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A highly successful strategy for the Repeated Prisoner’s Dilemma is Contrite Tit For Tat, which bases
its decisions on the ‘‘standings’’ of the two players. This strategy is as good as Tit For Tat at invading
populations of defectors, and much better at overcoming errors in implementation against players who
are also using it. However, it is vulnerable to errors in perception. In this paper, we discuss the merits
of Contrite Tit For Tat and compare it with other strategies, like Pavlov and the newly-introduced
Remorse. We embed these strategies into an eight-dimensional space of stochastic strategies which we
investigate by analytical means and numerical simulations. Finally, we show that if one replaces the
conventions concerning the ‘‘standing’’ by other, even simpler conventions, one obtains an
evolutionarily stable strategy (called Prudent Pavlov) which is immune against both mis-perception and
mis-implementation.
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1. Introduction

Tit For Tat has an Achilles’ heel: it is vulnerable to
errors [see Axelrod & Hamilton (1981), Axelrod
(1984), Molander (1985), Müller (1987), Axelrod &
Dion (1988), Bendor et al. (1991), Bendor (1993),
Kollock (1993), Nowak & Sigmund (1993b), Nowak
et al. (1995a)]. If a Tit for Tat (TFT ) player
erroneously plays Defect against another TFT-player,
this leads to a long vendetta. There are several ways
to overcome this problem. One can, for instance, play
Generous Tit For Tat (GTFT ): always cooperate if the
other player cooperated in the previous round, but
defect only with a certain probability if he defected
[see Molander (1985) and Nowak & Sigmund (1992)].
Alternatively, one could use the strategy PAVLOV:
cooperate if and only if you and your opponent used
the same move in the previous round [see Kraines &
Kraines (1988), Fudenberg & Maskin (1990) or
Nowak & Sigmund (1993b)]. Both strategies are
error-proof: a mistaken defection is quickly corrected,
and mutual cooperation resumed.

Another error-correcting strategy has been pro-
posed by Sugden (1986) in his seminal book on
‘The Evolution of Rights, Co-operation and Welfare’.
This is Contrite Tit For Tat, or cTFT [see also Boyd
(1989) and Wu & Axelfod (1995)]. Like GTFT and
PAVLOV, this is a memory one-strategy: it decides
according to the outcome of the previous round.
However, in contrast to its two rivals, this outcome
does not only depend on the moves of the two players
(which can be C or D, cooperate or defect), but also
on their standing, which can be g (‘‘good’’) or b
(‘‘bad’’). A player is in good standing if he has
cooperated in the previous round, or if he has
defected while provoked (i.e. while he was in good
standing and the other player was not). In every other
case defection leads to a bad standing. The strategy
cTFT begins with a cooperative move, and cooperates
except if provoked.

If two cTFT-players engage in a repeated Prisoner’s
Dilemma, and if the first player defects by mistake, he
loses his good standing. In the next round, he will
cooperate, whereas the other cTFT-player will defect
without losing his good standing. Then both players
will be in good standing and resume their mutual
cooperation in the following round. This strategy is‡ Author to whom correspondence should be addressed.
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related to Dawkins’ (1989) Remorseful Prober, who
defects once in a while but accepts retaliation in the
following round without complaint.

As Sugden has shown, cTFT is evolutionarily
stable. Moreover, it is as good as TFT in invading a
population of defectors. In contrast, PAVLOV and
GTFT fare both very poorly in such an environment,
and need a ‘‘catalyser’’ to create the type of
cooperative environment in which they can thrive.

On the other hand, the additional complexity of the
cTFT strategy has its drawbacks. In particular, while
cTFT is immune to errors in the implementation of a
move, it is not immune to errors in the perception of
a move. If, in a match between two cTFT players, one
player mistakenly believes that the other is in bad
standing, this leads to a sequence of mutual
backbiting, just as with TFT. [Errors in perception—
rather than implementation—have been studied in
Miller (1996), Kollock (1993), Nowak et al. (1995b).]

In this paper, we discuss the relative merits of all
(stochastic or deterministic) memory one strategies
with or without standing. cTFT is not the only
evolutionarily stable rule which is Pareto-optimal
(and hence yields the maximal pay-off if the whole
population adopts it). Depending on the exact pay-off
values, either PAVLOV or another strategy called
REMORSE has the same qualities. A player using the
REMORSE strategy cooperates if he was in bad
standing in the previous round, or if both players
cooperated. This strategy, again, is error-correcting.
Indeed, suppose that both players use REMORSE. If
the second player defects by mistake, he cooperates in
the next round, whereas the first player defects and
remains in good standing. In the following round,
both players defect and obtain a bad standing; from
then onward, both resume cooperation.

