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The current understanding of antigenic escape dynamics is based onmodelswith single epitopes. The usual
idea is that a mutation which enables a pathogen (virus, bacteria, etc) to escape from a given immune
response confers a selective advantage. The ‘‘escape mutant’’ may then increase in abundance until it
induces a new specific response against itself. In this paper a new picture is developed, based on
mathematical models of immune responses against several epitopes; the simplest such models can have
very complicated dynamics, with some surprising features. The emergence of an escape mutant can shift
the immunodominant response to another epitope. Even in the absence of mutations, antigenic oscillation
is found, with distinct peaks of different virus variants and fluctuations in the size and specificity of the
immune responses. The model also provides a general theory for immunodominance in the presence of
antigenic variation. Immunodominance is determined by the immunogenicity and by the antigenic
diversity of the competing epitopes. Antigenic oscillations and fluctuations in the cytotoxic T-lymphocyte
response have been observed in infections with the human immunodeficiency virus (HIV). Shifting the
immune responses to weaker epitopes can represent a mechanism for disease progression based on
evolutionary dynamics and antigenic diversity of the virus.
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1. Introduction

An important part of the human immune response
against viral infections are cytotoxic T lymphocytes
(CTL). These recognize and kill cells which are infected
by virus. The CTL receptor binds to viral epitopes in
association with major histocompatibility complex
(MHC) class I molecules. (An epitope is a part of a
(viral) protein which is recognized by immune
responses; CTL epitopes are roughly ten amino acids
long; a viral protein can have several epitopes.) CTL
responses have been demonstrated in many viral
infections, and they are generally believed to be
important factors for controlling viral infections (for a
recent review, see McMichael, 1993). However, in the
biological outline of this introduction we shall
concentrate on observations from patients infected
with the human immunodeficiency virus (HIV).

CTL responses arise early in HIV infections and
suppress viral loads after the primary phase of the
infection (Pantaleo et al., 1994). Most asymptomatic

HIV-infected individuals have a high antiviral CTL
activity, which disappears as AIDS develops. This
could suggest that theCTL response is a relevant factor
in controlling HIV infection. Phillips et al. (1991)
performed a longitudinal study of CTL responses
against epitopes in the HIV gag protein in six HIV
infected patients. Three of these patients recognized
gag through HLA B27 (HLA stands for human
leucocyte antigen and is the human MHC). They
recognized only a single epitope, which remained
conserved throughout the study. The three other
patients recognized three different epitopes in gag
restricted by HLA B8. The HIV quasispecies of these
patients showed genetic variation in these epitopes,
and some virus mutants were not recognized by the
patients’ CTL response. Furthermore, Phillips et al.
(1991) observed unexpected fluctuations in the
specificity of the CTL responses. At different time
points responses against different epitopes were
predominant. In July 1989, patient 020 recognized
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peptide sequence p24-13 (residues 255–269) in the gag
p24 protein. In December 1989 the same patient had
CTL activity against peptide p24-20 (residues
325–339), but no longer against p24-13. In February
1990, there was hardly any response against p24-13
or p24-20—instead the CTL response recognised
the peptide sequence p17-3 (residues 21–35) from p17
gag. During 1990 there were fluctuating responses
against these three epitopes. Throughout 1989 and
1990 there was extensive genetic variation in the
epitopes p17-3 and p24-13, although p24-20 was rather
conserved. Interestingly, the three patients with
oscillating responses seemed to develop AIDS faster
than the three patients with constant responses.

Phillips et al. (1991) did not propose a mechanism
for these oscillations, but conjectured that ‘‘in these
longitudinal studies, dominant HLA B8-restricted
responses apparently shifted from one epitope to
another raising the possibility that antigenic variation
in the virus may underlie these unexpected changes.’’

Here we propose a mechanism. We shall first show
how antigenic diversity can indeed drive oscillations in
immune responses against several different epitopes.
These oscillations arise as an intrinsic feature of the
population dynamics of different virus variants and
immune responses against different epitopes. For these
oscillations it is not necessary that new virus variants
arise over time; the oscillations occur for a fixed
number of mutants that may be present right from the
beginning. There is an important distinction between
this phenomenon and the previously-discussed ‘‘anti-
genic drift’’, where it is assumed that peaks in viral
concentrations are caused by the emergence of new
variants. Antigenic drift has been described for several
systems, for example, Equine infectious anemia virus
(Salinovich et al., 1986; Carpenter et al., 1990), or HIV
(Nara et al., 1990, Wahlberg et al., 1991, Holmes et al.,
1992). (For a recent review, including evidence for
spontaneously arising antigenic variants, see Domingo
et al., 1993. For mathematical models of antigenic
drift, see Nowak et al., 1990, 1991; Nowak & May,
1992, 1993; Anderson, 1994; Sasaki, 1994; R. Antia
et al., unpublished data.) We propose the term
‘‘antigenic oscillation’’ for the new and different
biological phenomenon studied in the present paper.
We shall develop a rigorous mathematical framework
for it, which enables us to calculate the damping times
and other dynamical properties of these oscillations for
various assumptions about the underlying dynamics of
the immune response.

There are several important biological consequences
of these new ideas about antigenic oscillations (Nowak
et al., 1995). First, the peaks in viral abundance need
not reflect new antigenic material. Mutants that have

been around for some time, and that were clearly
recognized by earlier immune responses, may cause
such peaks, because at some specific time the intrinsic
dynamics of the system may have caused the response
against them to fluctuate to very low levels. This causes
the oscillations. Second, predominant viral variants
need not be extinguished by a strong immune response
against them, but may persist and come back at a later
time. Third, persistence of some predominant variants
is not an argument against the importance of the
selection pressure exerted by the immune response.
Clearly, virus variants do not have to escape in all
epitopes simultaneously to cause antigenic oscillations.

After discussing these basic aspects, we proceed to
combine ‘‘antigenic oscillations’’ with the emergence
of new mutants. Given the fast mutation rate of HIV,
it seems likely that new mutants will emerge within the
damping time of antigenic oscillations. This can keep
the system oscillating. We will also show how new
mutants can account for a long-term (effectively
permanent) loss of the response against a particular
epitope. As an intuitive example, imagine the following
situation: a virus population is down-regulated by
CTL responses against two different epitopes, which
we denote A and B (we consider two epitopes just for
the sake of the argument; in a real situations there may
be more). Suppose epitope A is immunodominant; i.e.
most of the patients’ CTLs are directed against this
epitope. B is only weakly recognized. Now assume that
mutation generates a new variant in epitope A that can
escape recognition (from the response against epitope
A). Ourmathematicalmodels will show that, following
the emergence of such a mutant, there are four
dynamical possibilities, which depend on the relative
immunogenicities and replication rates of the new and
old mutant:

(i) the new mutant may induce a new specific CTL
response against itself, but not affect the (weak)
response against epitope B (this is simply a
diversification in epitope A);

(ii) the new mutant may not induce a new response
in epitope A, but lead to an increase of the response
against epitope B (this means that the old response
against epitope A, with specificity for the original
variant, coexists with a response against epitope B; this
represents a partial shift in immunodominance);

(iii) the new mutant may induce a new response in
epitope A which outcompetes the original response in
A (this occurs simultaneously with the stimulation of
a response in epitope B; hence again a partial shift of
immunodominance to epitope B);

(iv) finally, the new mutant may induce a complete
shift in immunodominance to epitope B (the response
against A vanishes).
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We shall develop a variety of mathematical models
for the dynamics of the immune responses, but all such
models will have the generic feature that there is some
intrinsic competition between the responses directed
against A versus B. This is similar to simple ecological
situations in which two different predators (the CTL
responses) feed on a single prey species (the virus). The
result is, in effect, competition between the two CTL
responses/predators.

The mathematical model suggests that the compe-
tition between the responses against A and B is
governed by two different factors: the immunogenicity
of the epitope and the antigenic variablility. The
more immunogenicity the better; the less antigenic
variation the better. Thus increasing antigenic
variation can shift the response from A to B. But then
the immunological pressure against A is removed, and
wemayobserve neutral genetic drift among the various
A sequences. In this sense, antigenic variation in A may
not result in the takeover of the virus population by an
escape mutant in A, but may shift the immunodomi-
nance to epitope B. In the beginning, we assumed that
B is generally less immunogenic than A, so that the
virus population may now be less well controlled. The
response against A may or may not come back,
depending on the (random) events of the antigenic drift
among the different variants in A. This example shows
how antigenic variation can lead to ‘‘shifting
immunodominance’’, and hence to disease pro-
gression.

In Section 2 we develop the simplest mathematical
model, in which all virus mutants have the same
overall replication rates and all variants of a given
epitope have the same immunogenicity (different
epitopes can, however, have different immunogenic-
ities). CTL responses proliferate proportional to the
product of their own abundance and (specific) viral
abundance.

In Section 3 we allow different replication rates
and immunogenicities for the different virus mu-
tants. The equations of Sections 2 and 3 are
specific Lotka–Volterra systems (see May, 1974, or
Hofbauer & Sigmund, 1988, for comprehensive
treatments).

In Section 4 we consider more complicated immune
response dynamics, where CTLs proliferate as before,
but may also be activated from a (constant) pool of
precursor cells. This assumption seems biologically
necessary. It will introduce some complications and
new aspects.

Throughout the paper we analyse models with two
epitopes. There may be n1 variants in epitope A and n2

variants in epitope B. This leads to a total of n1×n2

potential virus mutants. Together with n1 specific CTL

clones against epitope A and n2 specific CTL clones
against epitope B, we have a system with
n1×n2+n1+n2 dimensions. We do not consider models
with more than two epitopes, but the extension to such
models seems straightforward.

In general we cannot give a complete analysis of the
dynamical possibilities for situations where different
virus mutants have different replication rates.
Therefore we give complete classifications of some
low-dimensional cases. In Section 5we discuss the 2×1
case (i.e. n1=2, n2=1), which provides a complete
description of the dynamical events after the
emergence of an escapemutant in a homogeneous virus
population. We show how antigenic variation can shift
immunodominance.

In Section 6 we examine the effect of cross-
reactive immune responses within an epitope. In
Section 7 we include intra-cellular competition for
MHC presentation. In Section 8 we discuss some
consequences for immunotherapy. Section 9 lists
open questions and future direction. Section 10
gives a summary of the biological implications of this
paper.

The five Appendices are mostly for the mathemat-
ically interested reader and may be skipped by a reader
needing only the general character of our models,
rather than the details.

2. The Simplest Model

First we will develop a simple model that describes
the dynamics of immune responses against two
different epitopes:

v̇ij=vij (r−pxi−qyj )

ẋi=xi (cvi*−b) with i=1, . . . , n1

ẏj=yj (kv*j−b) with j=1, . . . , n2. (1)

Here vij denotes the abundance of virus variants with
sequence i in epitope A and sequence j in epitope B.
There are n1 different sequences for epitope A and n2 for
epitope B. Thus in total we consider n1×n2 different
virus variants. The variables xi and yj denote CTLs
directed at sequence i of epitope A and sequence j of
epitope B, respectively. There are n1 CTL clones
directed at the various A variants and n2 against the B
variants. In this simplest model, all the virus variants
reproduce at rate r. They are killed by CTL responses
at the rates −pvijxi and −qvijyj . CTLs are stimulated
by their specific epitope sequence (in association with
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HLA presentation) and replicate at the rates cxivi* and
kyjv*j , with the notation

vi*=s
n2

j=1

vij and v*j=s
n1

i=1

vij . (2)

Thus a particular CTL clone recognizes all viruses that
have the specific sequence in the right epitope,
i.e. xi is directed at (and is stimulated by)
vi1+vi2+. .+vin2=vi*, whereas yj recognizes
v1j+v2j+. .+vn1j=v*j. The constants c and k describe
the immunogenicities of the two epitopes. If cqk then
epitope A is more immunogenic and will provide a
stronger stimulus for replication of the relevant CTL
clones. Finally we assume that in the absence of
antigenic stimuli the activatedCTLsdecline at the rates
−bxi and −byj . In total the model has seven
parameters (r, p, b, c, k, n1 and n2) and n1n2+n1+n2

variables (dimensions).
The above model assumes a very simple dynamics

for the immune responses. We will first analyse this
simple model and then study how alterations in the
dynamics of the immune response will affect the
outcome.

