
J. theor. Biol. (1998) 194, 561–574
Article No. jt980775

0022–5193/98/020561+14 $30.00/0 7 1998 Academic Press

The Dynamics of Indirect Reciprocity

M A. N*‡  K S†

*Institute for Advanced Study, Princeton, NJ 08540, U.S.A. and
†Institut fu� r Mathematik, Universität Wien, Strudlhofg 4, A-1090 Wien, Austria

and IIASA, Laxenburg

(Received on 8 April 1998, Accepted in revised form on 23 June 1998)

Richard Alexander has argued that moral systems derive from indirect reciprocity. We
analyse a simple case of a model of indirect reciprocity based on image scoring.
Discriminators provide help to those individuals who have provided help. Even if the help
is never returned by the beneficiary, or by individuals who in turn have been helped by the
beneficiary, discriminating altruism can be resistant against invasion by defectors.
Indiscriminate altruists can invade by random drift, however, setting up a complex dynamical
system. In certain situations, defectors can invade only if their invasion attempts are
sufficiently rare. We also consider a model with incomplete information and obtain conditions
for the stability of altruism which differ from Hamilton’s rule by simply replacing relatedness
with acquaintanceship.
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1. Introduction

Altruistic behaviour is usually explained by
inclusive fitness, group advantage, or reciprocity.
The idea of reciprocal altruism, which is
essentially economic, was introduced by Trivers
(1971): a donor may help a recipient if the cost
(to the donor) is less than the benefit (to the
recipient), and if the recipient is likely to return
the favour. This principle was explored in many
papers, we mention only Axelrod & Hamilton
(1981), Axelrod (1984), Sugden (1986), Boyd &
Lorberbaum (1987), May (1987), Sherratt &
Roberts (1998), Lindgren (1991), Nowak &
Sigmund (1992, 1993), Nowak et al. (1995),
Sigmund (1995), Crowley (1996), Leimar (1997).

In his seminal paper of 1971, Trivers
mentioned the further possibility of a ‘‘general-

ised altruism,’’ where the return is directed
towards a third party. ‘‘Individuals . . . may
respond to an altruistic act that benefits
themselves by acting altruistically toward a third
individual uninvolved in the initial interaction.’’
Trivers goes on to say: ‘‘In a system of strong
multiparty interactions, it is possible that in
some situations individuals are selected to
demonstrate generalised altruistic tendencies.’’
This possibility is further stressed in Triver’s
book on Social Evolution (1985), where it is
speculated that a sense of justice may evolve ‘‘in
species such as ours in which a system of
multi-party altruism may operate such that an
individual does not necessarily receive reciprocal
benefit from the individual aided but may receive
the return from third parties.’’

Richard Alexander greatly extended this idea,
and coined the term of ‘‘indirect reciprocity’’ (see‡Author to whom correspondence should be addressed.
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Alexander, 1979 and 1987, and references quoted
therein). In this case, one does not expect a
return from the recipient (as with direct
reciprocity), but from someone else. Co-
operation is thereby channelled towards the
cooperative members of the community. A
donor provides help if the recipient is likely to
help others (which is usually decided on the basis
of experience, i.e. according to whether the
potential recipient has helped others in the past).
According to Alexander (1987), indirect re-
ciprocity, which ‘‘involves reputation and status,
and results in everyone in the group continually
being assessed and reassessed,’’ plays an essential
role in human societies. Alexander argues
(convincingly, to our mind) that systems of
indirect reciprocity are the basis of moral
systems.

The principles of direct reciprocity are usually
studied by means of games (like the Prisoner’s
Dilemma) repeatedly played between the same
two players. In this paper we investigate
situations where the players engage in several
rounds of the game, but with a negligible
probability of ever encountering the same
co-player again. This is, of course, an idealis-
ation, and in human communities, both direct
and indirect reciprocity occur together. In fact,
Alexander stresses that ‘‘indirect reciprocity is a
consequence of direct reciprocity occurring in
the presence of others.’’ But in order to better
understand the mechanism of indirect reciproc-
ity, we shall essentially eliminate direct reciproc-
ity from our model.

In Nowak & Sigmund (1998), we analysed
populations of individuals having the options to
help one another or not. Following usual
practice, we denote the benefit of the altruistic
act to the recipient by b, the cost to the donor
by c, and assume cQ b. If the donor decides not
to help, both individuals receive zero payoff. The
payoff is in terms of incremental fitness.

Each player has an image score, s. The score
of a potential donor increases by one unit if he
or she performs the altruistic act; if not, it
decreases by one unit. The image score of a
recipient does not change. At birth, each
individual has score 0. We consider strategies
where potential donors decide to help according
to the image score of the recipient. A strategy is

given by an integer k: a player with strategy k
provides help if and only if the image score of the
potential recipient is at least k. Players who
provide help must pay some cost, but they
increase their score and are, therefore, more
likely to receive help in the future. During their
lifetime, individuals undergo several rounds of
this interaction, either as donors or as recipients,
but the possibility of meeting the same co-player
again will be neglected in our model. (More
precisely, we use random meeting of partners,
which implies that the two players meet again
with a small probability: but we could just as well
exclude meeting twice, without changing the
conclusions.) At the end of each generation,
individuals leave offspring in proportion to their
accumulated payoff, which inherit the stategy of
their parent (we assume clonal reproduction, as
is usual in evolutionary games, see Maynard
Smith, 1982).