We discuss cTFT, PAVLOV and REMORSE with
analytical methods and numerical simulations, em-
bedding them in a large class of stochastic strategies.
Finally, we show that by replacing the conventions
concerning the ‘‘standing’’ by another set (which is
even easier to implement, and only depends on an
‘‘internal variable’’) one is led to a PRUDENT-
PAVLOV strategy which is an ESS and immune
against errors both in implementing and in perceiving
moves.

2. Preliminaries on the Repeated Prisoner’s Dilemma

The Prisoner’s Dilemma (or PD) is a game between
two players each having two options, namely to
cooperate (play C) or to defect (play D). If both
cooperate, they get a reward R higher than the
punishment P which they receive if both defect. If one

player defects and the other cooperates, the defector
get the pay-off T (for temptation) and the cooperator
the sucker’s pay-off S. We shall always assume

TqRqPqS (1)

so that the option D dominates C (it is better no
matter what the other player chooses). But if both
players use D, they fail to get the reward.

In the iterated PD, the game is played for several
rounds. We shall assume that there is a constant
probability w for another round. The length of the
game is a stochastic variable with mean value
1/(1−w). A strategy for the iterated PD is a program
telling the player in each round whether to chose C
or D (this can be a randomised decision: cooperate
with such and such a probability). If An is the pay-off
for one player in the n-th round, his expected pay-off
is SAnwn (note that wn is the probability that an n-th
round occurs). We shall mostly be interested in large
w (close to 1). Frequently, the limiting case w=1 is
considered (the infinitely repeated PD). In this case,
the pay-off is the limit of the mean

(1/n)(A1 + · · ·+An ), for n : a (if it exists).
We shall assume

2RqT+S (2)

so that it is better for the two players to cooperate
jointly rather than to alternately defect.

Let us now assume that in every round, each player
is provided with a standing, which can be g (good) or
b (bad). In the following round, the player acts (i.e.
opts for C or D) and obtains a new standing which
depends on his action and on the previous standing
of both players. As mentioned in the introduction, the
rules for updating the standing are the following: if
the other player has been in good standing, or if we
both have been in bad standing, I receive a good
standing if I cooperate, and a bad standing otherwise.
If I have been in good standing and the other player
in bad standing, I receive a good standing no matter
what I am doing.

Thus, if I cooperate in a given round, I will always
obtain a good standing: but if I defect, I will be in
good standing only if, in the previous round, I have
been in good standing and my opponent has been in
bad standing.

In a given round, a player can be in three possible
states: Cg, Dg and Db: the first means that he has
cooperated (which automatically entails good stand-
ing), the second that he has defected with good
reason, the third that he has wantonly defected. The
state of the game in a given round is made up of the
states of the first and the second player. There are
nine such combinations: (Cg, Cg), (Cg, Dg),
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(Cg, Db), (Dg, Cg), (Dg, Db), (Db, Cg), (Db, Dg),
(Db, Db) and (Dg, Dg). It is easy to check that this
last state can never be reached: we therefore omit it,
and number the remaining eight states in this order.

cTFT is the strategy which cooperates except if it
is in good standing and the other player is not,
whereas REMORSE is the strategy which cooperates
only if it is in bad standing, or if both players had
cooperated in the previous round.

3. In Search of Stability

A strategy S
 is said to be an evolutionarily stable
strategy, or ESS, if in a population where all members
adopt it, no other strategy can invade under the effect
of selection. More precisely, if A(S, S ') is the expected
pay-off for an S-player in a population of S '-players,
then S
 is an ESS if for all strategies S different from
S
 one has A(S, S
 )EA(S
 , S
 ) and, if equality holds,
A(S, S)QA(S
 , S) [see Maynard Smith (1982)].

It is easy to see that for the infinitely repeated
Prisoner’s Dilemma, i.e. for w=1, there exists no
ESS. This is simply due to the fact that two strategies
differing only in their first—say—three hundred
moves will have exactly the same pay-off.

But as shown in Sugden (1986), for wQ 1 the
strategy cTFT is evolutionarily stable in a very
important sense: if there is a small, but non-vanishing
probability of mis-implementing a move, every
strategy that deviates, against a cTFT-player, from
what the cTFT-rule would prescribe, fares less well
than it would have by following this rule. Note that
if there is such an error probability, every finite
sequence of moves will have a positive probability.
[See Selten (1975), Selten & Hammerstein (1984), and
Boyd (1989) where the connection with Selten’s
concept of a perfect equilibrium is discussed.]