We start by looking for equilibrium solutions.
Setting ẋi=0 we obtain the non-trivial solution
vi*=b/c (alternatively, xi=0). For the total virus
abundance this yields the equilibrium value v=bn1/c.
From ẏi=0 we similarly get v*j=b/k and hence
v=bn2/k. Both relations cannot be fullfilled (as long as
n1/c$n2/k, which is the generic assumption). Hence
there is no interior equilibrium of system (1). The
competition between the responses against the two
different epitopes is decided by the relative magnitudes
of the ratios c/n1 and k/n2. If, for example, c/n1qk/n2

then all yj converge to zero and the system (1) reduces
to

v̇i*=vi*(r−pxi )

ẋi=xi (cvi*−b) . (3)

This is a simple Lotka–Volterra system with neutral
oscillations around vi*=b/c and xi=r/p. The
eigenvalues of the Jacobian matrix are given by
2izrb , and hence the period of the oscillations is
roughtly T12p/zrb (lengthening in the usual way for
oscillations of larger amplitudes). The total amount of
virus and of immune cells fluctuate indefinitely around
their long-term averages v=bn1/c and x=n1r/p. Note
that both quantities increase linearly with the number
of variants n1. Such neutral oscillations are structurally
unstable (see May, 1974), and therefore we consider
structural modifications of the above model in the
subsequent sections.

The model also has an interesting kind of
degeneracy: the long-term averages of vi* are exactly
specified, but the individual vij remain undefined
(within the limits set by vi*). For our entirely
deterministic model this means the variants in epitope
B are fixed in some arbitrary population structure
(satisfying vi*=b/c), once the immune responses
againstBhave vanished. In a real situation genetic drift
will follow.

Figure 1 illustrates the dynamics of eqn (1) for
n1=n2=2. Thus there are two variant sequences in
each epitope, which induce 2x- and 2y-responses. All
mutants are present in the beginning (t=0); there is no
production of new mutants over the time of the
simulation. Nevertheless, the system displays antigenic
oscillations. The y-responses will slowly converge to
zero, leaving the xi−vi*-system in neutral oscillations.
Antigenic oscillations canoccurwithout the emergence
of new mutants.

3. Different Parameters of Different Mutants

In the above model we assumed that all virus
mutants have the same replication rates, are killed
by CTL responses at equal rates, and induce CTL
responses at equal rates. We shall now generalize these
assumptions.

Let us first consider the system, where the virus
mutants differ in their immunological parameters, but
still have the same replication rates

v̇ij=vij (r−pixi−qjyj )

ẋi=xi (civi*−b) with i=1, . . . , n1

ẏj=yj (kjv*j−b) with j=1, . . . , n2. (4)

The immunogenicity of sequence i in epitope A is now
given by ci , and similarily kj for j in epitope B. We still
maintain that the natural death/decay rate of CTLs, b,
is the same for all different specificities. Biologically
this seems plausible, but we stress that it is not an
essential assumption for the mathematical analysis.

A simple rescaling, x'i =pixi and y'j =qjyj , shows that
we can neglect the parameters pi and qj . Thus without
loss of generality we can write (after dropping the
primes)

v̇ij=vij (r−xi−yj )

ẋi=xi (civi*−b) with i=1, . . . , n1

ẏj=yj (kjv*j−b) with j=1, . . . , n2. (5)
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Generically, there is again no interior equilibrium,
but competitive exclusion between the x- and
y-response. In fact there are only two possible (non-
trivial) equilibria: either all xi converge to zero or all yj

converge to zero. The x-responseswill eventuallywin if

s
n1

i=1

1
ci
Qs

n2

j=1

1
kj

. (6)

F. 1. Computer simulation of the basic model given by eqn (1). There are two different epitopes with two sequence variants in each epitope
(thus altogether four different virus species). All virus mutants replicate at the same rate and are present at the beginning (t=0) in different
abundances. There is no subsequent production of new antigenic material. Nevertheless, we observe sequential peaks in viral abundance that
correspond to antigenically different variants. Thus antigenic oscillations can occur without antigenic drift. As discussed in the text, we have
a clear understanding of the long termbehaviour of the system: the yi (CTL2)will converge to zero, and there are undamped neutral oscillations
with the xi and vi*. The parameters are: n1=n2=2, r=0.1, p=5, c=1.1, k=1, b=0.02. The time axes is in arbitrary units (but the biological
observations suggest these oscillations to occur on a time scale of weeks or months).
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This can be seen by considering the products

P=t
n1

i=1

x1/ci
i and Q=t

n2

j=1

y1/kj
j . (7)

We obtain

d0PQ1>dt=
P
Q 0 s

n2

j=1

1
kj

−s
n1

i=1

1
ci1b. (8)

Thus if inequality (6) holds, the ratio P/Q will be an
exponentially increasing function of time, suggesting
that the x-response outperforms the y-response.
P/Q is a Lyapunov function. There is asymptotic
convergence to the boundary where at least one yj is
zero. For specificity, let us assume that y1 converges to
zero. What happens next?

We can show that it is not possible to have an
equilibrium in the face {y1=0} with some other yj

and v*1 being positive. This can be seen by considering
the ratios vih /vi1 for different i and h. (Since v*1q0
we can always find at least one vi1q0). With y1=0
we get

d
dt 0vih

vi11=−
vih

vi1
yh . (9)

Thus for yhq0we have that vi1 always grows faster than
vih except if vih=0. But at least some vih have to be
strictly positive. If v*h=0 then yh converges to 0, and
hence there is indeed no equilibrium with some yj being
positive.

If all yj have vanished, we are left with the
system

v̇i*=vi*(r−xi )

ẋi=xi (civi*−b) with i=1, . . . , n1 (10)

This represents, essentially, n1 uncoupled oscillators.
Note that the ratios vij /vik remain constant. Then xi has
neutral oscillations around the equilibrium (time
average) r/pi and vi* oscillates around b/ci . The period
of the oscillation close to the equilibrium is
approximately T12p/zrb .

The general system with different replication rates
for different mutants is more difficult to understand.
Let us assume that the virus mutant vij replicates with
rate rij . We have

v̇ij=vij (rij−xi−yj )

ẋi=xi (civi*−b) with i=1, . . . , n1

ẏj=yj (kjv*j−b) with j=1, . . . , n2. (11)

Equation (8) remains true. Let us again assume that
inequality (6) holds. Then the ratio P/Q is
exponentially increasing over time, implying conver-
gence to a boundarywhere at least one yj is zero.Again,
let us assume that y1=0. Now it is indeed possible to
have an equilibrium in the face {y1=0} with all other
xi and yj being positive (see Section 6). From ẋi=0 for
all i=1, . . . , n1 we get v=b an1

i=1 1/ci . From ẏj=0for all
j=2, . . . , n2 we get v=v*1+b an2

j=2 1/kj . Thus an
equilibrium in the interior of the face {y1=0} requires

v*1=b0s
n2

i=1

1/ci−s
n2

j=2

1/kj1q0. (12)

Hence, combining this inequality with the earlier (6),
we have

s
n2

j=1

1/kjqs
n1

i=1

1/ciqs
n2

j=2

1/kj (13)

as a necessary condition for the existence of such an
equilibrium. We do not know any sufficient condition,
but for the ratios vih /vi1 we get

d
dt 0vih

vi11=vih

vi1 0rih−ri1−yh1. (14)

Thus an equilibrium is only possibly if rihqri1 for those
indices i and h where vihq0.

We lack a complete understanding of system (11),
but conjecture the following dynamics. Suppose
inequality (6) holds. Then one yj will converge to zero
(say y1). If an1

i=1 1/ciQan2
j=2 1/kj , then another yj will

converge to zero. Several yj will become extinct until
the inequality reverses, e.g. an1

i=1 1/ciqan2
j=l 1/kj . (Thus

we have assumed that all yj with j=1, . . . , l−1 have
converged to zero.) Now a coexistence between the
remaining yj and the xi is possible, but depends on
the rij (with j=1, . . . , l−1) being small compared to
the replication rates of other mutants that are present
at this equilibrium—as specified by eqn (14). (The
right-hand side of eqn (14) can only be zero if rihqri1.)

Other complications are possible, too. Suppose, by
chance, one of the xi dies out first. Then the y-responses
may become immunodominant. Thus clonal exhaus-
tion can indeed lead to switching immunodominance.
And which epitope is immunodominant in the long run
is partly determined by the randomevents of extinction
of CTL clones at very low frequencies.

Appendix A contains a general result. Any fixed
point of (11) is neutrally stable within its face, and a
generalization of Volterra’s function represents an
invariant of motion.

Another observation is that either some xi or some
yj become extinct, but never both. Consider a situation
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where a specific xi and a specific yj have become extinct.
Then v̇ij=rijvijq0, and vij is able to invade this fixed
point. Hence such a fixed point cannot be saturated
(i.e. stable against invasion by those variables which
are close to zero).

3.1.    ?

Even for system (11), where the virus mutants have
different replication rates, it can happen that all
responses against one epitope will vanish, and the
whole immune response is entirely directed against
the other epitope. We call this state ‘‘complete
immunodominance’’. What are the conditions for
complete immunodominance?

We have seen that the inequality (6),

s
n1

i=1

1
ci
Qs

n2

j=1

1
kj

,

implies that at least one yj will tend towards zero.
Furthermore, we also know that for a saturated
equilibrium either some xi or yj responses can vanish,
but never both. Thus inequality (6) is a necessary
condition for complete immunodominance of the
x-response.

If all rij are the same then inequality (6) is
sufficient for complete immunodominance. The
epitope which minimizes the sum of the reciprocals of
the immunogenicities of all variants is immunodomi-
nant. The responses against all other epitopes will
vanish.

If the rij are different then complete immuno-
dominance would imply that we are left with the
subsystem

v̇ij=vij (rij−xi )

ẋi=xi (civi*−b). (15)

For each i, only one vij will persist. This will be the vij

with the largest rij in this row of the rij-matrix. More
precisely, let us define the index mi as rimi=maxj{rij}.
The equilibrium of (15) is given by

xi=rimi and vi*=vimi=b/ci . (16)

This equilibrium is saturated with respect to the
yj-responses if 1ẏj /1yj=kjv*j−bQ0. We have at
equilibrium

v*j=s
n1

i=1

d(mi , j)vimi=b s
n1

i=1

d(mi , j)/ci , (17)

where d is the Kronecker symbol, i.e. d(mi , j)=1 if
mi=j and d(mi , j)=0 otherwise. Thus saturation

requires

s
n1

i=1

d(mi , j)
1
ci
Q1

kj
, [j. (18)

This is a necessary and sufficient condition for
complete immunodominance of the x-responses.

