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ABSTRACT 

A gamedynamical analysis of the iterated prisoner’s dilemma reveals its complex- 
ity and unpredictability. Even if one considers only those strategies where the 
probability for cooperation depends entirely on the last move, one finds stable 
polymorphisms, multiple eq&bria, periodic attractors, and heteroclinic cycles. 

1. INTRODUCTION 

Ever since the publication of Axelrod’s basic book [l] in 1984, the iterated 
prisoner’s dilemma (IPD) has been generally viewed as the major gametheo- 
retical paradigm for the evolultion of cooperation based on reciprocity. In 
repeated encounters, two players are faced with the choice to cooperate or to 
defect (C or D). If both cooperate, their payoff R (reward) is higher than the 
payoff P (punishment) obtained if both defect. But if one player defects 
whik the other cooperates, then tie defector’s payoff T (temptation) is 
higher than R, while the cooperator’s payoff S (sucker) is smaller than P. It is 
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furthermore assumed that R > i(S + T), so that joint cooperation is more 
profitable than alternating C and D. 

If the game consists of a single encounter, the best option is to defect, no 
matter what the other player does. Since both players will- resort to this 
solution, they end up with the punishment instead of the reward. A simple 
argument shows that the same holds if the game consists of a fixed number of 
encounters (known to both players): one has just to apply the previous 
reasoning to the last move and then to work backward. But if the length of 
the game is unknown, as for example if there is a fixed probability w for a 
further encounter, then the players may “learn” that it is in their interest to 
cooperate. 

In Axehod’s well-known computer tournaments, the simplest strategy did 
best. This was Tit for Tat (xx~), submitted by Anatol Bapaport: it consists of 
starting with a cooperative move and then doing whatever the opponent did 
on his prwious move. Most strategies among the runners-up shared with TFT 
the properties of being nice (i.e. never first with D), provokable, and 
forgiving. 

The assessment in Axehod’s contests ‘was established by round-robin 
tournaments. For applications to evolution, Axelrod anG Hamilton [Z] stressed 
the “ecological approach” and hence the underlying dynamics of the game: 
each strategy participates in the next generation in proportion to its present 
success. Thus good strategies spread in the population at the expense of 
weaker ones, but what is good and what is weak depends on the composition 
of the population and hence varies in time: it may happen, for instance, that 
a strategy does well when rare but poorly when it meets itself too often, so 
that it chokes on its own success. This view of “frequency dependent fitness 
values” is at the core of Maynard Smith’s applications of game-theoretical 
arguments to evolutionary models [12], and in particular of his ikotions of 
uninvadable phenotype and evolutionarily stable strategy (ESS). 

In spite of its success, m is not an ESS. For sufficiently high w, it cannot 
be invaded by All Defect (AI.@, as Axehod has shown. But ALLC, for 
example, does as well as TFF in a population consisting only of itself and TFT, 
and hence can spread by genetic drift. Once its frequency is sufficiently high, 
ALID can take advantage and invade, since it has to fear less retaliation than 
against m alone. This argument is due to Selten and Hammerstein [16], who 
also pointed out another weakness of TFT: if by mistake, one of two m 
players m&es a -wrong move, this lo&s the two opponents into a hopeless 
sequence of alternating D’s and C’s. 

Such a mistake is unlikely to occur in a computer tournament, but has to 
be expected in real life. Actual biological situations are fraught wi& errors 
and uncemties. The answer to the opponent’s last move (which may be 
misperceived in the first place) is only an increase or decrease in the 
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readiness to coOperate. This emerges quite clearly from Milir&s [13] experi- 
ments on sticklebacks or Iombardo’s [9] data on tree swallows. As May [lo] 
points out, it is inpxtant to “take more account of iddnsic stochasticiti~s 

and of evohtionary stability against representative ensembles of mutant 
strategies.” 