The basic idea of Sugden’s proof allows to decide
for every deterministic rule S
 based on finitely many
states whether it is evolutionarily stable in the sense
defined above. Because of the error probability, every
state can be reached with positive probability. Let us
start in any of the possible states, assuming for the
moment that no error will occur in the following
rounds, and let us follow the fate of a player invading
a S
 population. Since the next move of his adversary
is always specified, there are only two possible states
that can be reached in the next round, depending on
whether the invader uses C or D. From each of these
states, two states can be reached in turn, etc. Since
there are only finitely many states, each branch of the
game-tree must eventually return to a state it had
visited before. Therefore, it is possible to compute the
pay-off along every branch, discounting by the factor

w at every step. One of the branches issued from each
state describes what happens if I use S
 myself. If this
always yields the highest pay-off, and no alternative
does, then S
 is evolutionarily stable, provided the
probability for mistakes in implementation is
sufficiently small.

In Fig. 1 we check this for PAVLOV. Two arrows
issue forth from each state, depending on whether the
invader plays C or D against his S
 -adversary. The
vertices of the graphs describe the invader’s state in
the first (or upper) position, and the state of his
opponent in the second (or lower) position. The
arrows describe the possible transitions, which only
depend on the invaders choice, since the opponent’s
moves are specified by S
 . The solid arrow indicates
the move the invader would choose if he were also a
S
 -strategist. We see in Fig. 1 that PAVLOV is an ESS
if and only if T+wPQR+wR, as has been shown
by Harrington & Axelrod (unpublished data). The
critical decision occurs when we are in (D, D) or
(C, C) and I have to decide whether to get two R ’s
in succession, or a T followed by a P. On the other
hand, Fig. 2 shows that TFT is never an ESS if w is
close to 1: in (C, D), my best move leads to (C, C).

In Fig. 3, we see that cTFT is always an ESS
if w is close to 1, and in Fig. 4 that REMORSE
is an ESS if and only if T+wPqR+wR (the
opposite as with PAVLOV). The critical case,
here, comes when in state (Dg, Db) or
(Cg, Db). Defecting twice (as REMORSE specifies)
will get me T+wP. Cooperating twice yields
R+wR. We note that REMORSE can handle AllD
very well and is threatened by more cooperative

F. 1. PAVLOV is an ESS if T+wPQR+wR. Solid lines
indicate the moves specified by the PAVLOV strategy; dotted lines
indicate the alternative moves. See text for further explanation.
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F. 2. TFT is no ESS for large w.

The average pay-off, after the mistake, is (T+S)/2,
which is less than R.

Similarly, REMORSE is not immune to mispercep-
tion of the other’s move:

Cg Cg Dg Db Cg Dg Dg . . .
Cg Db* Cg Db Db Db Cg . . .

Cg Cg Db Db Cg Db Db . . .
Cg Cg Cg Dg Dg Db Cg . . .

The average pay-off, after the mistake, is
(T+S+2P)/4, which is less than R.

In contrast to this, PAVLOV is immune to
misperception of the other’s move (or the own, for
that matter):

C C D D C . . .
C D* C D C . . .

C C D D C . . .
C C C D C . . .

strategies; PAVLOV exploits AllC to the hilt, but is
endangered by AllD.

One can use the same method to verify, for
instance, that AllD and GRIM are evolutionary stable
rules (GRIM cooperates only if both players
cooperated in the previous round. If one defects
against a GRIM-player, that player will never revert
to cooperation.) For certain pay-off values, the
strategy WEAKLING is also an ESS: it cooperates if
and only if it is in bad standing. However, these
strategies are far from optimal. If a population is
stuck with such a strategy, it does very poorly (the
average pay-off is P for AllD and GRIM, and
(R+P)/2 for WEAKLING). In contrast, if a whole
population adopts PAVLOV, GTFT, cTFT or
REMORSE, it will on average obtain the pay-off R
per round.

So far, we looked at errors in implementing a
move. But there also exist, as we know from everyday
life, errors in understanding which can threaten
cooperation. cTFT is not immune to misperception
of the other’s move, as can be seen from the
following table, where the first row is the sequence
of my states, as I perceive them; the second the
sequence of the opponent’s states, as I perceive them
(my error occurs in the second round, indicated
by the asterisk) whereas the third and fourth row are
the sequences of my (resp. my opponent’s) true
moves.

Cg Cg Dg Cg Dg . . .
Cg Db* Cg Db Cg . . .

Cg Cg Db Cg Db . . .
Cg Cg Cg Dg Cg . . . F. 3. cTFT is an ESS for large w.
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F. 4. REMORSE is an ESS if T+wPqR+wR.

uniquely based on the outcome of the previous move.
Let us first omit the ‘‘standing’’. The outcome in every
round, then, can be completely characterised by the
pay-off for the first player, which is R, S, T or P.
We shall number these outcomes by 1 to 4 (in this
order) and consider strategies given by p=(p1, . . , p4)
where pi is the probability to cooperate after
outcome i. For instance, AllD, the strategy that
always defects, is given by (0, 0, 0, 0) and TFT by
(1, 0, 1, 0). These are so-called reactive strategies,
where the decision depends only on the other player’s
previous move, not on the own, i.e. where p1 = p3 and
p2 = p4 [see Nowak (1990) and Nowak & Sigmund
(1990)]. Examples of non-reactive strategies are
GRIM (1, 0, 0, 0) and PAVLOV (1, 0, 0, 1). These
are deterministic strategies, where the pi are 0 or 1.
If we assume that errors occur, we obtain stochastic
versions, for instance (1− e, e, 1− e, e) as an
approximation to TFT [cf. Nowak & Sigmund
(1993a) and (1995)].