4. Activated CTLs Arise from Inactivated Precursors

In this Section we include the biologically essential
assumption that the CTLs are not only produced by
replication of already activated cells, but are also
generated by activation of specific precursor cells at
rates proportional to the specific antigen abundance.
This leads to

v̇ij=vij (rij−pixi−qjyj )

ẋi=hcivi*+xi (civi*−b)

with i=1, . . . , n1

ẏj=hkjv*j+yj (kjv*j−b)

with j=1, . . . , n2. (19)

A sensible assumption is that the activation signals for
precursor cells and already activated cells depend on
the immunogenicity of the epitope sequence and are
proportional to each other, with h being the
proportionality constant. Again this is just one way of
writing things more neatly; the assumption of a
common h-value is not essential for the following
analysis.

Since h is positive it is clear that the x- and
y-responses can coexist. An interesting problem
immediately arises: What are the possible equilibria of
system (19)? Can some vij converge to zero? Are there
interior equilibria?

Let us first perform the helpful transformation
x'i =pixi and y'j =qjyj . This produces (where we have at
once dropped the primes):

v̇ij=vij (rij−xi−yj )

ẋi=hcipivi*+xi (civi*−b)

with i=1, . . . , n1

ẏj=hkjqjv*j+yj (kjv*j−b)

with j=1, . . . , n2. (20)

4.1.   :    

  

An important special case arises when all virus
mutants replicate at the same rate, i.e. rij=r. Without
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loss of generality we then set r=1. Different epitope
sequences may have different immunogenicities and
different rates at which they are recognized by the CTL
response, but all mutations in these epitopes are
essentially neutral with respect to the replication rate.

For the interior equilibria of this neutral system
(with rij=1) we obtain the relations

1=xi+yj , [i, j. (21)

This immediately implies that all xi (and all yj ) have to
be the same, i.e.

xi=j and yj=1−j, [i, j. (22)

For the virus population, we obtain, at equilibrium,

vi*=
bj

ci (hpi+j)
, v*j=

b(1−j)
kj (hqj+1−j)

. (23)

This specifies the set of all interior equilibria. The
constant j is obtained from aivi*=ajv*j , which can be
a high-order polynomial. If all pi are the same and all
qi are the same, then it reduces to a quadratic equation
in j. Equation (23) specifies the equilibrium values for
vi* and v*j . The individual vij can take arbitrary values
within this envelope. Essentially there are n1+n2

constraining relations for n1×n2 variables. Appendix B
shows local stability of this set of equilibria (at least for
some special cases).

There are also boundary equilibria (with some
vij=0), but we will show that none of these can be
saturated (i.e. stable to invasion by the vij in question).
First note that in each row (or column) at least one vij

has to be positive at a saturated equilibrium point.
Otherwise the corresponding xi or yj would vanish and
at least one vij of this row (or column) can invade. In
general, this invasion is specified by the transversal
eigenvalue lij=1v̇ij /1vij=1−xi−yj . Consider an equi-
librium where the xi and yj take some arbitrary values.
But note that for each xi there is at least one yj such that
xi+yj=1. This follows from the fact that in each row
(or column) at least one vij has to be positive. Similarily
for each yj there is at least one xi such that yj+xi=1.
Denote the smallest of all xi , by x1 and denote the
smallest of all yj by y1. Clearly x1+y1E1. We have to
distinguish two cases:

(i) If x1+y1=1 then it follows that all xi are equal
to some constant j and yj are equal to 1−j. But in this
case for any vij=0 the eigenvalue lij has to be zero,
hence no saturation (which requires lijQ0).

(ii) If x1+y1Q1 then v11=0 otherwise we are not at
an equilibrium. But x1+y1Q1 implies l11q0 and hence
no saturation.

Thus there is no saturated equilibrium at the
boundary. Putting this fact together with the evidence
of local stability (Appendix B) and the numerical

simulations, we conjecture that all trajectories
converge to the manifold of interior equilibria specified
by eqns (22) and (23).

Figure 2 gives a numerical example of such a slow
convergence towards an interior equilibrium. We
chose the same system as for Fig. 1, but included the
immigration term of eqn (19) with h=0.001. Again
there are antigenic oscillations over a long period,
without the emergence of new mutants.

4.2.    

 

We do not have a complete understanding for the
case where the rij can take arbitrary (positive) values.
The numerical simulations suggest that all trajectories
converge to fixed points, which are generically on the
boundary. But we cannot rule out the existence of
cyclic solutions or chaotic attractors.

There is an interesting exclusion principle. For
simplicity, consider a case with two epitopes and two
sequence variants in each epitope. The conditions for
an interior equilibrium are

r11=x1+y1 r12=x1+y2

r21=x2+y1 r22=x2+y2. (24)

This can be fulfilled if and only if r11−r12=r21−r22, as
is the case if mutations in one epitope have no effect on
replication rates or if the contributions of the
mutations in different epitopes are additive. But this
relation will not hold for an arbitrary choice of
parameters rij (except for a set with measure zero).
Hence, in general, it is not possible to have an interior
equilibrium, and at least one of the vij has to be zero.
This means that for a virus population expressing
simultaneously two different variants at two different
epitopes it is not possible to obtain a stable selection
equilibrium with all four virus variants present. The
generalization of this result to m epitopes and n
sequences in each epitope is obvious: for a generic
choice of the rij , all but (m+n−1)of the vij must vanish.
Of course, for a fast mutating virus like HIV, such
variants can be maintained at finite values in a
mutation equilibrium (facilitated by the additional
effect of recombination).

Figure 3 shows a computer simulation of eqn (19) for
n1=n2=3. The replication rates and immunogenicities
of the individual virus variants are randomly assigned.
We observe damped antigenic oscillations to a
boundary equilibrium with only three virus species
surviving. These are v12, v21, and v33. Note that there is
no cross-reactivity between these three mutants. It
seems that the virus population often adopts such a
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F. 2. The model with immigration from a pool of precursor cells as given by eqn (19). All virus mutants have the same replication rates,
rij=r. As shown in Section 4.1 there is convergence to a degenerate set of interior equilibria, given by eqns (22) and (23). The oscillations
are damped on a very slow time scale. The parameters are the same as in Fig. 1: n1=n2=2, r=0.1, p=5, c=1.1, k=1, b=0.02; except h=0.001.

structure. In this example all xi- and yj- responses
coexist.

4.3.     h

In the limit of large h we obtain the system

v̇ij=vij (rij−xi−yj )

ẋi=hcipivi*−bxi with i=1, . . . , n1

ẏj=hkjqjv*j−byj with j=1, . . . , n2. (25)
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F. 3. An example of the dynamics of a higher-dimensional system with randomly assigned parameters. The figure shows a computer
simulation of eqn (19) with n1=n2=3. The randomly assigned parameters are: r11=0.0739, r12=0.1175, r13=0.1170, r21=0.1261, r22=0.1478,
r23=0.1217, r31=0.0925, r32=0.0738=0.1256, p1=5.1361, p2=5.2294, p3=5.3526, q1=4.6811, q2=4.9450, q3=4.6972, c1=0.8719, c2=1.0150,
c3=0.8753, k1=0.7797, k2=1.0080, k3=0.8708. In addition we chose b=0.02 and h=0.001. There are slowly damped oscillations to a
boundary fixed point with all virus mutants zero, except v12, v21, v33. Note that these three virus mutants do not share a single epitope. We
often observe that the virus population converges to such a state with minimal (zero) cross-reactivity.
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T 1
Saturated fixed points for the 2×1 system with h=0 as specified by eqn (28)

Fixed point (v1, v2) (x1, x2) y Conditions of existence and stability

P1 (+, +) (+, +) 0 1/c1+1/c2Q1/k
P2 (+, +) (0, +) + 1/c2Q1/kQ1/c1+1/c2 r1Qr2

P3 (0, +) (0, 0) + 1/kQ1/c2 r1Qr2

P4 (+, +) (+, 0) + 1/c1Q1/kQ1/c1+1/c2 r1qr2

P5 (+, 0) (0, 0) + 1/kQ1/c1 r1qr2

The table shows the conditions of existence and stability of the five different stable equilibria, which occur for five distinct
parameter regions. The sign of the coordinates of the fixed points are shown; the actual values can easily be calculated from
eqn (28). The equilibria P1, P3, and P5 specify complete immunodominance, whereas P2 and P4 imply stable coexistence between
one of the x-responses and the y-response.

This is derived from eqn (20), neglecting xi compared
to hpi in ẋi=civi*(hpi+xi )−bxi . In the same way we
derive the equation for the yj .

If all virus mutants have the same replication rates,
i.e. rij=r, then system (25) converges to a set of interior
equilibria, which is given by

xi*=j; yj=r−j; vi*=
b

hcipi
j;

v*j=
b

hkjqj
(r−j). (26)

From an1
i=1vi*=an2

j=1v*j we obtain

j=r s
n2

j=1

1
kjqj >0s

n1

i=1

1
cipi

+s
n2

j=1

1
kjqj1. (27)

There are no saturated equilibria on the boundary. The
proof for this is equivalent to the one in Section 4.2.

For the system with arbitrary replication rates, rij ,
we cannot give a complete analysis. The same exclusion
principle as in Section 4.2 applies. Thus in general there
are no interior equilibria. In Appendix C we give a
complete classification of all dynamical possibilities for
the system n1=n2=2.

5. The 2×1 case

5.1. h=0

Since we cannot derive a general analysis for the case
with different replication rates rij , we shall now
describe some low-dimensional cases. Let us first
consider a system with two mutants in epitope A and
only a single variant in epitope B, i.e. n1=2 and n2=1.
For h=0 we have, from eqn (11),

v̇1=v1(r1−x1−y)

v̇2=v2(r2−x2−y)

ẋ1=x1(c1v1−b)

ẋ2=x2(c2v2−b)

ẏ=y[k(v1+v2)−b]. (28)

We have avoided unneccessary indices by setting
v1=v11, v2=v21, r1=r11, r2=r21, and y=y1. For system
(28) we can distinguish five parameter regions, which
are mutually exclusive and cover the whole parameter
space. For each parameter region there is exactly one
saturated equilibrium.All trajectories from the interior
of the phase-space converge to the face that contains
the saturated equilibrium, andwithin this face there are
neutral oscillations around the equilibrium. The five
equilibria, P1 to P5, and their conditions of existence
and stability are listed in Table 1.

We can now understand the dynamics following the
emergence of a new mutant in a homogeneous virus
population. Consider a virus population with only one
type of virus; i.e. v2=0. There is no coexistence between
the two immune responses. Assume that c1qk (i.e.
1/c1Q1/k). Thus x1=r1 and y=0. A mutation in
epitope A, i.e. the emergence of mutant v2, can lead to
four different possibilities:

(i) It can simply lead to a diversification in epitope
A without stimulating an immune response against
epitope B. This happens if 1/c1+1/c2Q1/k. The system
converges to the face containing equilibrium p1 (see
Table 1).

(ii) The new mutant, v2, may not elicit an immune
response against itself, but may induce a partial shift in
immunodominance. This happens if 1/c1+1/c2q1/k
and r1qr2. The system converges to the face containing
equilibrium P4.

(iii) The new mutant may induce a response against
itself, which outcompetes the response against the
original virus, and induces a partial shift in
immunodominance. The conditions for this behaviour
are 1/c1+1/c2q1/kq1/c2 and r1Qr2. We end up in the
face containing equilibrium P2.