In extensive computer simulations, Nowak &
Sigmund (1998) showed that even for a very low
number of rounds per generation, a cooperative
regime based on indirect reciprocity can be
stable. If one allows for mutations, then
long-term cycling becomes likely. Populations of
altruists discriminating according to the score of
the recipient are undermined by indiscriminate
altriusts. Then, unconditional defectors invade,
until discriminating cooperators return, etc. We
also extended the model so that individuals
would only witness a fraction of the interactions
in their community, and therefore have incom-
plete information about their co-player’s score.

In this paper we shall study analytically a class
of simple models for indirect reciprocity, based
on two score values only, which we denote by G
(for ‘‘good’’) and B (for ‘‘bad’’). We obtain some
of the cycling behaviour seen in the computer
simulations. Furthermore, we show that the
probability q that a player knows the score of
another player must exceed c/b, if indirect
reciprocity is to work. This is an intriguing
parallel to Hamilton’s rule, the cornerstone of
the kin-selection approach to altruism (Hamil-
ton, 1963). Hamilton’s rule states that the
coefficient of relatedness must exceed c/b. In this
sense, indirect reciprocity differs from kin
selection in replacing relatedness with acquain-
tance. If the average number of rounds per
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lifetime exceeds (bq+ c)/(bp− c), then co-
operation based on score discrimination is
evolutionarily stable.

2. The Basic Model
For indirect reciprocity to work, some

members of the group must assess the ‘‘score’’ of
other members, and discriminately channel their
assistance toward those with a higher score. Of
course, the group may also contain members
who do not discriminate, and either always give
help, or never. We shall denote the frequency of
the former by x1, and that of the latter by x2. By
x3, we denote the frequency of the discrimina-
tors. These individuals assess their group
members and keep track of their ‘‘score’’. If they
only remember the last round, they distinguish
between those who have helped and thereby
acquired score G, and those who have withheld
assistance, and acquired score B. Discriminators
help only G-players.

We shall now assume that each generation
experiences a certain number of rounds of
interactions. In each round, every player is both
in the position of a donor and in the position of
a recipient. (This simplifies the calculations
without changing the basic results. In Nowak &
Sigmund (1998) as well as in the last section of
this paper, we assume that every player can be,
with the same probability, a donor or a
recipient.) In each of these roles, the player
interacts with a randomly chosen co-player. If
only few rounds occur, then the likelihood of
meeting the same co-player twice is very small.
The strategies which we consider take no account
of this possibility.

In the first round, discriminators do not know
the score of the potential recipient of their
altruistic action. They have to rely on an a priori
judgement, and assume with a certain ‘‘subjec-
tive’’ probability p that they are matched with a
G-individual. If they help, they acquire G-status
and become possible beneficiaries of other
discriminators in the next round. We first
consider the case 0Q pQ 1, and later the case
p=1.

With gn we denote the frequency of G-players
in round n (it is convenient to set g1 = p, the
discriminators’ initial guess). Clearly

gn = x1 + gn−1x3 (1)

for n=1, 2, . . ., so that by induction

gn =
x1

1− x3
+ xn−1

3 (p−
x1

1− x3
). (2)

Hence gn converges to x1/(x1 + x2), the percent-
age of cooperators among the indiscriminating
players.

In order to compute the payoff, we have to
monitor whether a recipient who meets a
discriminating donor is perceived by the donor
as a G-player. In the first round, this happens
with probability p. From then on, it happens
with probability 1 to the undiscriminate altruists
(who have had occasion to prove their altruism),
with probability 0 to the unconditional defectors
(who are unmasked in the first round), and with
probability gn−1 to the discriminators (since this
is the probability that they have encountered a
G-player and consequently provided help in the
previous round).

In the first round, the payoff for an
indiscriminate altruist is −c+ b(x1 + px3) (he
always provides help, and he receives help from
the indiscriminate altruists as well as from those
discriminators who believe that he has label G).
The payoff for unconditional defectors is
similarly b(x1 + px3) and that for discriminators
is −cp+ b(x1 + px3). Obviously, if there is only
one round, unconditional defectors win.

In the n-th round (nq 1), the indiscriminate
altruists receive payoff −c+ b(x1 + x3), and
unconditional defectors obtain bx1. The pro-
portion of G-scorers among the discriminators is
gn−1 and their payoff is −cgn + b(x1 + x3). The
other discriminators obtain −cgn + bx1. Adding
up, we receive as the discriminators’ payoff in the
n-th round −cgn + b(x1 + x3gn−1), which by (1)
is just (b− c)gn.

If we assume that there are exactly N rounds
per generation, then the total payoff for
indiscriminate altruists is

P
 1 =N[b(x1 + x3)− c]− (1− p)bx3, (3)

that for defectors is

P
 2 =Nbx1 + bpx3, (4)
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and that for discriminators is

P
 3 = (b− c)(g1 +
. . .+ gN)+ b(x1 + px3 − p). (5)

It is easy to check that

g1 + . . .+ gN =

$ 1
1− x3%$(g1 − g2)

1− xN
3

1− x3
+Nx1%, (6)

so that

P
 3 = (p− px3 − x1)0−b+
b− c
1− x3

1− xN
3

1− x31
+

N(b− c)x1

1− x3
. (7)

It is well-known that the structure of a game is
unchanged if the same function is subtracted
from all payoff functions (see, e.g. Hofbauer &
Sigmund, 1998). It turns out that it is most
convenient to substract P
 2. We then obtain as
normalised payoff values Pi:=P
 i −P
 2, the
values P2 =0,

P1 = (N−1)bx3 −Nc (8)

and

P3 =
x1

x1 + x2
P1 +0p−

x1

x1 + x21
bx3 − c−(b− c)xN

3

1− x3
. (9)

For instance, if the game is stopped after the
second round already, i.e. N=2, then

P1 =−2c+ bx3, (10)

P2 =0, and P3 =−cp− cx1 + (b− c)px3.