If the rule p is matched against a rule
p'= (p'1 , p'2 , p'3 , p'4 ), this yields a Markov process
where the transitions between the four possible states
R, S, T and P are given by the matrix

T=

G
G

G

K

k

p1p'1 p1(1− p'1 ) (1− p1)p'1 (1− p1)(1− p'1 )
p2p'3 p2(1− p'3 ) (1− p2)p'3 (1− p2)(1− p'3 )
p3p'2 p3(1− p'2 ) (1− p3)p'2 (1− p3)(1− p'2 )
p4p'4 p4(1− p'4 ) (1− p4)p'4 (1− p4)(1− p'4 )

G
G

G

L

l
(3)

(note that p2 is matched with p'3 and vice versa; one
player’s S is the other player’s T ). If p and p' are
in the interior of the strategy cube, then all entries
of this stochastic matrix are strictly positive, and
hence there exists a unique stationary distribution
s=(s1, s2, s3, s4) such that p(n)

i , the probability to be in
state i in the n-th round, converges to si for n:a
(i=1, 2, 3, 4). The components si are strictly positive
and sum up to 1. They denote the asymptotic
frequencies of R, S, T and P. The stochastic vector
s is a left eigenvector of T for the eigenvalue 1, i.e.
satisfies s= sT.

It follows that for w=1, the pay-off for a
player using p against an opponent using p' is given
by

A(p, p')=Rs1 +Ss2 +Ts3 +Ps4. (4)

If, for instance, a TFT player is matched against
another TFT player, and if errors occur, the pay-off

The error is quickly corrected and the average pay-off
remains R. [For a precise computation of the effect of
the errors in perception, we refer to Nowak et al.
(1995b).]

4. Stochastic Strategies with Standing

If we assume that each move can be mis-im-
plemented with a certain probability, we are
encountering stochastic strategies. As the example of
Generous Tit For Tat (GTFT ) shows, such strategies
can be important in their own right, not just as
imperfect realisations of deterministic strategies [see
e.g. May (1987) and Sigmund (1995)].

Within the huge class of strategies for the iterated
PD, we shall concentrate on the memory one
strategies, where the decision, for each move, is
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is reduced to (R+S+T+P)/4, which is less than R.
On the other hand, two PAVLOV-players receive R
(up to an e-term) because their errors are quickly
corrected. We note that the si and hence also the
pay-off in (4) are independent of the initial condition,
i.e. of the moves of the players in the first round. For
wQ 1, the pay-off has a more complicated expression
and depends on the initial move, see Nowak &
Sigmund (1995).

Let us now take the ‘‘standing’’ into account. A
stochastic strategy based on the outcome of the
previous round is now given by a vector
q=(q1, . . . , q8) where qi is the probability to play C
if the state in the previous round was i (we keep the
ordering as described at the end of Section 2). There
are 28 =256 deterministic strategies (where all qi are
1 or 0).

The strategies p=(p1, . . . , p4) considered pre-
viously do not depend on the standings, but only on
the actions of the two players in the previous round.
Such a p-strategy can be viewed as a q-strategy, with

q=(p1, p2, p2, p3, p4, p3, p4, p4).

Tit For Tat, for instance, is (1, 0, 0, 1, 0, 1, 0, 0) and
Pavlov is (1, 0, 0, 0, 1, 0, 1, 1). The strategy cTFT is
given by (1, 1, 0, 1, 0, 1, 1, 1) and REMORSE by
(1, 0, 0, 0, 0, 1, 1, 1).

If the first player is a q-strategist and the second a
q'-strategist, the transition probabilities from one
state of the game to the next are given by the
following matrix T:

Note that, due to the rules about standing, there are
four vanishing entries in each row of this 8×8
matrix. In spite of these zeros, T is irreducible, and
even mixing, provided all qi are distinct from 0 and 1;
indeed, the entries of Tn are all strictly positive for
nq 2. It follows that there exists a uniquely defined
strictly stochastic vector s such that sT= s, yielding
the stationary probabilities of the eight states. The
pay-off obtained by the q-player against the q'-player is

Rs1 +S(s2 + s3)+T(s4 + s6)+P(s5 + s7 + s8). (6)

