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Oscillations in the Evolution of Reciprocity
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A game-theoretical analysis of the Iterated Prisoner’s Dilemma shows that the
evolution of ensembles of stochastic strategies displays a dynamics of high com-
plexity and unpredictability.

An increasing amount of attention has been paid to the Iterated Prisoner’s Dilemma
as a game theoretical paradigm for the evolution of co-operation based on reciprocity.
In repeated encounters, two individuals are faced with the options to co-operate or
to defect (C or D). Joint co-operation leads to a payoft R (reward) which is higher
than the payoff P (punishment) for mutual defection. But if one player “cheats”
by defecting while the other co-operates, then his payoff T (temptation) is larger
than R, while the co-operator’s payoff S (sucker) is smaller than P. In addition to
T> R> P> S one usually assumes R>3(S+ T) in order to simplify the analysis
by making alternations of co-operation and defection less rewarding than all-out
co-operation.

If the game consists of a single encounter (or of a fixed number of encounters
known to both players) then the best choice is to defect. But if the length of the
game is unknown, as for example if there is a fixed probability w for a further
encounter, then the players may find that it is in their interest to co-operate. In
Axelrod’s well known computer tournaments (Axelrod, 1984) nice, i.e. co-operative,
strategies did very well, and the simplest one finished at the head of the class. This
was Rapaport’s Tit-For-Tat (TFT), a strategy which starts with a co-operative move
and then does whatever the opponent did on his previous move.

The assessment in Axelrod’s contests was originally established by round-robin
tournaments. For applications to evolutionary biology, an “‘ecological approach”
was proposed (Axelrod & Hamilton, 1981), where each strategy participates to the
next generation in proportion to its present success. Thus good strategies spread in
the population and eliminate weaker ones: but the success of a strategy depends
not only on its own merits but also on the frequencies of its competitors. There are
several ways to model such an evolution, essentially leading to similar results. We
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shall use here the continuous game dynamics of Taylor & Jonker (1979) (see
Hofbauer & Sigmund (1988) for a survey).

In spite of its success, TFT is not evolutionarily stable in the sense of Maynard
Smith (1982). It was shown (Axelrod, 1984) that for sufficiently high w, TFT cannot
be invaded by All Defect (ALLD), but there are many strategies (ALLC, for example)
which do as well as TFT against each other and against TFT. They can invade, not
by selection pressure but by genetic drift. Once they are common in the population,
less nice strategies can spread, because they have to fear less retaliation than against
TFT alone (Selten & Hammerstein, 1984).

Another argument (Boyd & Lorberbaum, 1987) used is that if a strategy like
Suspicious Tit-For-Tat (STFT, which defects on the first move and then does like
TFT) is maintained by mutation pressure in a TFT-population, then Tit-For-Two-
Tats (TFTT, which defects only after two consecutive D’s by the opponent) can
invade. Indeed, it does like TFT against itself and against TFT, but better against
STFT. This is not properly an argument against it being evolutionarily stable (using
mutations to maintain STFT is not quite in the rule-book), but it further weakens
the claim that TFT cannot be invaded. May (1987) stresses rightly that the success
of strategies should realistically be evaluated in the presence of ‘‘representative
ensembles” of strategies, and not just against a single mutant.

May also points out that more account should be taken of stochasticity. Actual
biological situations are fraught with errors and uncertainties. The answer to the
opponent’s last move (which may be misperceived in the first place) is never an
all-or-nothing, but only an increase or decrease of the propensity to co-operate. This
emerges quite clearly from Milinski’s neat experiments on sticklebacks (Milinski,
1987) or Lombardo’s data on swallows (Lombardo, 1985). Even the smallest random
fluctuation can have drastic effects, for example in encounters between TFT-players,
which can get locked, by a single mistake, into a series of alternating defections
which can only be broken by another error.

This suggests considering stochastic strategies given by three parameters (y, p, q),
where y is the probability to co-operate on the first move, and p and q the conditional
probabilities to co-operate, given that the opponents last move was a C or a D.
This class contains for example TFT(1,1,0), STFT(0,1,0), ALLC(1,1,1) and
ALLD(0,0,0) as extremal representatives. It does not contain TFTT, or strategies
which also depend on one’s own last move, or the strategies determined by the
history of the last three moves which were used in Axelrod’s simulations by genetic
algorithms (Axelrod, 1987).

In spite of this, strategies of type (y, p, ¢) already display a remarkable variety
of evolutionary dynamics. (For our examples, we use Axelrod’s values R=3, T=5,
P=1 and $=0 for the payoffs, and w=0-9 as discount parameter. Other choices
display similar behaviours.)