(11)

3. The Replicator Equation for a Constant
Number of Rounds

This allows to investigate the evolution of the
frequencies of the three types of players under
the influence of selection. We can use either a
discrete game dynamics monitoring the frequen-

cies from generation to generation, or the
continuous replicator dynamics (see Hofbauer &
Sigmund, 1998)

xt i = xi(Pi −P ) (12)

on the (invariant) simplex S3 = 4x=(x1, x2, x3)
$R3:xi e 0, axi =15. Here, P=axiPi is the
average payoff in the population. We stick to the
latter, somewhat more transparent dynamics,
emphasising that it is obtained as a limiting case
of the dynamics with discrete generations (see
Hofbauer & Sigmund, 1998).

For simplicity, let us start with the case N=2.
If bq 2c, as we shall assume in the following,
then there exists a unique fixed point px =(p1, p2,
p3) in the interior of S3, i.e. with all three types
present. It is given by P1 =P2 =P3, which yields
(since P2 =0)

p1 = p(1−
2c
b

), p2 = (1− p)(1−
2c
b

),

p3 =
2c
b

. (13)

This point is a center. Indeed, one checks by a
straightforward computation that the Jacobian
at px has trace 0 and determinant
2c2p(1− p)(1−2c/b)2. The eigenvalues are
therefore purely imaginary.

On the boundary of the simplex S3, we find five
fixed points. In addition to the corners e1, e2 and
e3 (where only one type is present), we find two
mixed equilibria, namely

F23 =00,
b−2c
b− c

,
c

b− c1 (14)

and F13, which is obtained from F23 by
exchanging the first and the second coordinate.
In the absence of discriminators (i.e. on the edge
x3 =0), the flow points from e1 to e2: defectors
win. In the absence of defectors, i.e. for x2 =0,
the flow on the edge e1e3 leads toward F13. In the
absence of indiscriminate altruists, i.e. when
x1 =0, the system on the edge e2e3 is bistable (see
Fig. 1).

Since (b− c)x3 = c is an invariant line (along
this line, one has xt 3 =0), it follows that there
exists an orbit in the interior of S3 which points
along this straight line from F13 (its a-limit) to F23

(its v-limit). The boundary of the triangle
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spanned by e3, F13 and F23 is a heteroclinic cycle:
it consists of three saddle-points connected by
three orbits.

Using the classification of phase portraits of
the replicator equation due to Zeeman (1980)
and Bomze (1983), we can conclude that the
fixed point px is surrounded by closed orbits filling
the afore-mentioned triangle (in Bomze’s nota-
tion, we obtain phase portrait 13). The
time-averages of these orbits all converge toward
the point p. In the remaining part of the simplex
S3, all orbits converge to e2. If the frequency of
discriminators x3 is less than c/(b− c), therefore,
then defectors take over. If not, then the
frequencies of the three types oscillate period-
ically. We note however that this situation is not
persistent: a sequence of random fluctuations can
lead to larger and larger oscillations, and finally
cause the system to cross the separatrix line
(b− c)x3 = c and end up with a regime of all-out
defection.

We mention without proof that if there are
Nq 2 rounds, nothing much changes. The

unique fixed point px in the interior of S3 has now
the coordinates

p1 = p(1− p3), p2 = (1− p)(1− p3),

p3 =
Nc

(N−1)b
. (15)

(The third equation follows because P1 =0, the
first because for this value of p1 one has
p− p1/(1− p3)=0. Again, the eigenvalues at px
are pure imaginary; this fixed point is a center
surrounded by periodic orbits. The points F13

and F23 now satisfy

x3 + . . .+ xN−1
3 = c/(b− c) (16)

(the equation for F23 is given by P3 =0, that for
F13 by P1 =P3.) We note that the solution of (16)
satisfies x3 q c/b.

4. The Prejudice p as an Evolutionary Variable

So far we have treated p, the prejudice of the
discriminator, as a parameter. But p may well be
an evolutionary variable. So let us consider a
model where, in addition to the types used so far,
with frequencies x1, x2 and x3, we have another
type of discriminator with a prejudice r$ p. The
frequency of this new type is denoted by x4 (with
axi = 1). Again we can describe the payoffs of
the different types of players in the different
rounds. In the first round, all players receive (as
recipients) the payoff b(x1 + px3 + rx4), which
we neglect henceforth, since it is the same for all;
as donors, indiscriminate altruists pay −c,
unconditional defectors 0, and the two types of
discriminators −cp and −cr, respectively. In
the first round, it pays to have as low an opinion
as possible concerning the score of the unknown
partner. From then onward, the score is always
G for the indiscriminate altruists, and never G for
the unconditional defectors. The two types of
discriminators have score G, in the second
round, with probability p and r, respectively. It
follows that in the second round, the frequency
of G-players is g2 = x1 + px3 + rx4. For the n-th
round, with nq 2, the frequency gn of G-players
satisfies the recurrence relation

gn = x1 + (x3 + x4)gn−1, (17)