Let us compute this, for example, if a REMORSE-
player (whose strategy, if the error probability is e, is
given by (1− e, e, e, e, e, 1− e, 1− e, 1− e)) con-
fronts a cTFT-player with strategy
(1− e, 1− e, e, 1− e, e, 1− e, 1− e, 1− e). The
transition matrix T is given by

We write T=P+ eQ1 + e2Q2 and s= x+
ey+ e2z, where x is a stochastic vector, so that the
components of y and z both sum up to 0. Developing
sT= s in powers of e we obtain xP= x,
xQ1 + yP= y and zP+ yQ1 +Q2 = z. The first
equation yields x=(1−2a, a, 0, 0, 0, a, 0, 0) for
unknown a. Hence xQ1 = (−2+6a,−2a, 1−2a,
0, 0, 1−4a, a, a) so that the second equation yields
a= 2

7. Hence x=(3
7,

2
7, 0, 0, 0, 2

7, 0, 0). It follows that
the pay-off for REMORSE against cTFT is given, up
to e, by

3
7 R+ 2

7(S+T ), (8)

K L(1− e)2

e(1− e)
e(1− e)
e(1− e)
e(1− e)
(1− e)e
(1− e)e
(1− e)2

0
0
0
0
0

(1− e)2

(1− e)2

0

(1− e)e
e2

e2

e2

e2

0
0

e(1− e)

0
0

(1− e)2

0
(1− e)2

0
0
0

0
0

(1− e)e
0

(1− e)e
0
0
0

e(1− e)
(1− e)2

0
(1− e)2

0
e2

e2

e(1− e)

0
0
0
0
0

e(1− e)
e(1− e)

0

e2

(1− e)e
0

(1− e)e
0
0
0
e2

. (7)

G G
G G
G G
G G
G G
G G
k l

K Lq1q'1
q2q'4
q3q'6
q4q'2
q5q'7
q6q'3
q7q'5
q8q'8

0
0
0
0
0

q6(1− q'3 )
q7(1− q'5 )

0

q1(1− q'1 )
q2(1− q'4 )
q3(1− q'6 )
q4(1− q'2 )
q5(1− q'7 )

0
0

q8(1− q'8 )

0
0

(1− q3)q'6
0

(1− q5)q'7
0
0
0

(1− q1)q'1
(1− q2)q'4

0
(1− q4)q'2

0
(1− q6)q'3
(1− q7)q'5
(1− q8)q'8

0
0
0
0
0

(1− q6)(1− q'3)
(1− q7)(1− q'5)

0

(1− q1)(1− q'1)
(1− q2)(1− q'4)

0
(1− q4)(1− q'2)

0
0
0

(1− q8)(1− q'8)

.

0
0

(1− q3,)(1− q'6)
0

(1− q5)(1− q'7)
0
0
0

G G
G G
G G
G G
G G
G G
k l

(5)
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which is the same as the pay-off for cTFT against
REMORSE. Since both cTFT and REMORSE are
error-correcting, and therefore obtain pay-off R
against their like, the competition between these two
strategies leads to a bi-stable situation which is
symmetric: both basins of attraction are equally large.
If it had been otherwise, this would have suggested
that one strategy is stronger than the other.

A similar situation holds between cTFT and
PAVLOV, i.e. (1− e, e, e, e, 1− e, e, 1− e, 1− e).
The stationary distribution (up to e) is now
(3
9, 0, 2

9,
2
9,

2
9, 0, 0, 0) so that the pay-off for PAVLOV

against cTFT is now

1
3 R+ 2

9 (S+T+P). (9)

We can easily compute the perturbation term for
the pay-off: in the above case, for instance, it is
e(−6R−13S+23T−4P)/81.

If a PAVLOV-player plays against REMORSE,
the pay-off is R (up to e). Indeed, this interaction is
error correcting. The reason is that the two strategies
(which both are error-correcting against their own)
obey quite similar rules: as long as both players are
in good standing, they follow the same program.
(However, REMORSE does not exploit suckers, i.e.
AllC-players, whereas PAVLOV does.)

We mention in passing that there exist equalizers
within the class of q-strategies. More precisely, every
pay-off between P and R can be written as P+ p.
Against a strategy of the form

q=01+ pa− a(R−P), 1+ pa− a(T−P),

1+ pb− b(T−P),

1+ pa+ a(P−S)−
a
b
, pb,

pa+ a(P−S), pa, pa1
(where a and b are real parameters such that all qi lie
between 0 and 1) every strategy obtains the same
pay-off, namely P+ p. This can be shown by a
computation similar to that in Boerlijst et al. (1997),
but considerably more tedious. For a= b we obtain
the (p1, . . . , p4)-strategies described in Boerlijst et al.
(1997).