This suggests considering stochastic strategies given by three parameters 
(y, p, 9), where y is the probability to cooperate in the first move, and p and 
9 the conditional probabilities to cooperate, given that the adversary’s last 
move was a C or a D. Thus a strategy is defined by a triple ( y, p, 9) E [0, l] 3. 
For example, AIJX = (l,l, 1) and m = (1, llO) are extremal representatives. 
A p\&e of 0.95 can be interpreted as a mixed strategy, or as a decision to 
cooperate after C, subject to an error rate of 0.05 due to incomplete control 
over one’s own action. Tit for Two Tats @FIT, which defects only after two 
consecutive D’s from the opponent) is not a member of this class, and 
neither is a strategy taking also accotmt of one’s own p~etious move. lklost of 
the programs submitted to Axehod’s toumam ents Weie much more complex. 
But in spite of their limitations, strztegies of type (y, p, 9) already display a 
remarkab!c variety uf interactions. 

There are several candidates for an appropriate evolutionary dynamics% all 
leading more or less to the same outcome. We &a!! use here the Ansatz given 
by Taylor and Jonker [19]: the rate of increase of a strategy is the difference 
between its payoff and the average payoff in the population. This game 
dynamics, which relates well to the theory of evo!utionarv,stability, has been 
studied extensively, e.g. by Zeeman [20] and by Schuster and Sigmund [15]. 
We refer to [7j for a recent treatment. 

If only two strategies are competing, one can find (i) dominance [e.g., 
E,= MLD always outcompetes Es = MU], (ii) bistabihty [E, = AILD and the 
stochastic = E, = (y, l,O), with 0 < y < 1, never coexist, but which one 
wins depends on the initial frequencies], and (iii) b&able polymorphism 

[E =-and E, = (y,l,O) settle down to a predetermined equilibrium]. 
I?o&&ly speaking, case (ii) occurs frequently if the -two competing strategies 

differ only in p, and case (iii) if they differ only in 9. If we consider a 
simulated evolutionary process consisting of alternating (a) periods of &c- 
tion described by the game dynamics and (b) mutations introducing a small 
population which differs from the current population by a sli&t deviation, 
sometimes in p and sometimes in 9, then the tendency is either towards AELD 
or towards a state with p = 1 and some welldefined q-vahre, but dy not 
towards m, Thus one should sometimes forget a bad turn, but never a good 
one. 

l?or three competing strategic;, it may depend on the inial condition 
whether a polymorphic state gets established or not. An example is obtained 
by the three strategies E,, E,, and E, above: most initial conditions bad to . 
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an equilibrium of all three strategies which is asymptotically but not evolu- 
tionarily stable; other initial conditions lead to a monomorphic state consist- 
ing of E, only. For other choices of E,, E,, and E,, a “stone-scissors-paper” 
effect can occur: E, dominates E,, which dominates E,, which in turn 
dominates E, again. The presence of all three strategies in the population can 
lead to neutral oscillations or to a stable polymorphism. It can also lead to a 
heteroclinic cycle B la May and Leonard [ 111: for a long time, one of the 
strategies will seem to have complete ascendancy, until it is replaced, quite 
suddenly, by the next strategy, which will seem to have the upper hand until 
it is superseded in its turn by the next one, etc., in an endless cyclic 
alternation, proceeding in fits and starts, the time between the revolutions 
growing exponentially. In practice, this behavior means that a random 
fluctuation (or a computer roundoff) will wipe out one of the strategies 
during its weak phase, and so lead to the fixation of the domination of the 
two remaining strategies. But it is completely impossible to predict which one 
will turn out to be the ultimate winner. (This case can occur even if y, the 
initial readiness for cooperation, is the same one for all three strategies). 

With four competing strategies, one can find oscillations which damp 
down to some equilibrium, or which “explode” in the aforementioned way, or 
which settle down to some predetermined amplitude and period. Such limit 
cycles can be found quite frequently, in fact. It is probable that chaotic 
oscillations occur, but we have found none so far. 

In Section 2, we introduce the explicit game dynamics and compute the 
payoff matrix for (y, p, 9) strategies. In Section 3, we investigate the evolu- 
tion if a single parameter is varied, and in Section 4 we study examples of 
oscillating behavior in low dimensions. In the discussion in Section 5, we 
refer to other dynamical approaches to the IPD and suggest some further 
lines of investigation. 