F. 1. Phase portrait of the model described in Section
3. There are three strategies: cooperators, defectors and
discriminators (corresponding to the three corner fixed
points e1, e2 and e3, respectively). Discriminators help
G-players (see text). In the first round, they help other
individuals with a fixed probability, p We assume the game
is played for two rounds; the payoff values are given by eqns
(10, 11). In the absence of discriminators, x3 =0, defectors
win. In the absence of defectors, x2 =0, a stable equilibrium
between cooperators and discriminators is reached. In the
absence of cooperators, x1 =0, there is an unstable
equilibrium between defectors and discriminators. If all
three strategies are present, there is a separatrix connecting
the two boundary equilibria on the edges. If the initial
frequency of discriminators is below a critical value, then
defectors will win. If it is above this critical value, then we
obtain neutral oscillations around a center.
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In the second round, the payoff for
p-discriminators is therefore given by
−cg2 + b(x1 + p(x3 + x4)), and that for r-dis-
criminators by −cg2 + b(x1 + r(x3 + x4)). In the
n-th round (nq 2) the payoff is −cgn + bgn−1 for
both types of discriminators. If there are
altogether two rounds or more per generation,
then the total payoff for the p-discriminators
differs from that of the r-discriminators by
(p− r)(−c+ b(x3 + x4). By the quotient rule
for the replicator dynamics (see Hofbauer &
Sigmund, 1998) it follows that

(x3/x4)
.
= (x3/x4)(p− r)(−c+ b(x3 + x4)). (18)

If the total frequency x3 + x4 of discriminators is
sufficiently high (namely larger than c/b), then
(18) shows that the ratio x3/x4 increases if and
only if pq r. In particular, in a population
where the p-discriminating type is established
and defectors have gone to extinction, or are on
their way to vanish (which means, as we have
seen, that x3 is larger than c/b), then the
r-discriminating type can invade and take over,
if and only if rq p. Thus we can conclude that
if indirect reciprocity works at all, then it favours
those discriminators having larger p-values i.e.
with a more positive prejudice in favour of an
unknown partner. This leads to a trait-substi-
tution sequence in the sense of Metz et al. (1992):
mutations introducing larger and larger p-values
will successively take over under the influence of
selection. The p-value will therefore grow, as an
evolutionary variable, until it approaches its
maximal value 1. We shall therefore restrict our
attention to the limiting case p=1.

From now on, a discriminator is a player who,
in the first round, gives help, and from then on
helps recipients with G-score only. (The first help
can be viewed as an entrance fee to the club of
G-players.) It should be stressed that discrimina-
tors are not Tit For Tat players. Tit For Tat is
a very successful strategy for the iterated
Prisoner’s Dilemma, and consists in cooperating
in the first round, and from then on doing
whatever the co-player did in the previous round.
Tit For Tat strategists base their decisions on
their own previous experience with the co-player,
whereas discriminators use the experience of
others. Pollock & Dugatkin (1992), in their

interesting paper on reputation, described this
strategy as ‘‘observer TFT’’.

It should also be mentioned that this
discriminator strategy is related to, but different
from the so-called T1-strategy in the book by
Robert Sugden on The Evolution of Rights,
Cooperation and Welfare (1986). The T1-strategy
is based on the concept of good standing. Every
player is born with a good standing, and keeps
it as long as he extends help to other players with
good standing. If he does not, he loses his good
standing. Sugden argues that such a strategy can
work as a basis for an insurance principle within
the population (in each round of his game, a
randomly chosen player needs help, and all other
players can contribute to it). We stress that a
player can keep his good standing by refusing to
help someone of bad standing, whereas in our
model, he would lose his G-score whenever he
refuses help, even if the potential recipient is a
B-scorer. Sugden’s T1 strategy is more sophisti-
cated, but like Contrite Tit For Tat, another
strategy based on standing, it is vulnerable to
errors in perception (see also Boerlijst et al.
1997).

5. Pyrrhic Victories, or the Advantage of Rarely
Showing Up

If we denote the frequency of discriminators
by x3, again, then the payoffs for indiscriminate
altruists, unconditional defectors and discrimi-
nators are, in the first round, given
by −c+ b(x1 + x3), b(x1 + x3), and
−c+ b(x1 + x3), respectively, and in the
following rounds by −c+ b(x1 + x3), bx1 resp.
−cgn + b(x1 + x3gn−1)= (b− c)gn where gn is, as
before, the frequency of G-players in round n
and g1 =1. We now have by (2):

gn =[x1 + xn−1
3 x2]/(x1 + x2). (19)

If there are exactly N rounds (with Nq 1), then
the total payoffs P
 1, P
 2 and P
 3 of indiscriminate
altruists, unconditional defectors and discrimi-
nators, respectively, are given by

P
 1 =N[−c+ b(x1 + x3)], (20)

P
 2 =Nbx1 + bx3, (21)

P
 3 = (b− c)(g1 + g2 + . . .+ gN)− bx2 (22)
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which yields

P
 3 =N(b− c)

+x2 $−b+
b− c
1− x3

(1+ x3 + . . .+ xN−1
3 −N)%.