If only two strategies are competing, one can find dominance (e.g. S1=ALLD
always outcompetes S2= ALLC), bistability (S1=ALLD and the stochastic TFT
S3=(y,1,0), with 0<y <1, do never co-exist, but which one wins depends on the
initial frequencies) and stable polymorphism (S2=ALLC and S3=(y, 1, 0) settle
down to an equilibrium). (We mention that Feldman & Thomas (1987) have also
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found polymorphism if the probability w for continuing the game is part of the
strategy.)

For three competing strategies, it may depend on the initial condition whether a
polymorphic state gets established or not. An example is obtained by the three
strategies S1, S2 and S3 above: most initial conditions lead to an equilibrium of
all three strategies which is, however, not evolutionarily stable (see Fig. 1). For
w=1, one finds a ‘‘stone-scissors-paper” cycle: S1 is dominated by S3, S3 by S2
and S2 in its turn by S1. The state space is filled by neutral oscillations in this case.
If w<1 but y =1 then most initial conditions yield a mixture between ALLC and
TFT, with ALLD eliminated. One finds “stone-scissors-paper” cycles for w <1, too:
for example

(a) S1(0-40, 0-75, 0-75), S2(0-40, 0-75, 0-25), S3(0-40, 0-95, 0-25)
or

(b) S1(0-75, 0-75, 0-75), §2(0-75, 0-75, 0-25), S3(0-54, 0-95, 0-30).

S3
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F1G. 1. Phase diagram for the frequencies x,, x,, x, of the strategies S1(0, 0, 0), $2(1, 1, 1), $3(0-9, 1, 0)
on the simplex. Two trajectories are shown: one converges to S1, the other to a stable polymorphism.
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If all three strategies are initially present, then in case (a) the frequencies of S1,
S$2 and $3 converge in an oscillatory way to a stable polymorphism, while in case
(b) they oscillate with increasing amplitude and exponentially decreasing frequency.
This case is sketched in Fig. 2: for some time, S1 seems to predominate, until it is
suddenly replaced by S2, which seems to prevail for some longer time, until it is
brusquely displaced by S3, which in turn takes over for a still longer time, until it
is shouldered away, apparently without exterior cue, by S1 again etc., in a cyclic
series of fits and starts. Analytically, such a “heteroclinic cycle” whose relevance
to ecological models was first stressed by May & Leonard (1975), does never settle
down. The preponderance of the topmost species becomes more and more extreme,
its time of prevalence grows exponentially, but the sudden upheavals always take the
same very short time. In practice, a random fluctuation, or in numerical experiments,
a round-off term, will eventually wipe out one of the strategies, which means
extinction for the next one and fixation for the third, but it is impossible to predict
which one will end up as the winner.

With four competing strategies, one can find oscillations which damp down to
some equilibrium, or which “explode” in the aforementioned way, or which settle
down to some predetermined amplitude and period. Such a “limit cycle” is found
for

(c) S1(0-75,0-75, 0-75), §2(0-75, 0-75, 0-25), $3(0-40, 1-00, 0-30),
54(0-70, 1-00, 0-00)

(see Fig. 3).

In examples (b) and (c), there is no evolutionarily stable equilibrium. The (unique)
Nash equilibrium is unstable. We cannot estimate the probability for such situations,
but it seems to be fairly high. It is difficult to predict which set of strategies leads
to complex dynamics, but it seems that at least one strategy should be a neighbour
of TFT.

In the face of these intricacies, it seems clear that May’s (1987) exhortation to
“take more account of intrinsic stochasticities and of evolutionary stability against
representative ensembles of mutant strategies’ is a fairly tall order. One can approach
it by numerical simulations, starting with an arbitrary distribution of strategies and
introducing from time to time a mutant close to the prevailing ensemble. If one
considers only strategies differing in a single parameter, the situation is reasonably
clear:

(i) variation of y leads, depending on p and g, either to a pure state with y =0
or y =1 or to a rich mixture of strategies with a predetermined average value
for its initial readiness to co-operate;

(ii) variation of p leads to an extremal value 0 or 1, depending on the initial
state of the population;

(iii) variation of g leads to a monomorphic population with a predetermined

g-value depending on p and y.

If one admits variation in all three parameters, however, then the result is
considerably less predictable. It depends obviously a lot on the initial conditions
and on the history of mutational events. The outcome often is a population near
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F1G. 2. A heteroclinic cycle for $1(0-75, 0-75, 0-75), $2(0-75, 0-75, 0-25), S3(0-54, 0-95, 0-30):

(a) a trajectory on the simplex; (b) the oscillation of x, in time.
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FiG. 3. A limit cycle for S1(0-75,0-75,0-75), S$2(0-75,0-75,0-25), S$3(0-40,1-00, 0-30),
$4(0:70, 1-00, 0-00), shown in projection on the x,~x,-plane.

the TFT-value, at least in its time average. This underlines the robustness of TFT.
A statistical analysis is still lacking, however, and an intuitive understanding is made
difficult by the prevalence of oscillations.
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