2. THE PAYOFF MATRIX AND ‘IXE GAME DYNAMICS 

Each game consists of a sequence of rounds between two players, each 
having the options C and D. The probability that the game is extended by 
another round will be denoted by w E [O, 11. This parameter w can also be 
viewed as a discount factor for the future payoff. 

We denote by a, (a:) the probability that the first (second) player 
cooperates in the nth round. If the first player uses strategy (y, p, 9) and the 
second player (y’, p’, 93, then (a,, ai) = (y, y’), (aI, a;) = (n, z’) and, 

a n+2 =zw,+v, 

e&+2 = WZ:,+il’ 



with 

2 = py’+ 9(1- ?I’)¶ 

z’=p’y+g’(l-Y), 

u=p9’+9(1-9’)s 

*‘=p’q+q’(l-9), 

‘ill = (P - Q)(P’- 9% 

By A,, and A’, we denote the expected payoff for the first and the second 
player in the nth round, and by A = CA,,,” and A’= CA’,@’ their total 
payoffs. Clearly 

An =a&@--S-T+P)+a,(S-P)+a;(T-P)+P, 

and for A’, the same with S and T exchanged. 
For w < 1, (1) allows one to compute the payoff by a simple geometric 

sum, which yields 

A=@-S-T+P)r,+(S-P)r,+(Z’-P)li’,,+&, (2) 

where 

1 
rl = 

1-U2w2 L yy'+ wzz’ 

W2 
+ 

- ( w’(l+ uw2) 
1 Uw2 uv’(y+wz)+uu(y’+ WZ’)lb 1 w 11 , 

1 

[ 

W2 
r2 = 

1_uw2 y+wz+ l-wu ’ 1 
1 W2 

r3= 1 
- l d-W 

2 y’+wz’+- 1 
i 

l_;o”’ ’ 1 
1 

r4 = i_tu 
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if lul< 1. For lul= 1 we have deterministic strategies, i.e. p, 9 E (0,l). This 
yierds four special cases for Ii, &, and lY3 (lY4 remains unchanged): 

(i) p = p’ = 1, q = q’ = 0 (Tit for Tat against itself). The sequence a,, is 

y, Y’, y, Y’P l ’ peridcaUy. We have 

y’+ WY re=r3= 1 w2. 

(ii) p = p’ = 0, q = q’= 1 (the paradoxical strategy against itself). The 
sequence a, is y, 1 - y’, Y, 1 - y’,. . . periodically. We have 

1 
r1 = 1_ [yv’+ w(l- Y)O - Y’)l) 

1 re = r3 =i--J[Y+w(1-Y’)1. 

(iii) p = q’ = 1, p’ = q = 0 (Tit for Tat against the paradoxical strategy). 
The sequence a,, ii now y, y’, 1 - y, 1 - y’, . . . with period 4. We have 

r *l=-&JYYf +wY’(l-Y)+w2(1-y)(l-Y*)+w3Y(l-Y’)!~ 
. - 

1 
r2 =---&[y’+wy+W2(l-yr)+W3(l-Y)l~ 

1 
r3 =---&[y+wy’+w2(l-y)+w3(l-Y’)l* 

(iv) p = q’= 0, p’= q = 1 is like (iii) with roles reversed. 

In more general situations, the conditional strategy in each move may be 
determined by the outcome of the k previous moves of both players, for some 
fixed memory length k. This can be modeled as a Markov chain. In our case, 
for instance, the states in the rrth round are the pairs (C, C), (C, D), (W, C), 
and (0, 0) of possible moves by the two players, and the transition to the 
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state in the (a2 + 1)th round is given by the stochastic matrix 

‘pp’ p(l-p’) (1-P)P’ (I-PJ(l-P’)’ 

rI= 
t/p’ g(l-p’) (1-9)P’ (1-9)(1-P’) 

p9’ p(l-9’) (1-P)9’ (I-P)(l-9’) l 

,99’ 9(1-g’) (l-9)9’ (l-9)(1-9’), 

The initial probability distribution is (yy’, y(1 - y’),(l - y)y’,(l - y)(l - y’)), 
and the stationary distribution (for irreducible II) is given by 

as can be checked easily. We shall not pursue this approach here, which is of 
special interest in the case w = 1 (no discount of the future), but refer to [14. 