(23)

Normalising such that P2 =0, this yields

P1 =−Nc+(N−1)bx3 (24)

and

P3 =P1 + x2[(N−1)

× b+
b− c
1− x3

(1+ . . .+ xN−1
3 −N)]

and hence

P3 =P1 + x2[(N−1)(c− bx3)

+ (b− c)x3(1+ . . .+ xN−2
3 )]/(1− x3). (25)

Let us consider first the case N=2 of two rounds
only. In this case, we have

P1 =−2c+ bx3, (26)

and

P3 =P1 + cx2, (27)

It follows immediately that the replicator
equation admits no interior fixed point. The edge
e1e3 consists of fixed points: in the absence of
unconditional defectors, both types do equally
well. Along the edge x3 =0, the flow points from
e1 to e2. On the edge e2e3, there exists a fixed point
F23, with x3 = c/(b− c). The restriction to this
edge is bistable: in a competition between
unconditional defectors and discriminators,
discriminators win if and only if their initial
frequency is larger than c/(b− c). Since the
average payoff P is equal to x1P1 + x3(P1 + cx2),
it follows that at F23, the transversal eigenvalue
xt 1/x1 is given by c(2c− b)/b− c, which is
negative. Hence F23 is saturated.

Along the fixed point edge e1e3, the transversal
eigenvalue xt 2/x2 is equal to −P (i.e. to 2c− bx3).
If we denote by F the point with x2 =0 and
xt 2/x2 =0, i.e. with x3 =2c/b, then the points on
the edge between e3 and F are saturated, and
hence v-limits of orbits in the interior of S3,
whereas all points on the segment between F and

F. 2. Phase portrait of the model described in Section
5 [eqns (26–27)]. As for Fig. 1, we consider cooperators,
defectors and discriminators, but this time discriminators
always help in the first round (p=1). Again there is a
separatrix connecting two fixed points on the edges e1e3 and
e2e3, but there is no fixed point in the interior of the simplex.
Instead the whole edge e1e3 consists of fixed points, some of
which are stable against invasion by defectors, while others
are not. The overall dynamics of the system are as follows.
Imagine a mixture between cooperators and discriminators.
There is random drift along the edge e1e3. If there are
sufficiently many discriminators then defectors cannot
invade. There are two threshold levels of discriminators. If
the frequency drops below the first value then defectors can
invade, but will go extinct again leaving the system in a state
with a higher frequency of discriminators. If the
discriminator frequency fluctuates below the second value,
then defectors can invade and take over. Hence, if defectors
appear too often they cannot win. They only win when
showing up rarely. This seems to be an interesting example
for a more general, counter-intuitive principle where a
mutation can only win if rare.

e1 are a-limits. If (b− c)x3 = c then xt 3 =0 in the
interior of S3. It follows that the line l given by
x3 = c/(b− c) is invariant. It corresponds to an
orbit whose v-limit is the saddle point F23 and
whose a-limit, which we denote by F13, has
coordinates x2 =0 and x3 = b/(b− c). This
separatrix l divides the interior of the simplex S3

into two regions. In one region, all orbits
converge toward e2. In the other region, all orbits
lead from the fixed point edge e1e3 back to that
edge; their a-limit is between F13 and F, their
v-limit between F and e3; they surround F (see
Fig. 2.). The equation also admits an invariant of
motion: x1x−2

3 [−c+(b− c)x3] (courtesy of Josef
Hofbauer).

The interplay between the three strategies
leads to a fascinating long-term dynamics.
Depending on the initial condition, selection
leads either toward a homogeneous regime
of all-out defectors, or to a mixture of
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discriminators and indiscriminate altruists (with
no unconditional defectors). In such a mixture,
no type has a selective advantage. Random drift
takes over, and the mixture fluctuates along the
e1e3-edge. From time to time, mutation can also
introduce unconditional defectors. If such an
invasion is attempted when the state lies between
e3 and F, it is promptly repelled. If it occurs while
the state is between F13 and e1, then it succeeds
and defectors take over. But if the invasion
attempt occurs while the state lies between F13

and F, then it knows a transient success only; the
frequency of defectors increases at first, but then
the proportion of discriminators grows at the
expense of the indiscriminate altruists, and
causes the defectors to vanish. The end result of
this failed invasion attempt is, as before, a
mixture of discriminators and indiscriminate
altruists, but now with a much higher amount of
discriminators, so that now it is able to stop any
invasion attempt by defectors in the bud.
Somewhat related examples of successful inva-
sions which are ultimately self-defeating (Pyrrhic
victories, so to speak) can be found in Mylius et
al. (1998) where strategies are studied which are
invadible yet unbeatable.

Of course, random drift can slowly lead the
state back into the threatened zone. But if
invasions by defectors occur frequently enough,
these invasions will be attempted while the state
is between F13 and F, and hence the state will be
led back into the invasion-proof zone. It is only
if the frequency of invasion attempts by defectors
is low that random drift along the fixed point
edge e1e3 can lead the state across the ‘‘gap’’
between F13 and F (whose width is c(b−2c)/
b(b− c)). In this case the state enters into the
segment between F and e1 where an invasion by
defectors knows an irreversible success. Thus we
see a remarkable phenomenon: a mutant that
can succeed only if it occurs rather rarely!

Essentially the same situation holds when
there are Nq 2 rounds. The point F23 now has
a coordinate x3 which is given as the solution of
the equation

x2 + x2
3 + . . .+ xN−1

3 =
c

b− c
(28)

(see (16)). This is a value which, with increasing
N, shifts from c/(b− c) towards c/b. The point

F has a coordinate x2 given by Nc/(N−1)b. This
is simply the limit of the interior fixed point px
given by (15), if p converges to 1.

This cycle of invasions is related to a
phenomenon found in the numerical simulations
by Nowak & Sigmund (1998), which are based
on a more sophisticated model of indirect
reciprocity where scores can take all integer
values (see Fig. 3).