5. Numerical Simulations

In this section we present results of random
mutation experiments in order to enhance the
understanding of the dynamics and attainability of
the different ESS’s. In these experiments a population

of strategies is simulated for 1 million time steps (and
more, if no steady state is reached). Pay-off values
between strategies are computed on the assumption
that w=1. The next fraction of a strategy Xi is
computed by:

Xi (t+1)=Xi (t)

s
j

Xj (t)A(i, j )

s
k

Xk (t) s
j

Xj (t)A(k, j )

(10)

where A(i, j ) is the pay-off that strategy i gets when
playing against strategy j and Xi (t) is the frequency of
strategy i at time t. In eqn (10) the change of a
fraction is determined by the average score of the
strategy divided by the average score of the
population [comparable to replicator dynamics, see
Hofbauer & Sigmund (1988)]. Whenever a fraction
drops below 0.001, it is regarded as extinct and set to
zero. Therefore, the total number of different
strategies can never exceed 1000. Mutant strategies
are introduced at a fraction of 0.0011. The chance of
the appearance of a mutant is 0.01 per time step. After
mutation and extinction events the population is
rescaled to 1. Strategies are given by a vector
q=(q1, . . . , q8). There is a background noise
e=0.001. Mutants have a random set of q-values,
with a bias towards pure strategies. q-values are set
to e or (1− e), each with probability 1/3, or to the
U-shaped distribution (1+cos(pr))/2 (with random
variable r uniform between 0 and 1), if necessary
rounded to e or (1− e). In this way the chance of
obtaining a particular pure strategy is (1/
3+cos−1(1−2e)/p)8, and hence the chance that a
particular pure strategy appears within a simulation
exceeds 99%.

We simulate for two different sets of pay-off values,
which differ in dynamics. The first set of (S=0,
P=1, R=3, T=5.5) is at high temptation to defect,
whereas the second set of (S=0, P=1, R=3,
T=3.5) is at low temptation. The two sets differ on
whether 2RqT+P or not.

  (T=5.5)

At high temptation we find the ESS’s: ALLD,
GRIM, cTFT and REMORSE. Simulations starting
with just one of these strategies show that populations
of ALLD and GRIM do not persist for a long time,
whereas populations consisting of cTFT and RE-
MORSE do persist. This still holds if w is slightly
smaller than 1. The apparent contradiction that an
ESS population can be invaded by mutants can be
explained by the fact that in our model the score of
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a newly introduced mutant is (marginally) influenced
by the mutant playing against itself. We argue that
ESS’s that are not stable against such small
perturbations are structurally unstable: biologically,
we assume that mutant strategies invade in small
clusters, or clones.

Simulations starting from ALLD sooner or later
end up in populations of either cTFT(-like) or
REMORSE(-like) strategies. Figure 5 shows two
typical runs: Figure 5(a) settling in cTFT, and
Fig. 5(b) settling in REMORSE. The average
population score very quickly approaches 3, indicat-
ing cooperation. Before the population reaches the
steady state, periods of relative stasis alternate with
periods of rapid change, comparable to e.g. Lindgren
(1991). In Fig. 5(b) the population initially shows
alternations between PAVLOV-like, and RE-
MORSE-like dominance. In fact, these two types of
strategies behave similarly in most cases.

Some cTFT-like and REMORSE-like strategies
play almost neutral against pure (up to e) cTFT and
pure REMORSE. Often the final state is composed of
a mixture of either these cTFT-like or REMORSE-
like strategies. Figure 6 shows a simulation that ends
in a cTFT-like population. The scores within such a
mixture are all alike, so that the dynamics are
governed by the score against ‘‘background mu-
tants’’. This explains the drift and the accumulation
of neutral mutants. Note that pure cTFT is also
present in Fig. 6, but it fails to dominate the
population.

To explore the basins of attraction of the ESS’s we
ran 100 simulations starting from ALLD: 68 ended in
cTFT-like mixtures, 11 ended in pure cTFT, 15 ended
in REMORSE-like mixtures, and six ended in pure
REMORSE. It seems that competition is decided on
the base of which strategy first exceeds a certain
threshold. The fact that there are more neutral
mutants around cTFT than around REMORSE
explains the bias towards the former strategy.
Simulations starting from 100 random mutants show
similar statistics.

  (T=3.5)

Known ESS’s at low temptation are ALLD,
GRIM, cTFT, PAVLOV and WEAKLING. Again,
ALLD and GRIM are easily invaded, whereas the
other strategies persist. Starting 100 simulations from
ALLD we get 63 cTFT-like mixtures, eight pure
cTFT, 17 PAVLOV-like mixtures, three pure
PAVLOV, six WEAKLING-like mixtures, and three
times pure WEAKLING. The dynamics resembles
that described for high temptation. Figure 7 shows a
simulation that ends in pure WEAKLING. It can be

seen that the appearance of WEAKLING-like
strategies causes a drop in the score. Pure
WEAKLING will slowly outcompete the other e
WEAKLING-like strategies, and the population stays
fixed in a sequence of alternating mutual cooperation
and defection, giving a score of (R+P)/2. Only nine
out of 100 simulations end in this non-cooperative
mode, PAVLOV(-like) and cTFT(-like) populations
both reach a score close to R.