We now turn to the game dynamics. In principle the strategy set is the 
thrmbe 10, 113 = Q, and the state of the population is a probability 
distribution on 0. It is possible to write do-wn some plausible dynamics for 
the evolution of this distribution in time, but rather difficult to analyse it. We 
shall therefore assume that only finitely many strategies are present in the 
population, denoting them by E, to E, and their frequencies by x1 to r,. 
Thus the state of the population at time t is given by the vector x = x(t) in 
the unit simplex Sn. Since we know the payoff qi for strategy Ej against E,, 
i.e. the payoff matrix A, we can compute the average payoff (Ax)~ = CaiiXi 
for strategy E, in the population, and the mean payoff x AX = Xx,( Ax)i 
within the population. The gamedynamical Ansutz by Taylor and Jonker 
consists in assuming that &/xi, the rate of growth of strategy Ei, is given by 
its relative success, i.e. by the difference (Ax), - x Ax between the payoffs 
for Ei and the mean pff. This yields 

& = ~[(Ax), - xAx] (3) . 

on the (invariant) state space Sn. This type of equation occurs in many 
biological contexts: we refer to [7j for a recent survey. We shall M it to 
study the evolution of a small number n = 2,3, or 4 of competing strategies 
of the II9 in order to get a feeling for the complexity involved in the full 
game with its continuum of strategzs. 

The faces xi = 0 of the population simplex are invariant: if the strategy E, 
is missing, it will not be introduced through the competition described by (3) 
(but possibly by other mechanisms, like mutation, migration, etc.). On the 
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other hand, it may be that q(O) > 0 but liminf, _, do xi(t) = 0, which means 
elimination of Ei. A fixed point E in the interior of Sn (i.e. satisfying XAi > 0 for 
all i) is a solution of the linear equations 

( ) Ax 1= -0. =(Ax),. 

Generically there is one or no such solution in int Sn; in exceptional cases we 
may have linear manifolds of fixed points. We obtain similarly the fixed 
points in the lowerdimensional faces making up the boundary of Sn. In 
particular the comers of Sn, i.e. the unit vertices corresponding to the 
presence of a unique strategy Ei in the population, are fixed points. 

If (3) is permanent, in the sense that there exists a compact set in int Sn 
where all orbits in the interior eventually end up, then all strategies present in 
the population will survive (their frequencies will be bounded away from 0). 
In this case there always exists a unique polymorphic equilibrium E E int Sn, 
but it need not be stable. For n >, 4 (but not for n < 4) the orbits can 
oonverge to a periodic or chaotic attractor. Their time averages, however, 
converge to 2: 

1 T 
Tea T/a Xi(t)dt =x^i. 

Several conditions for permanence are known (see [7J). In particular, the 
system cannot be permanent if there exists a Nash equilibrium on the 
boundary [i.e. a fixed point such that (Ax)i < xAx whenever Xi = 0; recall 
that for xi > 0 we have (AX), = xAx]. 

2 V. !?!LI?~~TION OF A SINGLE PARAMETER 

For a preliminary orientation we keep two of the three parameters 
(y, p, Q) fixed and consider populations of competing strategies which differ 
only in the third parameter. For illustrations we shall use Axelrod’s payoff 
values T = 5, R = 3, P = 1, and S = 0 if not otherwise stated. As discount 
factor, we shall use w = 0.9 for our numerical examples. 

A. Variation of y 
This case is the one which is easiest to analyse. Indeed, the payoff given 

by (2) is affine linear in y and y’. This allows us to use the results from [17]. 
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Let us consider first the purestrategist case: n = 2, yr = 0, gs = 1. The 
2 ~2 matrix A is then easily computed. Let 

9= 
a21 - Qll 

( a12-%)+(a21-all) l 

A straightforward calculation shows that the denominator is - GA1 - UW)-’ 
and that 

. 
G,+G,wr l-wr2 

G 
l+wr (5) 

1 

with r=p-q, G, =R+P-T-S, G,=S-P and G,=T-P. Weshall 
consider only the case C, < 0 which holds for Axehod’s values. (The other 
case yields the time reversed picture.) If 6 E (0,l) the frequency x2 of the 
cooperative strategy converges to #j. If 6 z 1, then x2 converges to 1 and if 
3 < 0 the x2 converges to 0. For Axehod’s values we have @ > 1 for 
p-qqO.4 (roughly), e<O for p-qaO.8, and @~(0,1) for values in 
between (see Fig. 1). 