6. Random Numbers of Rounds

Let us now assume, not a constant number of
rounds per generation, but rather a constant
probability w for a further round. The total
number of rounds per generation is then a
geometrically distributed random variable with
mean value 1/(1−w). The payoffs are of the
form A1 +wA2 +w2A3 + . . ., where An is the
payoff in the n-th round. Then, by using the first
paragraph of Section 5,

P
 1 =
1

1−w
[−c+ b(x1 + x3)], (29)

P
 2 =
1

1−w
bx1 + bx3 =

b(x1 + x3)−wbx3

1−w
, (30)

P
 3 = (b− c)(g1 +wg2 +w2g3 + . . .)−bx2. (31)

Writing g:= g1 +wg2 +w2g3 + ..., we see that
g=1+w(x1 + g1x3)+w2(x1 + g2x3)+ . . ., and
hence that

g=1+
wx1

1−w
+ x3wg. (32)

Therefore

g=
1−w+wx1

(1−w)(1−wx3)
(33)

and thus

P
 3 =−bx2 +
(b− c)(1−w+wx1)

(1−w)(1−wx3)
(34)

It is convenient again to normalise the payoff
values such that P2 =0. In this case

P1 =
wbx3 − c
1−w

(35)
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and

P3 =
(b− c)(1−w+wx1)

(1−w)(1−wx3)

− bx2 − bx3 −
bx1

1−w
(36)

which yields

P3 =
(1−w+wx1)

1−w 0 b− c
1−wx3

− b1, (37)

and thus finally

P3 =
1−w+wx1

1−wx3
P1. (38)

In contrast to the case of a fixed number of
rounds, we now obtain a line l of fixed points in
the interior of S3, given by x3 = c/wb (we assume
from now on that wq c/b). The edge e1e3 consists
of fixed points too (see Fig. 4). On the edge e1e2 the
flow leads towards e2, and on the edge e2e3 we have
a bistable competition, with threshold point F23

given by the intersection with the fixed point line
l. This line l acts as separatrix. It divides S3 into
two regions, in one region the ratio x1/x2 decreases
and in the other it increases. All orbits in the
former region converge to e2 and lead to a
population of unconditional defectors; in the
other region, all orbits converge to the fixed point
edge, and hence lead to a mixture of discrimina-
tors and indiscriminate altruists. Random
fluctuations along the fixed point edge will
eventually lead to the region where defectors can
invade.

7. An Analogy with the Prisoner’s Dilemma Game

Although the dynamics of indirect reciprocity
given by (29)–(32) is based on a model which is

F. 3. Cycling behaviour in the model by Nowak &
Sigmund (1998). Donor–recipient pairs are formed at
random. The score of a newborn is 0, it increases by one
unit whenever the individual provides help and decreases by
one unit if the individual refuses to help. A strategy is given
by an integer j. An individual with strategy j provides help
to all potential recipients with score at least j. Players with
strategy j=0 can be viewed as discriminate altruists.
Players with a low j (for instance j=−3) are de facto
indiscriminate altruists, because they help every co-player;
indeed, if players experience only two or three rounds per
lifetime, there will be no players with score less than −3.
Players with a high j (for instance j=4), on the other hand,
are defectors; they will never provide help. Numerical
simulations show how populations of discriminate altruists
are eventually undermined by indiscriminate altruists (the
average j-value drops), that defectors cash in (the average
j-value sharply increases) and that this brings discriminators
to the fore again (the average j-value drops back to 0): (a)
the average j-value of the population; (b) the average payoff
per individual, per generation; (c) frequency distribution of
strategies sampled over many generations (t=107).
Parameter values: b=1, c=0.1 (to avoid negative payoffs
we add 0.1 in each interaction); m=300 rounds per
generation.
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F. 4. Phase portrait of the model described in Section
6 [eqns (29–31)]. We consider the same situation as for Fig.
2, but this time there is not a fixed number of rounds, but
a probability, w, of a next round. The separatrix becomes
a line of fixed points. The edge e1e3 is also a line of fixed
points. Again there are two regions in phase space. If there
are sufficiently many discriminators then defectors become
eliminated, if the frequency of discriminators drops below
a critical level then defectors take over.

P
 1 =
1

1−w
[R(x1 + x3)+Sx2] (40)

P
 2 =
Px2 +Tx1

1−w
+0T+

wP
1−w1x3 (41)

P
 3 =
R(x1 + x3)

1−w
+0S+

wP
1−w1x2. (42)

If we normalise these payoff values, such that
P2 =0, and if we set, as is natural, for the
temptation by unilateral defection T= b, for the
reward by mutual cooperation R= b− c, for
the punishment of bilateral defection P=0 and
for the cost of being suckered S=−c, then the
payoffs in the PD model become

P1 =
bwx3 − c
1−w

(43)

and

P3 =
bwx3 + cwx2 − c

1−w
=P1 +

cwx2

1−w
, (44)

which behaves like the dynamical system with
N=2. In fact, for w=1/2 it is exactly the same
system. (If however w=(N−1)/N for Nq 2,
then the equations do not agree with the
dynamics given by (10)–(11); we also note that
the system (29)–(32) with a random number of
rounds is different, and in particular contains
higher order terms.)

8. A Model with Incomplete Information

Even in small groups, where everyone knows
everyone else, it is unlikely that all group
members witness all interactions. Therefore each
player has a specific perception of the image
score of the other players. The same player can
have different image scores in the eyes of
different individuals. Furthermore, it is unrealis-
tic to assume that episodes as donor and
recipient alternate in a well synchronised way.
Some individuals will be more often in a position
to give help than others.