(iv) Finally, the new mutant can induce a complete
shift in immuno dominance to epitope B. This happens
for 1/c2q1/k and r1Qr2, which brings us to the face
containing equilibrium P3.

Note that equilibrium P5 is excluded by our original
assumption that c1qk. In other words, a mutant in the
immunodominant epitope can always invade.
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In all four cases there will be undamped oscillations
around the relevant equilibrium. Only the time
averages will converge towards the equilibrium.
In general these oscillations will be very complex.
Figure 4 shows a computer simulation of eqn (28). The
parameters are chosen such that there is convergence
towards the face x1=0. The system is specified by
the quasi-periodic oscillations. It is interesting to note
that such complex, and unpredictable dynamics can

occur for a system with only two virus variants and two
immune responses against different epitopes.

5.2. hq0

Next we consider the 2×1 system with positive n.
For small h it is clear that there can be only one
fixed point in the interior, because for hq0 only
the saturated fixed points of the system with h=0
can migrate into the interior. Since the h=0 system

F. 4. The quasi-periodic behaviour of eqn (28), i.e. the 2×1 model wtih h=0. The parameters are: r1=0.02, r2=0.05, c2=2, k=1 and
b=0.02. The parameter c1 is chosen such that 1/kQ1/c1+1/c2. This implies convergence to the face with x1=0, which corresponds to case
P2 in Table 1. We are left with a subsystem containing the variables v1, v2, x2 and y. This is the actual system we consider for the computer
simulation. There is an invariant of motion (see Appendix A) which reduces the dimension to three. There we find quasi-periodic behaviour.
The figure shows the time trajectories of y vs. x2, y vs. v1, v2 vs. x2, and v2 vs. v1.
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has only one saturated fixed point for any one choice
of parameters, we can conclude that there can be
only one saturated (and hence at most one interior)
fixed point for the system with positive (but small) h.
We have

v̇1=v1(r1−p1x1−qy)

v̇2=v2(r1−p2x2−qy)

ẋ1=x1(c1v1−b)+hc1v1

ẋ2=x2(c2v2−b)+hc2v2

ẏ=y[k(v1+v2)−b]+hk(v1+v2). (29)

If v1 and v2 are both strictly positive, there is no
equilibrium without x1, x2 and y all being present. An
interior equilibrium satisfies

xi=
hcivi

b−civi

y=
hk(v1+v2)

b−k(v1−v2)
(30)

and

ri=pixi+qy. (31)

For this, we must of course have viQb/ci and
v1+v2Qb/k.

There are two equilibria on the boundary of the state
space. Let us denote by P1 the equilibrium with
v2=x2=0 and by P2 the equilibrium with v1=x1=0.
For P1, the equilibrium must satisfy

r1=p1x1+qy, x1=
hc1v1

b−c1v1
, y=

hkv1

b−kv1
, (32)

with v1Qb/c1 and v1Qb/k. This implies

r1(b−c1v1)(b−kv1)=hp1c1v1(b−kv1)

+hqkv1(c1v1), (33)

i.e. after setting v1=bw and dividing by b2kc1,

f(w)0r10w−
1
k1 0w−

1
c11+hw$p0w−

1
k1

+q0w−
1
c11%=0. (34)

Since f is negative at the smaller of the two values 1/c1

and 1/k, and positive at the larger of the two values as
well as at the origin, we have exactly one root between
0 and min {1/c1, 1/k}. This yields the desired
equilibrium P1 on the boundary face x2=v2=0. A
straightforward application of the Routh–Hurwitz
criterion shows that P1 is stable within the

corresponding boundary face. It is saturated iff v2

cannot invade, i.e. iff

r2Qqŷ1. (35)

We note that it is impossible to have both P1 and P2

saturated since qŷ1Qr1 and hence r2Qr1 whenever P1 is
saturated. Therefore we cannot have a bistable
situation with both boundary fixed points being
saturated.

The condition (35) for saturation of the boundary
fixed point P1 can explicitly be written as:

(i) r1qr2 and
(ii) if c1qk then

hkqr1/r2q(r1−r2)(c1−k)+h(kq+c1p1)

qr2(c1−k), (36)

if c1Qk then

(r1−r2)0k−c1+
hkq
r2 1qhc1p1. (37)

A similar condition determines saturation of P2.
But even for the simple 2×1 system the general

modelwith arbitrary h leaves someopenquestions. For
example, we do not know if a saturated boundary
equilibrium is compatible with the existence of an inner
equilibrium (for the same choice of parameters). We
also do not know if it is possible to have several interior
equilibria. The answers to these questions seem to
require explicit solutions of third and fourth order
polynomials. However, we conjecture that there is
always only one stable equilibrium. This is certainly
true in the limit of small h, and in Section 5.3 we will
show that it also holds in the limit of large h.

Computer simulations of system (29) for h=0.01 are
shown in Fig. 5. All simulations are originally started
with a homogeneous virus population (variant v1). It
is assumed that c1qk such that the x1-response is
immunodominant. Since hq0 the y-response also
survives, but at much lower levels. After some time,
mutant v2 is introduced. The figure shows four
dynamical possibilities, which correspond to the four
cases we have described analytically for h=0. In
Fig. 5(a) the new virus mutant induces a significant
x2-response, but does not affect the y-response. In
Fig. 5(b) the new mutant induces only a very weak
x2-response (maybe below the limit of detection), but
greatly enhances the y-response, thereby shifting
immunodominance. In Fig. 5(c) the new mutant
induces a strong x2-response. The x1 response is
significantly weakened, but the y-response is some-
what enhanced. In Fig. 5(d) the new mutant
outcompetes the original v1 variant, induces only a
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weak x2-response, but a strong y-response. This
corresponds to a more or less complete shift in
immunodominance.

5.3.     h

In the limit of large h we can write (see Section 4.3)

v̇1=v1(r1−p1x1−qy)

v̇2=v2(r2−p2x2−qy)

ẋ1=hc1v1−bx1

ẋ2=hc2v2−bx2

ẏ=hk(v1+v2)−by. (38)

This system has three non-trivial equilibria: one fixed
point in the interior and two boundary fixed points.
There are three parameter regions, which are mutually
exclusive. For each parameter region exactly one of
these fixed points is stable.

If r1/r2q(c1p1+kq)/kq then v2 and x2 converge to
zero.

If kq/(c2p2+kq)qr1/r2 then v1 and x1 converge to
zero.

If (c1p1+kq)/kqqr1/r2qkq/(c2p2+kq) then the
interior fixed point is stable.
Again for any choice of parameters there is exactly one
stable equilibrium.

In Appendix C we discuss the 2×2 system and give
a complete classification for the two limiting cases h=0
and h very large.

6. Cross-reactivity within the Variants of a

Given Epitope

In this section we analyse the effect of cross-
reactivity within the sequences of a given epitope. We
assume that sequence iof epitopeA can cross-stimulate
the response against sequence j of epitope A, at a rate
cij . Similarily we define kij for all the variants of epitope
B. We include this cross-reactivity in both the
stimulation term and in the term for the CTL response

(a) (b)

F 5(a–b)—caption on p. 339.
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(c) (d)

F 5(c–d)

F. 5. The figure shows the four different dynamical possibilities following the emergence of a new mutant. Equation (29) with h=0.01
is used for the computer simulations. Originally only one virus variant (v1) is present. The x1-response is immunodominant, because we chose
c1qk. After some time mutant v2 is introduced. There are four different possibilities which correspond to the four cases which were discussed
for the h=0 model in Section 5. (a) The mutant induces an x2-response but does not significantly affect the y-response. This is simply a
diversification in epitope A, without changing immunodominance. (b) The mutant only induces a very weak x2-response (maybe below an
experimental detection limit), but stimulates a very strong y-response. The x1-response is more or less unaffected. This corresponds to a partial
shift in immunodominance. (c) The mutant induces a strong x2-response, reduces the x1-response, and increases the y-response. (d) The mutant
outcompetes the original v1 variant (together with the x1-response), induces only a very weak x2-response, but a very strong y-response. This
represents an almost complete shift of immunodominance. The parameters are: (a) r1=0.1, r2=0.1, c1=1, c2=1.2; (b) r1=0.1, r2=0.05, c1=1,
c2=0.1; (c) r1=0.03, r2=0.15, c1=0.25, c2=0.3; (d) r1=0.04, r2=0.06, c1=1, c2=0.1; and k=0.2, b=0.05, pi=ci , q=k.

against the virus. This leads to

v̇ij=vij0r−p s
n1

l=1

cilxl−q s
n2

l=1

kjlyl1
ẋi=xi0s

n1

l=1

cilvl*−b1 with i=1, . . . , n1

ẏj=yj0s
n2

l=1

kjlv*l−b1 with j=1, . . . , n2. (39)

The outcome depends on the n1×n1 matrix {cij} and the
n2×n2 matrix {kij}; the earlier simpler model is
recovered as the limit cij:cidij , etc. As an example, let

us assume a very simple form for these matrices: cii=c,
cij=cs1, kjj=k and kij=ks2 for all values of i and j with
i$j. The parameters c and k denote the immunogenic-
ities of epitopesA andB as in the previous sections, and
the parameters s1 and s2 specify the amount of
cross-reactivity within epitopes A and B, respectively.
If s1=1 there is complete cross-reactivity, and if s1=0
there is no cross-reactivity (for epitope A). By
generalizing the arguments which lead to eqn (6), we
find that the response against A will eventually
dominate over the response against B if

c
n1

[1+(n1−1)s1]q
k
n2

[1+(n2−1)s2]. (40)

This result shows that for the initial phase of an
infection, when the diversity is low (i.e. n1 and n2
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around one), the decisive parameter is immunogenicity
(c versus k). At later stages of infection, when both n1

and n2 have increased, cross-reactivity becomes
important. This means that during an HIV infection
there may be a tendency to go from responses against
highly immunogenic epitopes towards (possibly) less
immunogenic, but more cross-reactive, epitopes. Here
cross-reactivity is always defined within the various
sequences of a given epitope. We do not consider
cross-reactivity among different epitopes. These more
general effects of cross-reactivity are, to some degree,
captured by the cross-reactive immune response in our
earlier papers (Nowak et al., 1990, 1991).

7. Immunogenicity and Intra-cellular Competition

The immunogenicity of an epitope may be affected
by mutations that occur in the other epitopes. We can
easily imagine a mutation that enhances a peptide’s
affinity forMHCbinding. If there is some intra-cellular
competition for MHC binding, then this could reduce
the overall MHC presentation of another epitope.
Thus in more general terms the immunogenicity of an
epitope is not only a function of the particular peptide
sequence, but also of the sequences of other epitopes
(or the protein or pathogen as a whole). A model that
takes this into account has the following form:

v̇ij=vij (r−xi−yj )

ẋi=xi0s
n2

l=1

cilvil−b1
ẏj=yj0s

n2

l=1

kljvlj−b1 (41)

(For simplicity we present the case h=0. Including a
positive h term adds the usual complications.) We also
restrict ourselves to the case where all virus mutants
have the same replication rate, r. The n1×n2 matrix
{cij} has elements which denote the immunogenicity of
sequence i in epitope A of the virus vij (with sequence
j in eptiope B). Similarily kij is the immunogenicity of
sequence j in epitope B given that there is sequence i
in epitope A. The earlier, simpler model is recovered as
the limit cij:ci and kij:kj .

