72], [Gil72], [Ros72]). In particular, the book of May [May73] spread
Kolmogorov’s message among ecologists, and showed that the linear analysis
of an equilibriuin does not always allow one to make conclusions ahout the
global behavior of the system.

For his own reasons, Kolmogorov himself’ came back to his model in a
short note written in 1972 ([Kol72]). In particular, he applied his method to
the Gause equations (again without citing Gause) and gave a classification
of possible phase portraits. These arguments were extended in [Baz74] and
[SL.78].

We conclude this section with several remarks. From an ecologist’s perspec-
tive it is less important to know whether a certain equilibrium is stable than
to know if the system is permanent, that is, if the species under consideration
can survive indefinitely; it is of secondary interest to know if their densities
converge or oscillate. The role of this notion of permanence in theoretical
analyses of the ecology of populations is increasing [HS98]. The associated
notion of stability is more like that of Lagrange than that of Lyapunov: it is
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formulated as a condition that the border of the phase space (including points
at infinity) be repulsive.

It is interesting to notice, in this context, that Kolmogorov explains in his
note [Kol36] that the modelization of the ecological system by a deterministic
model is not valid if the populations are very small (that is, if one is close
to the border of the phase space). No one was better than Kolmogorov at
deducing a differential equation from a stochastic model. The fact that he
did not try to do this in the case of a predator-prey interaction suggests that
he was conscious of the difficulty of doing so: and it is perhaps because he
considered it too difficult to deduce the analytic expression corresponding to
the vector field given by (9.5)-(9.6) from a stochastic process modelling the
encounters between predators and prey, that he decided to do without, and
to instead use the general properties (9.7),(9.8).(9.9) and (9.10).

But, what is of primary importance is the general approach used by Kol-
mogorov: in particular, today, to give a model of biological communities made
up of three or more species one frequently uses equations of the type

i = ziFi(Ty, ey T) (9.13)

(which are called ecological equations, or, more and more often, Kolmogorov
equations) and to specify the system, not by giving precise analytic expressions
for the rates of growth F;, but by setting conditions for the signs of their
partial derivatives: for example, competitive communities are described by
conditions like

7z, 0 (9.14)
for i # j, etc. Thanks to work by Morris Hirsch, Hal Smith and their col-
laborators (see [Hir88], [Smi95]), this approach now gives some of the results
which are most useful for ecological applications and most interesting from a
mathematical point of view. More generally, an ordinary differential equation
i; = fi(xy1,...,,) defines a cooperative system if

afi
a2 9.15
oz, 2 (9.15)

for i # j, and a competitive system if the inequalities are reversed. One of
the principal results concerning such systems is that the flow, restricted to a
compact limit set, is topologically equivalent to a flow defined by a system
of lipschitzian differential equations on an invariant compact set of (n — 1)-
dimensional space. In particular, we can use this result to obtain a theorem
of Poincaré-Bendixson in three dimensions: a compact limit set for a cooper-
ative or competitive system in R3 which contains no fixed point is actually a
periodic orbit. Zeeman [Zee93| used these results in his attack on the problem
of classifying the competitive systems of Lotka-Volterra in three dimensions,
thus identifying 33 stable equivalence classes, and Hofbauer, Mallet-Paret and
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Smith [HMS91] established the existence of stable periodic orbits for “hyper-
cyclic” systems.

A particular case of KKolmogorov equations is the set of ecological equations
describing the three-species food chains. Hastings and Powell [HP91] showed
that these equations often present a chaotic behavior (see also [KH94] and
[MY94]). Muratori and Rinaldi [MR89] as well as Kuznetsov and Rinaldi
[KR96] studied Hopf bifurcations in the prey-predator-superpredator systems.

Our last remark is that recent work by Hofbauer and Schreiber [HS04]
(see also Schreiber and Mieleynski [MS02]) show that there are open sets of
Kolmogorov equations containing a dense subset of permanent equations and
a dense subset of equations having an attractor on the boundary of R . For
these equations, it is impossible to predict whether or not all species will
survive.

Such results are well within the tradition inaugurated by Kolmogorov: in
general the study of ecological systems cannot be reduced to a local study of
stable equilibria. Only a dynamic global study can account for the complexity
of ecological feedback.
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