We shall therefore assume from now on that
in each round, a given individual is with
probability 1/2 either a donor or a recipient. If
there are only few rounds, it is quite possible that

quite distinct from the repeated Prisoner’s
Dilemma game, it yields a remarkably similar
dynamics. Indeed, let us consider the Prisoner’s
Dilemma (PD) game, where each of the two
players has, in each round, two options: to play
C (to cooperate) or D (to defect). The payoff
matrix is given by

0R S
T P1 (39)

where TqRqPqS, i.e. the reward R for
mutual cooperation is larger than the punish-
ment P for joint defection, but a unilateral
defector receives the highest payoff T (the
temptation) and a unilateral cooperator the
lowest payoff S (the sucker’s payoff). Let us
assume that in each generation, each player is
matched with one randomly chosen co-player for
a variable number of rounds. Again, we assume
that the probability for a further round is
constant and given by some wQ 1. Let us
assume that the population contains only three
types of players, the unconditional cooperators,
the unconditional defectors, and the Tit For Tat
players. Let x1, x2 and x3 be their respective
frequencies. The expected payoffs are (as is well
known, see for instance Nowak & Sigmund,
1987)
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a given individual is never a donor. This is more
in line with the stochastic simulations in Nowak
& Sigmund (1998). We extend the previous
two-score model by assuming that with prob-
ability q a given individual knows the score of a
randomly chosen opponent. A discriminator
who does not know the score of the co-player
will assume with probability 1 that this score is
G. If gn denotes, as before, the frequency of
G-scorers in the population, and x1G(n), x2G(n)
and x3G(n) are the frequencies of indiscriminate
altruists, unconditional defectors resp. discrimi-
nators in round n, then clearly x1G(n)= x1 and
x2G(n)= (1/2)x2G(n−1), since a defector is with
probability 1/2 in the role of a donor and then
unmasks himself. Therefore

x2G(n) =
x2

2n−1. (45)

The score of a discriminator remains unchanged
if he is a recipient. If he is a potential donor, he
will either know the co-player (with probability
q) and help if the co-player has score G (as
happens with probability gn), or else he will not
know the co-player’s score, and help (this
happens with probability 1− q). Altogether, this
yields

x3G(n)= (1/2)x3G(n−1)+

(1/2)x3(1− q+ qgn). (46)

Since gn = x1G(n)+ x2G(n)+ x3G(n), it follows
that

gn = sgn−1 + (x1 + (1− q)x3) (47)

with s=(1+ qx3)/2. This recurrence relation
implies (together with g1 =1) that

gn =01+ qx3

2 1
n−1 x2

1− qx3
+

x1 + (1− g)x3

1− qx3
.

(48)

The payoff for the indiscriminate altruists in
round n is

A
 1(n)=−(c/2)+ (b/2)(x1 + x3). (49)

The payoff P2 for the unconditional defectors
depends on their score. Those with score B

receive b(x1 + (1− q)x3)/2 and those with score
G in addition qbx3/2, so that

A
 2(n)= (b/2)[x1 + (1− q)x3 + x3q(x2G (n)/x2)].

(50)

Finally, a discriminator receives
[−c(qgn +1− q)+ bx1 + (1− q)bx3)]/2 if he
has score B, and in addition bqx3/2 if he has score
G, so that we obtain

A
 3(n)=−(c/2)(qgn +1− q)+ (b/2)(x1 + x3)

− (b/2)qx3[1− (x3G(n)/x3)]. (51)

Normalising by subtracting A
 2(n), this yields

A1(n)=−(c/2)+ (b/2)qx3(1−2−(n−1)) (52)

and

A3(n)=−(c/2)(1− q)+ (q/2)(b− c)gn

−(b/2)qx1 − (b/2)q(x2 + x3)2−(n−1). (53)

If we assume that wQ 1 is the probability for a
further round, then the total payoff for
unconditional defectors is P2 =0, that for
indiscriminate altruists is

P1 =
1

2(1−w) $−c+
bwqx3

2−w% (54)

and that for discriminators is

P3 =
(bqx3 − c)(1− q+ qx1)

2(1−w)(1− qx3)
−

bq(x2 + x3)
2−w

+
q(b− c)x2

(1− qx3)(2−w−wqx3)
, (55)

and hence

P3 =P1 +
qx2

1− qx3 $c− bqx3

2(1−w)
+

b− c
2−w−wqx3%.

(56)

It is obvious that P1 =0 holds iff

x3 =
c(2−w)

bwq
. (57)

A straightforward computation shows that for
this x3-value, P3 =0. Hence the fixed points of
the corresponding replicator equation are (apart
from the vertices of the simplex S3) the edge e1e3
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and the line l given by bwqx3 = c(2−w). This
line divides the interior of S3 into two regions: in
one region, all orbits converge to e2, in the other
region, towards a point on the e1e3-edge which
depends on the initial value. This is exactly as in
Section 6 (see Fig. 4).

Of course this holds only if the value of x3 is
less than 1, i.e. if w(c+ bq)q 2c, in other words
if the expected number of rounds, i.e. (1−w)−1,
satisfies

1/(1−w)q (bq+ c)/(bq− c). (58)

If we consider only the two strategies defector
and discriminator, then discriminator can be
evolutionarily stable only if

qq c/b. (59)

This looks exactly like Hamilton’s rule for
altruism through kin selection, except that the
coefficient of relatedness, k, is replaced by the
probability to know the co-player’s score, q.