In general, eqn (41) admits three sets of equilibria:
one set of interior equilibria with all xi and yj being
positive and two sets of boundary equilibria with either
all xi or all yj being zero. For the same argument as in
Section 3, eqn (9), it is not possible to have a stable
equilibrium with some yj being zero and others
positive. But contrary to system (4), interior equilibria

with both all yj and all xi responses positive can exist.
Without loss of generality we can set all cij=1. This
simply involves a rescaling of the individual vij . The
three sets of equilibria are given by the relations:

1. Interior equilibria

xi=j, yj=r−j,

s
n2

j=1

vij=b,s
n1

i=1

kijvij=b, [i, j (42)

Here j is some arbitrary number between 0 and r.
There are n1+n2 equations for the n1×n2 variables, vij .
Thus in general such interior equilibria may exist. Our
numerical simulations suggest that these equilibria are
not stable, with the system exhibiting either collapse to
a boundary equilibrium (see below) or heteroclinic
cycles. In Appendix E we give analytic results, showing
there cannot be convergence to an interior equilibrium;
at best interior states can have locally neutral stability.

2. Boundary equilibria with all yj=0

yj=0, [j; xi=r, s
n2

j=1

vij=b, [i. (43)

In the face with all yj=0, these equilibria are
surrounded by neutral oscillations. There is saturation
with respect to invasion by the yj if

s
n1

i=1

kijvijQb, [j. (44)

The unsolved problem is that some of the equilibria
(depending on the particular vij-configuration) may be
saturated while some may be unsaturated. Numerical
simulations (and analytic investigations of special
cases; see below) suggest that it depends on the initial
conditions for the vij , whether or not there is
convergence to this subset of saturated equilibria (with
all yj=0).

3. Boundary equilibria with all xi=0

xi=0, [i; yj=r, s
n1

i=1

kijvij=b, [j. (45)

Saturation against invasion by the xi requires

s
n1

i=1

Qb, [i. (46)

Again some equilibria may be saturated and some may
be unsaturated. Convergence appears to depend on the
initial conditions.
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We can derive a complete analytical understanding
for a simple case with symmetric initial conditions.
Let us consider eqn (41) with n1=n2=2, cij=1,
k11=k22=k, and k21=k12=k. Consider the initial
conditions v11(0)=v22(0) and v12(0)=v21(0). Define
b0v12(0)/v11(0). Because of symmetry we have v11(t)
v22(t), v12(t)=v21(t), x1(t)=x2(t), y1(t)=y2(t) and
v12(t)/v11(t)=b. Thus the system collapses to only three
independent dimensions:

v̇=v(1−x−y)

ẋ=x[(1+b)v−b]

ẏ=y[(k+bk)v−b]. (47)

We have defined v0v11, x0x1, y0y1. Equation (47)
has the solution

xk+bky−(1+b)=C exp[(1−k+b(1−k))bt]. (48)

Here C is a constant specified by the initial conditions.
Thus for t:a, the x-responses die out if
1−k+b(1−k)Q0; while the y-responses die out if the
opposite inequality holds. Thus it depends on the
initial ratio, b=v12(0)/v11(0), whether the x- or
y-responses become immunodominant. Coexistence
occurs only for a set of initial conditions with measure
0, namely if 1−k+b(1−k)=0.

The important point of this section is that in
situations where the immunogenicity of an epitope can
be affected by changes in other epitopes, immuno-
dominance may depend on the initial configuration of
virus population and is thereby largely determined by
chance events.

8. Immunotherapy

Several interesting hints can be given with respect to
the design of a potential post-exposure vaccine. In
general, immunotherapy should be directed at
conserved epitopes. Remember that it is only necessary
to control the virus population in a single epitope. But
let us assume that there is a conflict in the sense that
the highly immunogenic epitopes display antigenic
variation, but the conserved epitopes are only weakly
immunogenic. If the response against the weakly
immunogenic but conserved epitope can be enhanced,
such that this epitope becomes immunodominant, then
the virus population will be controlled by the response
against this epitope. Variation that may occur in other
epitopes can then only reinforce the immunodomi-
nance of this conserved epitope. If immunotherapy is
not potent enough to achieve immunodominance the
response against the conserved epitope, then it may be
advantageous to direct immunological attack at the
more immunogenic but variable epitopes. Let us

suppose that the immunogen will only stimulate
responses against a certain fraction of the occuring
variants. If these variants differ in their intrinsic
immunogenicities, then it is always better to enhance
the responses against the weakly immunogenic
variants.

These points are illustrated by the following
equations. Let us again consider the 2×1 case as
given by eqn (28). Now suppose that immunotherapy
against the variable epitope A can enhance the
immunogenicity of variant 1 from c1 to ac1, with aq1.
Variant 2 is not recognized. Immunotherapy against
the conserved epitope B enhances its immunogenicity
from k to bk, with bq1. If 1/(ac1)+1/c2Q1/(bk)
then the equilibrium virus load is v =
b[1/(ac1)+1/c2]. If conversely 1/(ac1)+1/c2q1/(bk)
then the equilibrium virus load is v=b/(bk). Figure 6
gives an illustration of the equilibrium virus load as a
function of the efficacies of the immunotherapies
against the two epitopes. For high efficacy the virus
population levels off if immunotherapy is directed at
the variable epitope A, while it would still decline if the
response is directed at B. For very low efficacy it may
sometimes be advantageous to induce responses
against the more immunogenic, but variable, epitope
A. In general, it has very little effect to induce responses
against the two epitopes simultaneously; it is better to
concentrate on a single epitope.

9. What Next?

(i) Recombination. Like all retroviruses, HIV is
diploid. During replication the reverse transcriptase
binds to both RNA strands and can then switch from
one strand to the other (Hu & Temin, 1990; Temin,
1994). If the virus particle contains two different
templates (from a cell that was infected by more
than one virus) then recombination can generate
new mutants. In situations with two epitopes,
recombination can in principle generate double escape
mutants in both epitopes. Thus including the effects of
recombination seems to be an important next step of
expanding the present model.

We expect, however, that our results will be largely
unaffected. Note that we studied selection dynamics,
not mutation-selection dynamics. Thus the frequency
of individual variants is determined by the different
selection pressures (replication rates and immune
responses) and not by the mutation rates at which they
are produced. We also assumed that in the beginning
all possible combinations of virus mutants are present.
We only considered saturated equilibria, in the sense
that virus mutants which are not present could not
spread anyway. Recombination may shift some of
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(a)

(b)

(c)

F. 6. The relative effect of immunotherapy directed at the
variable epitope A, or the conserved epitope B. As a model we use
the simple 2×1 case with h=0, as described by eqn (28).
Immunotherapy against A can only recognize sequence 1 and
enhances its immunogenicity by a factor a. Immunotherapy against
B enhances the immunogenicity of this peptide by a factor b. The
figure shows the equilibrium virus load as a function of the efficacies
of immunotherapy, a and b. If 1/(ac1)+1/c2Q1/bk then the
equilibrium virus load is v=b[1/(ac1)+1/c2]. If 1/(ac1)+1/c2q1/bk
then the equilibrium virus load is v=b/(bk). The basic message is
that an effective control with immunotherapy can only be achieved
by stimulating responses against conserved epitopes. If it is not
possible to make the conserved epitopes immunodominant, than
immunotherapy against the variable epitopes may be preferable, but
here immunotherapy should always be directed at the weakly
immunogenic sequences, too (compare 6b to 6c). Parameters: (a)
c1=10, c2=10; (b) c1=2, c2=10; (c) c1=10 c2=2; k=1. The
replication rates are irrelevant.

(ii) Antagonism. Recent studies (Klenerman et al.,
1994; Bertoletti et al., 1994) have shown antagonistic
effects of virus mutants in HIV and hepatitis B virus
(HBV) infections, respectively. Antagonism works in
the following way: a mutant in one epitope can impair
the immune response against the original variant in this
epitope. The detailed molecular mechanism is unclear,
but it is conceivable that the mutant binds to the T-cell
receptor without inducing a lethal hit. The T-cell
remains engaged with the cell and is thereby prevented
from killing cells infected with the original virus. Such
interference with immune responses against other
mutants should represent an important target for
future modelling.

(iii) Uniqueness and global stability. For the system
with different replication rates, rij , with h=0, or hq0
we conjecture that there is always a unique, globally
stable fixed point, but we cannot prove it. Such a proof
would be quite important, especially if it would give
some characteristic properties of the stable equi-
librium.

(iv) Appendix D outlines the population dynamics
of a model with a different functional form of
the immune response, which includes saturation of
immune cell proliferation at high abundances of
activated immune cells.

10. Conclusions

This paper develops a theory for immunodominance
in simultaneous responses against several variable
epitopes. The theory has been developed with respect
to CTL responses against the HIV quasispecies, but
has a much wider potential. It represents a
mathematical framework for immunodominance in
any kind of immune response (CD8+, CD4+, or
antibody responses) against multiple epitopes of a
replicating pathogen. The principal conclusions are as
follows.

1. Antigenic oscillations can arise as a consequence
of the dynamics of the immune response acting upon
existing viral diversity. It is not essential that mutation
continuously generates new antigenic material. Peaks
consisting predominantly of different antigenic types
can rise and fall as a consequence of the oscillatory
dynamics: whenever the CTL response against a
particular variant has fallen to lower levels, this variant
may start to grow and cause a new peak.

2. Immunodominance is a function both of the
immunogenicity and of the diversity of the epitopes,
and also of the replication rate of the various mutants.
If there is only a homogeneous virus population, then
the generic situation is that there is exactly one
immunodominant epitope. For an antigenically

these boundary equilibria into the interior of the phase
space. But the overall effect will be very small, as long
as recombination is not too frequent.
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heterogeneous virus population we may find coexisting
responses against several epitopes. But if there is a
heterogeneous virus population and all virus mutants
have the same replication rate, then again generically
there is always a single immunodominant epitope.
Only the response against one epitope can survive; all
other responses have to vanish. The epitope that
minimizes an

i=11/ci is immunodominant (with ci being
the immunogenicity of sequence i, and n being the total
number of variants in this epitope). If the virusmutants
have different replication rates, then the conditions for
immunodominance are more complex (see Section
3.1). If all responses are directed against a single
epitope, then this must be the epitope which minimizes
a 1/ci . But this condition, although necessary, is not
sufficient. A number of inequalities have to be fulfilled,
and the replication rates of the individual mutants
become important. As a rule of thumb, we may expect
coexistence of immune responses against several
epitopes, if the immunogenicities of the various
epitopes are comparable and if the virus mutants differ
in their overall replication rates.

In general this picture is also supported by
observations of HTLV-I infections, where responses
against several epitopes coexist, stimulated by an
antigenically diverse virus population (Parker et al.,
1994).

3. Antigenic variation (i.e. production of new
antigenic material) can shift immunodominance. The
emergence of a very weakly recognised sequence in an
epitope does not necessarily lead to this sequence
dominating the population, but will lead to a shift in
immunodominance to another epitope. This possibly
explains why it has been occasionally observed that
escape mutants do not grow to dominate the
population (Phillips et al., 1991).