Let us now turn to the general case of rt strategies y, < l l l < yn with 
frequencies xl to zK,. The expression 

is the average readiness for cooperating in the first move. In [17] it is shown 
that 

v(x) = q&p-~~2 
is a potential for (3), with g given as in the pure-strategist case (5). More 
precisely, there ests a Riemannian metric on Sn (the socalled Shashahani 
metric) with respect to which (3) is a gradient. We may distinguish generi- 
cally three cases: 

(i) If c i y1 then Xi + L This means that the strategy least prepared t0 

cooperate wins out. This happens e.g. for p < q (for p = q we have 0 = 
- G,‘G,, which is negative). 

(ii) If Q > yn then X, + 1. This means that uhimately there will be as 
much cooperation as possible -within the pop-ukion. This is the case in 
particular for Tit-for-Tat players when @ = 2.26 > 1. 

(iii) If yl < 0 < yn, there exists a linear manifold of fixed ~c%s in int Sn, 
given by jj’ = 9. All orbits approach this set (actually along invariants of 
motion). This means that the population converges to a polyznorphic state, 
where all strategies have the same payoff. This happens, fol* example, for 
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FIG. 1. In region 3, fi > 1; in regich 2, fi E (0,l); and h region 1, 0 < 0. 

(p, 9) = (0.75,0.25) where 6 is approximately 0.43. The evolution for y1 = 0.2, 
y2 = 0.6, and r/3 = 0.8 is sketched in Figure 2. 

B. Variationof 
Since the payoff given by (2) is not linear in 9 and 9' but fractional 

quadratic, we cannot use the same method as before. We are unable to give a 
full global analysis of the resulting system, and can only offer some arguments 
supported by numerical simulation. 

Let us consider first the special CMELR + P = S -I- 2’ (which includes for 
example Smale’s [18] values: T = 3, R = 2, P = 1, S = 0). Then the contribu- 
tion of rI in (2) vanishes and we are left with a payoff function A which is 
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FIG. 2. Phase portrait of (3) with El=(0.20,0.75,0.25), E,=(O.60,0.75,0.25), Es= 
(0.80,0.75,0.25). In this case fi -0.43. 

fractional linear in 9: 

A(9) 
aq+b =- 
cg+d’ 

where the a, b, c, d are expressions in the parameters y = y’, p = p’, and 9’ 
(cf. Section 3.D below), Since these values are all in [0, I], the denominator is 
always well defined (we recall that w < I). Thus 9 + A(9) is monotonically 
increasing OY decreasing in [O,l], depending on whether ad - bc is positive 
or negative. This in tmn depends on 9’ and p, but interestingly not on y. 
More precisely, we shall show in Section 3.D that there are two possible 
cases, depending on the value of 

P-S a --- QA=p T-pw 

(which is always < 1): 

(i) If 6 < 0, then 9 a--) A(9) is monotonically decreasing in [O,l] for all whes 
of 9’. Thus if 91 < 92, we have A&,92) ) A(92,92) and A(919 91)) 
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(iij 

A(9s, 91), and so 9l dominates 9s. Hence it always pays to defect if 
9 < 0-i.e., for small values of p (little gratitude from the opponent) and 
small values of #W (small klc of further encounters). 

U 0 < 9 < 1, then 9 + A(9) is increasing for 9’ < 6 and decreasing for 
9’ > 4. For two strategies 9r < 92, with frequencies x1 and a2, there are 
three possibilities: 

0 a 

(31 

0 c 

If both 91 and 92 are smder than 4, then 49,,9r) < A(92,Sl) and 
A(9,, 9s) < A(92,9s). Thus 92 dominates 91, and x1 3 0. 
If both 91 and 9s are larger than 4, then A(q,,41) > AA(92, ql) and 
A(9r, 9%) > A( 92,~~). Then 91 dominates 92, and ~2 + 0. 
If 9l< $ < 92, thc!n 49,s 91) < A(929 91) and A(923 92) < A(9,, 92). 
In this case x2 converges to the value 

A(923 91) - A(9,, 91) 

A(92s 91) - A(9,3 91) + A(9,, 92) - A($, 92) ’ 

Heme we obtain a stable polymorphism of the two strategies. 