 - 

Results for other pay-off values resemble the results
of either of the above described situations. At the
bifurcation point T=5 the main attractor of
simulations is again pure cTFT or cTFT-like
mixtures. At this value also stable REMORSE or
REMORSE-like mixtures, and PAVLOV-like mix-
tures are observed. Pure PAVLOV is no longer an
ESS for this T-value. Another bifurcation point is at
T=4. Above this T-value WEAKLING is no longer
an ESS (more generally, the condition is
T+SQR+P).

To conclude, we see that the addition of a standing
in the Prisoner’s Dilemma facilitates the evolution of
cooperation. Populations with random mutations in
most cases quickly adapt to a cooperative mode, and
only rarely the population gets trapped in the
WEAKLING strategy. Surprisingly, this suboptimal
trapping is only observed in situations with low
temptation to defect.

6. The Alternating PD

One can also investigate cTFT in the context of the
alternating Prisoner’s Dilemma [see Boyd (1988),
Nowak & Sigmund (1994) and Frean (1995)]. In the
strictly alternating case, the two players take turns in
deciding which move to chose: either to offer or to
withhold assistance (C or D). As shown in Nowak &
Sigmund (1994) the pay-off values must then satisfy
T−R=P−S. In the alternating game, not only the
state (Dg, Dg) but also the states (Db, Db) and
(Cg, Dg) are unreachable. [The state (Cg, Db) for
instance means: the first player has cooperated—he is
by definition in good standing—and then, in the
following round, the second player has defected, but
nevertheless is in good standing, clearly an impossi-
bility. We shall only consider the states where the first
player’s move has been answered by a move of the
second player.] We denote the remaining states
(Cg, Cg), (Cg, Db), (Dg, Cg), (Dg, Db), (Db, Cg) and
(Db, Dg) by 1 to 6 (in this order), and consider
stochastic strategies of the form q=(q1, . . . , q6). If a
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F. 5. Evolution of a population of strategies starting from pure ALLD with high temptation to defect (T=5.5). In the upper panel the
solid line indicates the average population score whereas the dotted line indicates the number of diferent strategies. (a) Settling in cTFT.
(b) Settling in REMORSE. After Lindgren (1991).
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q-player meets a q'-player, the transition matrix is
given by

If s, again, denotes the stationary vector, then the
pay-off for the q-player is

s1R+ s2S+(s3 + s5)T+(s4 + s6)P. (12)

We note that again, cTFT is evolutionarily
stable. Numerical simulations (as described in
the previous chapter) show that ALLD popula-
tions do not persist. All simulations settle
in cTFT(-like) mixtures, making the alternating
Prisoner’s Dilemma a favourite playground for
cTFT.

K L

T=

q1q'1
q2q'5
q3q'1
q4q'5
q5q'1
q6q'3

q1(1− q'1 )
q2(1− q'5 )
q3(1− q'1 )
q4(1− q'5 )
q5(1− q'1 )
q6(1− q'3 )

0
(1− q2)q'6

0
(1− q4)q6

0
0

0
(1− q2)(1− q'6)

0
(1− q4)(1− q6)

0
0

(1− q1)q'2
0

(1− q3)q'2
0

(1− q5)(1− q'2 )
(1− q6)q'4

(1− q1)(1− q'2 )
0

(1− q3)(1− q'2)
0

(1− q5)(1− q'2 )
(1− q6)(1− q'4 )

. (11)
G G
G G
G G
G G
k l

7. Discussion

All strategies considered in this paper can be
implemented by finite automata. For the extensive
theory in this field, we refer to Binmore & Samuelson
(1992). One might ask whether the cTFT-strategy can
be implemented by a strategy uniquely based on a
finite (but possibly very long) memory of the moves
of the two players, and not using the notion of
standing. This, however, is not the case. If, for
instance, a sequence of alternating defections occurs,

F. 6. Simulation settling in a mixture of cTFT-like strategies.
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F. 7. Evolution of a population of strategies starting from pure ALLD with low temptation to defect (T=3.5).

only the player that started to defect will have a bad
standing. The next move is not specified by a finite
memory of previous moves in case the initial defection
happened prior to the memorised moves.