4. One of the central points of this paper is a clear
understanding of the events following the emergence of
a new mutant. Consider a homogeneous virus
population subject to immune repsonses against two
epitopes, A and B. Suppose that the response against
A is immunodominant. The emergence of an escape
mutant in A can lead to four different outcomes,
which depend on the relative replication rates and
immunogenicities of the original virus and the new
mutant: (i) the new mutant may induce a new specific
response in epitope A, without affecting the response
against B (this represents a simple diversification in
epitope A); (ii) the new mutant may not induce a
response in A against itself, but may enhance the
response against epitope B (this corresponds to a
partial shift in immunodominance); (iii) the new
mutantmay induce a response inA against itself, which
outcompetes the original response in A (this always

occurs together with an increase of the response
against epitope B, thus representing a partial shift in
immunodominance); (iv) finally, the new mutant may
outcompete the original virus variant, and induce a
complete shift in immunodominance to epitope B (the
response against A essentially vanishes). This has
important consequences for our understanding of the
detailed escape dynamics with responses against
multiple epitopes.

5. Shifting immunodominance to intrinsically
weaker epitopes increases viral loads, and can thus
represent a route to disease progression.

6. Clearly the models presented here are not
limited to HIV, nor to any particular virus. Any (fast)
replicating (variable) pathogen with several epitopes is
a relevant target for our mathematical framework.
Escape from CTL recognition has been demonstrated
in a number of human virus infections, such as HIV-1
(Phillips et al., 1991), HTLV-1 (Parker et al, 1994),
Hepatitis B Virus (Bertoletti et al., 1994) and
Epstein-Barr Virus (Campos-Lima et al., 1993).
Detailed in vivo and in vitro studies also exist for
lymphocytic choriomeningitis virus (Aebischer et al.,
1991). Antigenic diversity in CTL epitopes has also
been found in human malaria (Hill et al., 1992). Our
basic model has outlined the competitive dynamics of
simultaneous immune (CTL) responses against
multiple epitopes; it gives a quantitative concept of
immunodominance. Furthermore, the model is not
limited to CTL responses. Antibody or CD4+
T-helper responses are likely to obey the same
underylying mathematical rules. We have concen-
trated on CTL responses simply because we think there
here the biology is best understood.

7. With respect to HIV, our models reinforce the
notion that viral diversity can be very important for
understanding pathogenesis. There are obvious effects
of antigenic diversity on viral levels, and hence on
disease progression, even without invoking the
viral-induced depletion of CD4 cells (which is essential
for the diversity threshold theory: Nowak et al., 1990,
1991; Nowak & May, 1993). We have shown how
diversification can shift immunological pressure
towards weaker epitopes. Diversity matters.
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APPENDIX A

Remarks on Equation (11)

Consider the following Lotka–Volterra system

v̇ij=vij (rij−xi−yj )

ẋi=xi (civi*−bi ) with i=1, . . . , n1

ẏj=yj (kjv*j−dj ) with j=1, . . . , n2. (A.1)

This is the same as eqn (11) in Section 3. The only
difference is that we also allow for different natural
decay rates, bi and dj , of the immune cells.

The invariant of motion used in eqn (C.9) (Appendix
C), a simple generalization of Volterra’s function,
works in a much more general context. Let us consider
a subsystem of xi’s, yj’s and vkl’s, and assume that all
other species are not present. We call this subsystem G

a solvable array if the corresponding system of linear
equations fo the fixed point has some solution x̄i , ȳj and
v̄kl . More precisely, we require the following:

(i) for every xi belonging to G, the set of all vij

belonging to G is nonempty.
(ii) a corresponding condition for all yj belonging

to G.
(iii) for every vkl belonging to G, there exists an xk

or an yl belonging to G.
(iv) the corresponding set of linear equations

rkl=xk+yl (A.2)

bi /ci=s
j

vij (A.3)

dj /kj=s
i

vij (A.4)

has a solution x̄i , ȳj , v̄kl . (Here we consider only those
variables belonging to G. If, for instance, xk does not
belong to G, then the first equation reads rkl=yl .
Similarly, the sum in the second equation extends over
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all those j for which vij belongs to G. We do not require
that all these quantities are positive or uniquely
determined). Whenever we have such a solvable array,
the function

V=s (v̄kl log vkl−vkl )

+s 1
ci

(x̄i log xi−xi )+s 1
kj

(ȳj log yj−yj ) (A.5)

is an invariant of motion. To prove this, we note that

V� =s
kl

(v̄kl−vkl )(rkl−xk−yl )

+s
i

(x̄i−xi )0sj

vij−
bi

ci1
+s

j

(ȳj−yj )0si

vij−
dj

kj1 (A.6)

Upon replacing rkl by x̄k+ȳl , bi /ci by av̄ij and dj /kj by
av̄ij , we obtain

V� =s
kl

(v̄kl−vkl )(x̄k−xk+ȳl−yl )

+s
i

(x̄i−xi ) s
j

(vij−v̄ij )

+s
j

(ȳj−yj ) s
i

(vij−v̄ij ). (A.7)

That is,

V� =s
i

(x̄i−xi ) s
j

(v̄ij−vij+vij−v̄ij )

+s
l 0(ȳl−yl ) s

k

(v̄kl−vkl+vkl−v̄kl1, (A.8)

which reduces to V� =0. QED.
If the fixed point given by the (x̄i , ȳj and v̄kl ) has all

components positive, then the function V attains its
unique maximum at this point. Hence this equilibrium
is neutrally stable and all eigenvalues are purely

imaginary. All populations originally present (i.e.
belonging to the array G) persist forever. However, the
system is not permanent: a sequence of random
perturbations can send the state from one level-set to
another, and thus eventually to the boundary of the
positive state space. We have seen that we can have at
most n1+n2−1 viral species present in a solvable array.
If, on the other hand, some components of the fixed
point are negative, the corresponding populations
have to vanish (possibly after an initial phase of
growth).

APPENDIX B

Local Dynamics of Equation (20)

In this Appendix, we give a linearized analysis of the
dynamics of the system in which activated CTLs arise
from inactivated precursors, eqn (20) in the main text,
in the biologically interesting limit when all rij have the
same value, rij=r (see Section 4.1).

In the usual way, we begin by writing

xi (t)=j+ni (t), (B.1)

yj (t)=(1−j)+fj (t), (B.2)

vij (t)=v*ij +xij (t). (B.3)

Here ni , fj , and xij represent small perturbations about
the interior equilibrium defined by eqns (22) and (23).
As discussed in the main text, the individual
equilibrium values of vij (here denoted by v*ij ) can take
arbitrary values within the envelope set by the
equilibrium values of vi* and v*j , as given by eqn (23).
We now substitute eqns (B.1)–(B.3) into eqns (20),
Taylor expand to first order (discarding all terms of
second or higher order in ni , fi , and xij ), and factor out
the time-dependence in the ensuing set of linearized
differential equations as exp(Lt):

Lxij=−v*ij (ni+fj ), (B.4)

Lni=ci (hpi+j) s
n2

k=1

xik+(civi*−b)ni , (B.5)

Lfj=kj (hqj+1−j) s
n1

k=1

xkj+(kjv*j−b)fj . (B.6)

Using eqn (23) to substitute for the equilibrium
values of vi* and v*j , and using eqn (B.4) to substitute
for xij in eqns (B.5) and (B.6), we arrive at a set of
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n1+n2 linear equations for the (small) perturbations
to xi and yj , namely ni and fj , respectively:

0L+
hpib

hpi+j1ni+
ci

L
(hpi+j)

×s
n2

l=1

v*il (ni+fl )=0, (B.7)

0L+
hqjb

hqj+1−j1fi+
kj

L
(hqj+1−j)

×s
n1

h=1

v*hj (nh+fj )=0. (B.8)

Rearrangement, and further use of eqn (23), gives:

$L2+L
hpib

hpi+j
+bj%ni

+ci (hpi+j) s
n2

l=1

v*il fl=0, (B.9)

$L2+L
hqjb

hqj+1−j
+b(1−j)%fj

+kj (hqj+1−j) s
n1

h=1

v*hj nh=0. (B.10)

Equations (B.9) and (B.10) represent a homo-
geneous, linear set of equations for the n1+n2 variables
{ni} and {fj}. The corresponding (n1+n2)×
(n1+n2) matrix of coefficients must therefore have a
vanishing determinant (note that this matrix paritions
into two purely diagonal sub-matrices, n1×n1 and
n2×n2, and two other sub-matrices, n1×n2 and n2×n1,
whose elements depend upon the arbitrary (subject to
constraints) values of v*ij ). The requirement that this
overall determinant be zero leads to values for the
quantities L which characterize the time dependence,
and hence to elucidation of the system’s local stability
properties. We have not succeeded in showing that
Re(L)E0 for the general case of eqns (B.9) and (B.10),
butwe canmake someprogress in the special casewhen
pi and qj are constants (pi=p, pj=q).

In this case, eqns (B.9) and (B.10) can be reduced to
the form

s
n1

h=1

[Aih−F(L)dih ]nh=0. (B.11)

Here dih is the Kronecker delta, and the n1×n1 matrix
A has elements

Aih=ci s
n2

l=1

klv*il v*hl . (B.12)

The function F(L) is defined as

F(L)=$L2+L
hpb

hp+j
+bj%

×$L2+L
hqb

hq+1−j
+b(1−j)%

×[hp+j)(hq+1−j)]−1. (B.13)

Denote the eigenvalues of the matrix A as
li (i=1, 2, . . . , n1). The stability-determining quan-
tities L are then found by solving the quartic equations

F(L)=li . (B.14)

Notice that A is symmetric, up to the row-constants ci ,
whence it follows that all the eigenvalues li are real (see
e.g. May, 1974).

In general, the eigenvalues of the matrix A defined
by eqn (B.12) depend on the values of {v*ij }, and cannot
be obtained analytically. We can, however, get exact
solutions in two limiting cases, which are likely to
‘‘bracket’’ more general cases.

One limiting case arises when all v*ij are equal (this
is, the asymptotic result which seems to occur in
most of our numerical simulations with pi=p,
qi=q and rij=1). In this case, we can use eqn (23) to
write civ*il =bj/[n2(hp+j)] and klv*hl =b(1−j)
/[n1(hq+1−j)]. Then all elements of the matrix A have
the same value, Aik=a0b2j(1−j)/
[n1(hp+j)(hq+1−j)]. Such an (n1×n2) matrix has
n1−1 eigenvalues li=0 (i=2, 3, . . . , n1), and one
eigenvalue l1=n1a. Returning to eqn (B.14), we see
that there are n1−1 internalmodeswhose dynamics are
characterized by L-values which obey F(L)=0, with
F(L) the product of two quadratics, defined
by eqn (B.13). All four L-values for each of these n1−1
(identical) internal nodes then clearly lie in the left-half
plane. Moreover, for small values of h, these two
quadratics each correspond to weakly damped
oscillations, two with frequency zbj and character-
istic damping time 2j/(hpb), and two with frequency
zb(1−j) and characteristic damping time 2(1−j)/
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(hqb). The remaining L-values correspond to the
dynamics of the system as a whole, and are given by
F(L)=n1a, which reduces to

$L2+L
hpb

hp+j
+bj%

×$L2+L
hqb

hq+1−j
+b(1−j)%

=b2j(1−j). (B.15)

The constant terms cancel, giving a cubic in L, of the
form L3+aL2+bL+g=0; it is easy to see that aq0,
bq0, gq0, and abqg, so that all L-values lie in the
left-half plane. In the limit of very small h,
we get weakly damped oscillations with frequency
zb and characteristic damping time 2/[hb(p+q)];
there is also a monotonically damped mode with
damping time, t, of around t−1=hb{[p(1−j)/j]+
[qj/(1−j)]}.