9. Discussion

Several authors, starting with Trivers himself,
have stressed that reciprocal altruism need not be
restricted to dyads of interacting individuals (see
Trivers, 1971; Boyd, 1988; Dugatkin et al., 1992;
May, 1987; Axelrod & Dion, 1988; Binmore,
1992 and Chap. 7 of Sugden, 1986, for instance.)

There are several ways to model generalised or
indirect reciprocity. Alexander, who elaborated
on the importance of this notion, did not fully
specify the mechanisms involved, but mentioned
several possibilities. One conceivable form of
reward (see e.g. Alexander, 1987, p. 94) consists
in having the success of the group contribute to
the success of his own descendants, which is
simply group selection in the modern sense, see
Wilson & Sober (1994). One other form has been
investigated by Boyd & Richerson (1989):
individual A helps B, who helps C, who helps D,
who finally returns the help to A. Thus
individuals are arranged in closed, oriented
loops, reminiscent of the hypercycles in the
theory of Eigen & Schuster (1979) on catalytic
loops of selfreplicating molecules. Boyd &
Richerson investigate two strategies: upstream
Tit For Tat (A keeps helping B if D keeps

helping A) and downstream TFT (A keeps
helping B if A observes that B keeps helping C).
They find that the second type is much more
efficient than the first, but that it is also more
difficult to perform. (It should be noted that for
two-member loops, both strategies reduce to Tit
For Tat.) Boyd & Richerson conclude that this
type of indirect reciprocity is less likely to evolve
than pairwise reciprocity, and is only effective for
relatively small, closed, long-lasting loops.

In a sense, this indirect reciprocity is still quite
direct, and the social networks in human groups
(or pirmates, for that matter—see de Waals,
1996) are much more fluid than the ‘‘long-lasting
loops’’ indicate. Alexander (1987) envisions a
more diffuse mechanism when he stresses (p. 85)
that ‘‘the return [of the beneficence] may come
from essentially any individual or collection of
individuals in the group’’, and emphasised the
importance of assessment and status. We have
tried to model this in Nowak & Sigmund (1998)
by means of ‘‘scores’’ assigned to each group
member. If the model is reduced to the minimum
(two scores only), we obtain the discriminator
strategy.

The same strategy has been reached, through
a different approach, in Pollock & Dugatkin
(1992), who termed it Observer Tit For Tat.
They studied it in the context of the repeated
Prisoner’s Dilemma, which is the usual frame-
work for analysing direct reciprocity. Pollock &
Dugatkin allowed the players to occasionally
observe a co-player before starting the repeated
interaction. If the future co-player was seen
defecting in his last interaction, then Observer
Tit For Tat prescribes to defect in the first round.
Pollock & Dugatkin were mostly interesting in
comparing this strategy with the usual Tit For
Tat, but they also found that it could hold its
own against defectors when no degree of future
interaction with the current partner was pre-
sumed. They also obtained a condition similar to
(53), but without modelling the different rounds
in an individual’s lifetime, and in particular
without (52). The approach by Pollock &
Dugatkin is truly remarkable. They did not aim
at a model of indirect reciprocity, but actually
investigated what Alexander would view as its
prerequisite, namely ‘‘direct reciprocity occur-
ring in the presence of interested audiences’’
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(Alexander, 1987, p. 93), and came out with what
we believe is the simplest strategy under which
indirect reciprocity can be implemented—an
unintended support for the correctness of
Alexander’s intuition.

The success of a discriminating player is
somewhat hampered by the fact that whenever
he refuses to help a B-scorer, he loses his
G-score. A more sophisticated strategy has been
studied by Sugden (1986) in a context which is
only slightly different. In Sugden’s model, in
each round a randomly chosen player needs help,
and each of the other players can provide some
help (thus the needy player can get as payoff
(m−1)b, where m is the group size). Sugden’s T1

strategy is based on the notion of standing: a
player is born with good standing, and keeps it
as long as he helps needy players who are in good
standing. Such a player can therefore keep his
good standing even when he defects, as long as
the defection is directed at a player with bad
standing (this is in contrast to the discriminator
strategy). We believe that Sugden’s strategy is a
good approximation to how indirect reciprocity
actually works in human communities: it offers,
as Sugden remarks, a workable insurance
principle. But as stressed in Boerlijst et al. (1997)
in connection with Contrite Tit For Tat,
strategies based on standing are prone to be
affected by errors in perception. If information is
incomplete, then a player observed while
withholding his help may be misunderstood; he
may have defected on a player with good
standing, or punished someone with bad
standing. An eventual error can spread. The
discriminator rule is less demanding on the
player’s capabilities, and still works. We expect
that in actual human communities, indirect
reciprocity is based on more complex reckon-
ings, and believe that this should be amenable to
experimental tests.

Finally, we mention that according to Zahavi
(1995), Arabian babblers ‘‘compete with each
other to invest in the interests of the group, and
often interfere with the helping of others’’. This
jostling for the position of the helper cannot be
explained in terms of group selection, kin
selection or direct reciprocation. However, if
helping raises one’s score and therefore one’s
fitness, this type of competition can easily be

understood: indirect reciprocity based on image
scoring provides a simple explanation.

We wish to thank Martin Posch, Immanuel Bomze,
Josef Hofbauer, Robert May and Alex Kacelnik for
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