The concept of a ‘‘standing’’ introduces an
interesting new twist to the theory of iterated games
played by finite automata. The most immediate step,
there, is certainly to study decision rules based on the
outcome of the previous round, and the most
immediate extension is to consider rules based on two,
three or more previous rounds. Both Axelrod (1987)
and Lindgren (1991) have studied by means of genetic
algorithms the evolution of strategies with memory
two or three. In particular, Lindgren has pointed out
the very robust success of a class of memory-two
strategies which usually cooperate with each other
and where a unilateral defection (due to a mistake in
implementation) entails two rounds of mutual
defections (a kind of domestic row) before bilateral
cooperation is resumed. Such strategies are similar to
PAVLOV, but use the outcome of the last two
rounds.

cTFT and REMORSE are of a different nature.
They only depend on the outcome of the previous
round, but this outcome, now, is more complex: it

does not consist only on the actions C or D of the two
players, but on the standing—good or bad—after a
defection. The rules for determining this standing
seem quite natural: we can identify with a player who
feels bad after having committed erroneously a
defection, or who feels provoked by the unilateral
defection of the co-player after a string of mutual
cooperation. The rules embody a certain notion of
‘‘fairness’’ which seems to be rather common. If it
should indeed turn out that this notion is a human
universal, we would have to explain how it emerged.

In principle, one could apply other rules of
‘‘standing’’. To start with, we should replace this term
by a more neutral one, in order not to get trapped by
its connotations, and think only of an arbitrary
‘‘tagging’’ of the states without specifying which is
‘‘good’’ or ‘‘bad’’. A strategy is now specified by the
probability to cooperate and/or change the standing
in the next round, depending on the current state
(including the current standing) of both opponents. It
is plausible that we can obtain some evolutionarily
stable strategies for many such codes.

Here is, as an intriguing example, the strategy
Prudent-PAVLOV (pPAVLOV). This strategy fol-
lows in most cases the PAVLOV-strategy, as the
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name suggests. However, after any defection it will
only resume cooperation after two rounds of mutual
defection. This is achieved by normally playing
defections with standing D1, and only playing D0 after
a mutual defection or an erroneous defection. The
strategy only cooperates after mutual cooperation or
after mutual defection with standing D0. Suppose
that two pPAVLOVs are engaged in a match. They
usually both cooperate. If one defects by mistake, the
state is (C, D0). In the next round, the state is (D1, D1);
in the second-next round, it is (D0, D0), and hereafter
mutual cooperation is resumed. This strategy, which
depends only on the previous round, acts to all pur-
poses like Lindgren’s (1991) memory two strategy. An
erroneous defection against its like entails two rounds
of mutual defection, and then leads back to mutual
cooperation. An AllC-opponent will be exploited
ruthlessly; but against an AllD opponent, pPAVLOV
will be suckered every third round. It is easy to see (cf.

Fig. 8) that this strategy is an ESS whenever

R+wR+w2RqT+wP+w2P (13)

and numerical simulations show that it attracts very
well.

Moreover, pPAVLOV has the big advantage to be
immune to errors in perception, as can be seen from
the following table, which shows the evolution first
from my (erroneous) point of view (first row: my
moves, including my standing; second row: my
opponents moves) and then from my co-player’s
point of view (third row: my moves; fourth row: his
moves, including his standing). The mistake occurs in
the second round (indicated by the asterisk).

C C D1 D1 D0 C . . .
C D* C D D C . . .

C C D D D C . . .
C C C D1 D0 C . . .

This is what happens if one of the pPAVLOV-play-
ers mis-interprets the other player’s C for a D.
Something similar happens if he mis-interprets his
own C for a D (a less likely, but not completely
impossible occurrence).

Altogether, we can interpret pPAVLOV as a
sophisticated offspring of PAVLOV.

An interesting point about this strategy is that it
distinguishes between D0 and D1 only for the own
defections, but not for the other player’s defection.
We can view the ‘‘tagging’’ by 0 or 1 as an internal
action. The pPAVLOV strategy does not monitor the
standing of the adversary. This seems simpler than
strategies like cTFT or REMORSE, which also keep
track of the other fellows standing.

It seems highly plausible that there exists a wide
variety of workable ‘‘taggings’’ which yield interesting
ESS’s. The question is whether an evolution based on
mutation and selection would tend to lead to one
form of ‘‘tagging’’ rather than another. This could
ultimately shed light on why humans developed
a sense of fairness, feelings of guilt, and highly
effective social norms [see also Sugden (1986)
and Young (1993) on the evolution of conventions].
The sheer combinatorial complexity of encompassing
all conceivable codes, or taggings, is enormous, and
the costs (in fitness) for reckoning with these ‘‘tags’’
seem difficult to evaluate. But it is a tempting
problem.

Great progress on automata playing the repeated PD has
recently been obtained by Olof Leimar in a paper that is due
to appear in JTB soon. M.C.B. is funded by E.C. grant
number ERBCHBICT941834, M.A.N. is funded by the
Wellcome Trust.F. 8. pPAVLOV is an ESS if T+wP+w2PQR+wR+w2R.
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