An opposite limiting case arises when n1=n2 and
each row and column of the v*ij -matrix has only one
non-zero entry. In this case we can bring the v*ij -matrix
into diagonal form, and thence write the eigenvalues of
the matrix A as

li=
b2j(1−j)

(hp+j)(hq+1−j)
, [i. (B.16)

Substituting this into eqn (B.14) leads again to
eqn (B.15) for all the L-values in this case. As above,
all these stability-determining L-values lie in the
left-half plane. Again we have weakly damped
oscillations with frequencies zb and characteristic
damping times of order 1/h if h is very small.

It seems reasonable to assume that other assign-
ments of {v*ij }, within the overall constraints set by the
vi* and v*j of eqn (23) in the main text, will lead to
dynamics whose qualitative behaviour is bracketed by
these two limiting cases. We thus expect the interior
equilibriumof Section 4.1 generally to be locally stable.

APPENDIX C

The 2×2 System

3.1. h=0

Let us now consider the system

v̇ij=vij (rij−xi−yj )

ẋi=xi (civi*−b) with i=1, 2

ẏj=yj (kjv*j−b) with j=1, 2. (C.1)

Note that the ratio r=v11v22/(v12v21) is a Lyapunov
function:

ṙ=r(r11+r22−r12−r21). (C.2)

If r11+r22qr12+r21 then r:a which implies that v12 or
v21(or both) have to converge to zero. Of course, this
excludes the possibility of an interior equilibrium.
Note that r:a does not exclude the possibility that
also v11 or v22 may converge to zero.

We shall now give a full classification of system (C.1)
for a generic choice of parameters. We shall show that
the system always admits a unique saturated
equilibrium P, which lies on some boundary face
(either one or twoof the four viral species, and the same
number of the CTL species have to vanish). Within the
corresponding boundary face, however, we know from
Appendix A that P is neutrally stable: all eigenvalues
are on the imaginary axis, and the orbits do neither
converge toward P nor diverge away from P. For
every initial condition, the orbit converges towards
the face defined by P. Those components which do
not vanish will exhibit undamped oscillations. Their
time averages will be given by P.

Let us start the classification by assuming that

1
c1

+
1
c2

Q 1
k1

+
1
k2

. (C.3)

This is no restriction of generality (if the converse
inequality is valid, we just have to interchange x and
y), and it implies, as we have seen, that at least one of
the y-responses converges to 0. Next, we assume that

r12+r21Qr11+r22. (C.4)

Again, this can be achieved without restricting
generality: if the converse inequality holds, we just
have to exchange v11 with v12, and v21 with v22. These
conditions imply that at least one of the viral species
v12 and v21 vanishes. The remaining part of the
parameter space will be divided into three mutually
exclusive cases:

(A) r11Qr12 (which implies r21Qr22);
(B) r12Qr11 and r22Qr21;
(C) r12Qr11 and r21Qr22.

Each of these canbe subdivided into three cases in turn.

(A1) (1/k2)Q(1/c2). In this case y1=v12=0.
(A2) (1/c2)Q(1/k2)Q(1/c2). In this case y1=v21=0.
(A3) (1/c1)+(1/c2)Q(1/k2). In this case

y1=y2=v11=v21=0.
(B1) (1/k1)Q(1/c1). In this case y2=v21=0.
(B2) (1/c1)Q(1/k1)Q(1/c1)+(1/c2). In this case

y2=v12=0.
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(B3) (1/c1)+(1/c2)Q(1/k1). In this case
y1=y2=v12=v22=0.

(C1) (1/k2)Q(1/c2) (which implies (1/c1)Q(1/k1)).
In this case y1=v12=0.

(C2) (1/c2)Q(1/k2) and (1/k1)Q(1/c1). In this case
y2=v21=0.

(C3) (1/c2)Q(1/k2) and (1/c1)Q(1/k1). In this case
y1=y2=v12=v21=0.

All other components of P are strictly positive and
can easily be computed. It is a straightforward, but
rather tedious, task to check that in each case no
equilibrium other than P is saturated.

As an example, consider the fixed point in the
interior of the face (y2=0, v22=0) which is given
by v*21=(b/c2), v*11=(b/k1)−(b/c2), v*12=(b/c1)+
(b/c2)−(b/k1), x*1 =r12, y*1 =r11−r12 and x*2 =r21+
r12−r11. Since these quantities have to be positive, we
must have

r12Qr11Qr12+r21 (C.5)

and

1
c2

Q 1
k1

Q1
c1

+
1
c2

. (C.6)

If the parameters are chosen properly, none of the
missing species y2 and v22 can invade. Indeed, the fixed
point is saturated in the sense that the two transversal
eigenvalues ẏ2/y2 and v̇22/v22 are negative. These
eigenvalues are given by r22−x*2 =r22+r11−r12−r21 and
by k2v*12−b2, which is a positive multiple of
(1/c2)+(1/c2)−(1/k1)−(1/k2). Thus we have to choose

r11+r22Qr12+r21 (C.7)

and

1
c1

+
1
c2

Q 1
k1

+
1
k2

. (C.8)

If these conditions are satisfied, and we start with the
full system (i.e. all eight populations positive), then y2

and v22 vanish and the remaining species will persist.
Furthermore, note that the function

V=(v*11 log v11−v11)+(v*12 log v12−v12)

+(v*21 log v21−v21)+
1
c1

(x*11 log x1−x1)

+
1
c2

(x*2 log x2−x2)+
1
k1

(y*1 log y1−y1) (C.9)

is a constant of motion. All orbits lie on the constant
level sets in V. This implies that within its face the fixed
point is neutrally stable.

3.2. hq0

If we now consider the case of small hq0, we see that
its saturated equilibria points must, by continuity,
converge (for h:0) to saturated quilibria of the h=0
case. Hence P is the only possible candidate; it follows
that at least for small for hq0, the system has a unique
saturated fixed point. This point differs from P by
having small, but positive values for those CTLs
which, in the h=0 equilibrium, were not present but
have viral species which stimulate their replication.
The pattern of virus distribution, on the other hand,
remains unchanged, since the v-equations do not
depend on h. Hence with small hq0, the number of
CTL species will be higher, by 1 or 2, than the number
of viral species.

A complete classification of the 2×2 case for general
hq0 is not possible, but below we give a complete
analysis for the interesting limit of large h. There we
find ten mutually exclusive parameter regions which
cover the whole parameter space like a jigsaw puzzle.
Each parameter region specifies exactly one stable
fixed point. Therefore by continuity we conjecture that
also the general h system admits always a single stable
fixed point.

3.3.     h

In this 2×2 case, we give a complete listing of
all ten saturated fixed points, and we show that
one, and only one, of these ten states exists for any
specific choice of the parameters. Table C.2 shows
how to determine which state, dependent upon
13 inequalities among the parameters, as defined
below. This illustrative example requires only that h

be large, in the sense defined below; a completely
general analysis of the 2×2 case is not feasible,
although intuition backed by numerical studies
suggests that for any specified set of parameter
values there will in general be a unique saturated fixed
point.

For the 2×2 case of the system given by eqns
(25) in Section 4.3, equilibrium values of the four
variables vij are found by putting v̇ij=0, which—as
discussed in the main text—gives either rij=xi+yj or
vij=0 (along with the condition rijQxi+yj ). In the
remaining eqs (25), setting ẋi=0 and ẏj=0 leads to the
further conditions vi*=bxi /(hcipi+cixi ) and v*j=byj /
(hkjqj+kjyj ), which in combination with the earlier
equations involving rij lead to a complete specification.

There are thus two possible solutions for each vij ,
leading to 24=16 possible solutions in total. But, as
discussed in the main text, we cannot have saturated
fixed points for which an entire row or column of the
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vij matrix vanish: this rules out the single solutionwhere
all vij=0, and the four where only one vij$0. Also,
as noted in Section 4.2, the solution with all four of
the vij$0 is not generically possible. This leads to ten
cases to be examined, four with one vij=0 and the other
three non-zero, and six with two of the vij=0 and the
other two non-zero.

As an example, we sketch the derivation of
the condition for the existence of a saturated fixed
point with v11=0 and vij$0 otherwise. These
conditions correspond to particular inequalities that
the parameters {rij}, {pici}, and {qjkj} must satisfy.
Without discussing the other nine cases in detail, we
then set out conditions for the existence of each of the
ten possible saturated fixed points. This is done in
Table C.2.

Finally, we emphasize that for a specified set of
parameter values, one and only one of the ten states
of Table C.2 will arise. That is, the patchwork of
inequalities summarized in Table C.2 fits together
like a jigsaw puzzle. This result is not immediately

obvious, and we conclude this appendix by sketching
the proof.

The illustrative case of v11=0. For v11=0 and
saturated, we require v̇11Q0, which implies r11Qx1+y1.
From vij$0 for i, j$1, 1, we have the three equations
rij=xi+yj when i, j$1,1. There are also four relations
among vij and xi , yj , as follows:

v12=bx1/(hc1p1+c1x1), (C.10)

v21+v22=bx2/(hc2p2+c2x2), (C.11)

v21=by1/(hk1q1+k1y1), (C.12)

v12+v22=by2/(hk2q2+k2y2). (C.13)

As emphasized above, the analysis in this appendix
depends (only) on the limiting assumption that h is
large, in the sense that the second term in the brackets
in each of the eqns (C.10)–(C.13) can be ignored;
effectively, this means hw (terms of order of rij /pi , qj ).
In this limit, we have a set of linear relations between

T C.1
Saturated fixed points of the 2×2 system with h=0, as specified by eqn (C.1)

vij matrix (x1, x2) (y1, y2) Case Conditions of existence and stability

0++ 0
+1 (+, +) (0, +) A1 r11Qr12

r21Qr22
1/k2Q1/c2

C1 r11qr12

r21Qr22
1/k2Q1/c2

0++ 0
+1 (+, +) (+, 0) B2 r11qr12

r21qr22
1/c1Q1/k1Q1/c1+1/c2

0+0 +
+1 (+, +) (0, +) A2 r11Qr12

r21Qr22
1/c2Q1/k2Q1/c1+1/c2

0+0 +
+1 (+, +) (+, 0) B1 r11qr12

r21qr22
1/k1Q1/c1

C1 r11qr12

r21Qr22
1/k1Q1/c1

000 +
+1 (+, +) (0, 0) A3 r11Qr12

r21Qr22
1/c1+1/c2Q1/k2

0++ 0
01 (+, +) (0, 0) B3 r11qr12

r21qr22
1/c1+1/c2Q1/k1

0+0 0
+1 (+, +) (0, 0) C3

r11qr12

r21Qr22
1/c1Q1/k1 and 1/c2Q1/k2

Without loss of generality we have assumed 1/c1+1/c2Q1/k1+1/k2 (which implies that at least one yi has to converge to zero)
and r12+r21Qr11+r22 (which implies that v12 or v21-or-both have to converge to zero). There are seven stable fixed points,
characterized by nine parameter regions. Each parameter region admits exactly one stable fixed point. The conditions A3, B3,
and C3 specify the interesting situation of complete immunodominance (i.e. y1=y2=0). Note that this lack of y-responses can
either occur with homogeneity (A3, B3) or heterogeneity (C3) in the y-epitope.
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v12, v21, v22 and xi , yj . Combining these with the three
equations rij=xi+yj (i, j$1, 1), we have:

br12=h(c1p1+k2q2)v12+hk2q2v22, (C.14)

br21=h(c2p2+k1q1)v21+hc2p2v22, (C.15)

br22=hk2q2v12+hc2p2v21+h(c2p2+k2q2)v22. (C.16)

Solving this set of linear equations gives explicit
expressions for v12, v21, v22, and thence for x1, x2 and y1,
y2.

By tedious but routine algebraic manipulations, it
can be seen that the conditions v12q0, v21q0, v22q0
lead, respectively, to the requirements:

r22Qr12$1+
n2r1

r2(n2+r1)%+r210 n2

n2+r11, (C.17)

r22Qr120 r2

n1+t21+r21$1+
n1r2

n2(n1+r2)%, (C.18)

r22qr120 r2

n1+r21+r210 n2

n2+r11. (C.19)

Here we have, for notational convenience, defined

ni=cipi and rj=kjqj . (C.20)

Clearly xi and yj are all positive if v12, v21, v22 are. The
remaining requirement is that x1+y1qr11 (so that
v̇11Q0), which immediately implies the inequality

r11+r22Qr12+r21. (C.21)

T C.2
Saturated fixed points of the system of equations (10), for the case n1=n2=2, in the limit of

large h

State specified by vij matrix Inequalities to be satisfied
(+ represents a positive value Number labelling for this state to be saturated

of vij ) the state fixed point

0 0
+

+
+1 1 A� , B22, C22, D22

0++ 0
+1 2 A, B21, C21, D21

0+0 +
+1 3 A, B12, C12, D12

0++ +
0 1 4 A� , B11, C11, D11

0 0
+

+
0 1 5 A� , B� 11, B� 22

0+0 0
+1 6 A, B� 12, B� 21

0++ 0
01 7 C� 11, C� 21

000 +
+1 8 C� 22, C� 12

0+0 +
0 1 9 D� 11, D� 12

0 0
+

0
+1 10 D� 22, D� 21

The symbols A, Bij , Cij , Dij stand for the inequalities defined by eqns (D.13)–(D.16), and the ‘‘bars’’ denote
the opposite inequality.
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Listing the ten possible states. These calculations can
obviously be repeated, mutatis mutandis, for the other
three possible states with a single vij=0, and for the six
states with two of the vij=0. These ten states, and the
inequalities which must be satisfied for each of them to
be a saturated fixed point, are catalogued in Table C.2.
In this table, the symbols A, Bij , Cij , Dij (i, j=1, 2) refer
to the following inequalities:

A:r11+r22qr12+r21, (C.22)

Bij :rijqrIj [rj /(nI+rj )]+riJ [ni (vi+rJ )], (C.23)

Cij :rijQrIj [rj /(nI+rj )]

+riJ [1+nIrj /{ni (nI+rj )}], (C.24)

Dij :rijQrIj [1+nirJ /{rj (ni+rJ )}]

+riJ [ni (ni+rJ )]. (C.25)

Here the capital letter subscripts denote i=2 if i=1,
and conersely. If the inequalities do not hold (i.e., if we
have the opposite), we write A�, B�ij , etc.

Uniqueness. It can be seen that the set of inequalities
listed in the rightmost column of Table C.2. imply that
one, and only one, state will ensue for any arbitrary
choice of the underlying parameters {rij}, {ni}, {rj}
which determine the inequalities A, Bij , Cij , Dij .

The proof is straightforward, but a bit intricate, and
depends on relations among the inequalities them-
selves. Thus it can be seen that A�gB11cB�22cC22, D22;
AgB12cB�21cC21, D21; and so on (g stands for AND).
Likewise, although with a bit more difficulty, it can be
shown that C�22gD�22cr22qr12+r21cA; C�12gD�12cA�;
etc. Finally, it can also be shown that A�gC�iicD� ii

g, and

AgDii
gcD�ii . Threading our way through the resulting

maze, we find there is one, and only one, state for each
specified set of parameters (and consequent inequali-
ties).

We conclude with one example, to make these ideas
more concrete. Suppose the values of rij , ci , kj , pi , qj are
such that r12+r21qr11+r22(A�), and also that B22 is
satisfied. This implies B�11, and thence C11 and D11.
Working down the right-hand column of Table C.2. we
see that the only possible states are then 1, 8, 10. If C22

and D22 are both satisfied, then we have the unique
answer of state 1. If C�22, then the interrelations listed
above imply C�12 (also D22), whence state 8 is the only
answer. Conversely, if D�22 then D�21 (and also C22), so
that state 10 is the unique answer.

Systematic elaboration of these lines of argument
leads to the conclusion that any choice of parameters
leads (in the limit of large h) to one, and only one, of
the ten states catalogued in Table C.2.

APPENDIX D

A Saturation for Proliferation Rates of the

Immune Cells

In this Appendix we analyse a system that includes
some saturation of immune cell proliferation for high
abundances of activated immune cells.

v̇ij=vij (r−pxi−pyj )

ẋi=xi$ cvi*
1+e(x+y)

−b%, with i=1, . . . , n1

ẏj=yj$ kv*j

1+e(x+y)
−b%, with j=1, . . . , n2.

(D.1)

Here e is a small, positive parameter. The underlying
biological assumption is that, for high abundances of
activated CTLs (high x+y), the rate of proliferation
declines. This has a certain saturation effect. The
activated CTLs may produce some interleukin, which
generates a feedback loop to prevent the immune
response from overshooting.

System (D.1) does not have an interior equilibrium,
i.e. both responses, x and y, cannot coexist. Again
if c/n1qk/n2 then all yj converge to zero, which
leads to

v̇i*=vi*(r−pxi )

ẋi=xi$ cvi*
1+ex

−b% with i=1, . . . , n1. (D.2)

This system shows a peculiar behaviour. The total viral
load and the total amount of immune cells converge to
their equilibrium values

v=
bn1

c 01+
en1r
p 1 and x=

n1r
p

, (D.3)

but the individual vi* and xi continue forever in
neutral oscillations (again with a period of roughly
T12p/zrb.) The damping of the overall system
occurs at the long time scale 2/(ebn1). Note that
the equilibrium virus abundance, v, increases at first
linearly with n1, and for large values of n1 with the
square of the diversity n1. Again the individual vij are
not specified, byond the constraints implied by the
values of vi*=v/n1.

We now sketch a derivation of these results.
For this system, the indeterminism of the v*ij causes

no problems, because we need to deal only with the
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dynamics of (xi , vi*). As usual, we expand xi (t),
vi*(t), and x(t)=an1

i=1xi (t) about their equilibrium
values:

xi (t)=(r/p)+ni (t), (D.4)

vi*(t)=(v/n1)+xi (t). (D.5)

Here v is given by eqn (D.3), and x(t)=x*+an1
i=1ni (t).

We now substitute these expressions into eqn (D.1),
Taylor-expand, discard terms of second or higher
order, and factor out the time-dependence in the
ensuing linear equations as exp(Lt):

Lxi=−(v/n1)pni , (D.6)

Lni=(r/p) $ cxi

1+ex
−

ecv
n1(1+ex)2 s

n1

j=1

nj%. (D.7)

Using eqn (D.6) to eliminate xi in eqn (D.7), and
substituting for x and v from eqn (D.3), we arrive at

s
n1

j=1

[a+bdij ]nj=0. (D.8)

Here a and b are defined as

a=Lerb/(p+en1r), (D.9)

b=L2+rb. (D.10)

Following along lines similar to those in Appendix
B, we see that this set of n1 homogeneous, linear
equations have consistent solutions if, and only if, the
determinant of B equals 0, where B is the matrix with
elements Bij=a+bdij . This will be true if b=0 (n1−1
solutions), and if b=−n1a (once); the former (n−1)
solutions correspond to internal modes of the
corresponding dynamical system, and the single
solution corresponds to the collective mode.

For the internal modes, b=0 leads to

L2+rb=0. (D.11)

That is, we get undamped, neutrally stable oscillations;
for small amplitudes, the frequencies arezrb, as stated
in the text.

For the collective mode, b+n1a=0 leads to a
quadratic for the stability-determining L-values:

L2+L
b(en1r/p)

1+(en1r/p)
+rb=0. (D.12)

Both roots must lie in the left-half plane, correspond-
ing to local stability. For small values of e (specifically,
en1Wp/zrb ), we have weakly damped oscillations,
with frequency again zrb and with a characteristic
damping time of t12p/(ebn1r).

APPENDIX E

‘‘The Knitting Done’’

This Appendix shows that the set of equations (41)
of Section 8, which describe the dynamics of
immunogenicity when intra-cellular effects are signifi-
cant, cannot have a locally stable interior equilibrium.

As in Appendix B [eqns (B.1)–(B.3)], we expand
the variables about the interior fixed point [given
by eqn (42)]: xi (t)=j+ni (t), yj (t)=j'+fj (t),
vij (t)=v*ij +xij (t) (here j'0r−j). We now Taylor-ex-
pand eqns (41) to first order, and factor out the time
dependence in the ensuing set of linear equations as
exp(Lt), to get:

Lxij=−v*ij (ni+fj ), (E.1)

Lni=s
n2

l=1

xil , (E.2)

Lfj=j' s
n1

m=1

kmjxmj . (E.3)

Here we have, as in Section 8, put cij=1.
Using eqn (E.1) to substitute for xij in eqns (E.2) and

(E.3), we have

L2ni+j s
n2

l=1

v*il (ni+fl )=0, (E.4)

L2fj+j' s
n1

m=1

kmjv*mj (nm+fj )=0. (E.5)

Using the equilibrium expressions given by eqn (42),
we can reduce this pair of equations to

(L2+jb)ni+j s
n2

l=1

v*il fl=0, (E.6)

j' s
n1

m=1

kmjv*mjnm+(L2+j'b)fj=0. (E.7)

Using eqn (E.7) to substitute for fl in eqn (E.6)
leads us finally to a set of n1 equations for the
perturbations ni :

s
n1

j=1

[Aij−F(L)dij ]nj=0. (E.8)
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Here A is the n1×n1 matrix with elements

Aij0jj' s
n2

l=1

v*il v*jl kjl , (E.9)

and F(L) is a fourth-order polynomial in the
stability-determining quantities L

F(L)=(L2+jb)(L2+j'b). (E.10)

That is, F(L) is a quadratic in L2:

F(L)=(L2)2+br(L2)+jj'b2. (E.11)

Here we have used j+j'=r.
The expression (E.8) is reminiscent of eqn (B.11) of

Appendix B. We again observe that, if li are the
eigenvalues of the matrix A of eqn (E.9) (with

i=1, 2, . . . , n1), then L2 are given from the quadratic
equations F(L)=li , or

(L2)2+br(L2)+(jj'b2−li )=0. (E.12)

Unless both roots of all n1 such quadratic equations for
L2 are real and negative, there will be at least one
stability-determining rate L with positive real part,
implying that the interior fixed point is unstable. But
if all L2 are real and negative, then the interior fixed
point will be (locally) neutrally stable. This latter event
requires b2r2q4(jj'b2−li )q0, for all i. From the
definition of the matrix elements of A, eqn (E.9), we
can rescale li=jj'b2l*i (rescaling the v*ij to v*ij /b), so
that the constant term in eqn (E.12) reads as
jj'b2(1−l'i ). For many matrices kij , the equilibrium
values v*ij will indeed lead to l'i Q1, so that the
conditions for a (locally) neutrally stable equilibrium
(namely, r2q4j(r−j)(1−l'i )q0) are satisfied, pro-
vided j or (r−j) is sufficiently small relative to r.