Thus for 9 > 0 (a high probability for a return in cooperation), a small 
increase in cooperation (9s - 9 + E) will succeed if the overall coopera- 
tion (9r = 9) is smaller than 9; but not if it is larger than 9. The value 9 
can be viewed as a stable level of “forgiveness.” 

Let us consider now the case of several strategies 91 < l l l < 9n, with 
frequencies x1 to x,. Numerical simulations indicate that the following holds: 

(i) If 9n < 9 then x, --) 1. 
(ii) If 9+(3 then x1+1. 

(if0 If 9k < 6 ( 9k+1, then xk and X&l converge t? some strictly positive 
values zumming to 1, and all other strategies vanish. Thus a mixture of the 
two strategies “closest” to the value 9 gets established. 

The effect of a large number of mutations introducing new q-values into the 
population will eventually lead to a population which is almost homogeneous 
and consists only of strategies very close to (4. 

In the general case R - S - T + B # 0, the term I?1 introduces complica- 
tions which we cannot fully analyse. The overall effect is to blur the sharp 
transition, at 9, from defection to cooperation. For Axelrod’s values, for 
example, this blurring effect is quite small, and the overall picture for most 
parameter values very similar to the special case: the population converges to 
a more or less homogeneous state with a q-value as close as possible to 4 (0 if 
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9 < 0). For example, we can observe by computation that 

lim lpo.26. 
Y==P-*l 

If nice (y = I) and grateful (p = 1) strategies vary in their readiness to 
forgive, then the evolutionary tendency is towards 9 = 0.26). It must be 
stressed, however, that for a small range of parameter values y and p, a more 
complex outcome is conceivable, especially for large ]R - S - T + PI. 

C. Variation of p 
This situation is closely related, but in some sense almost complementary 

to thy ~;;avious one. Again, it is use&M to consider first the special case 
R + P = S -t T. The payoff function A is fractional linear in p, and hence 
p -+ A(p) is monotonically increasing or decreasing in [0, 11, depending on p’ 
and 9 (but not on y). The crucial parameter is now 

P-S 1 
+9+-- 

T-Pw 

(which is always > 0). 

(i) If fi > 1, then p + A(p) is monotonically decreasing in [0, l] for all 
values of p’. Thus if p, < p2, then p, dominates p,. Hence it always pays 
to defect if $ > l-i.e. for large values of 9 (the readiness to forgive) and 
small values of w (the risk of flier encounters). 

(ii) If 0 < fi < 1, then p + A(p) is decreasing for p’ 6 fi and increasing for 
p’ > 6. For two strategier I 6 p, there are three possibilities: 

(a) If pz 6 j?, then p 1 dominates p2; 
(b) If p, > 6, then p, dominates pl; 
(c) If p, 6 j? 6 p,, we obtain an unstable equilibrium. &pending on the 

initial frequency, p, or p, will outcompete its rival strategy. 
IIence for p h : I (a small expectation to get away with a defection) a 
slight increase in cooperation (p2 =p+~) will succeed if the overall 
cooperation (p, =p)islargerthan @, but not if it is smaller. The value $ 
can be viewed as a reciprocity threshold: if the average tendency ti to 
defect, then it pays to defect, while if it is to cooperate, then the more 
one cooperates the better. 

In this case, the effect of an evolutionary process of mutation and selection 
drives the population to the fixation of a pure strategy p = 0 or p = 1. Which 

of these alternatives holds depends on the initial phase of the process. 
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Again the general case is similar if fi - S - T + P is relatively small (for 
example AxeMs values). The population converges in most cases to a 
homogeneous state with p = 0 or (if the Mtial population is cooperative, and 
defection punished severely) with p = P. 

D. iWmontheSp~ZCaseR+P=S+T 
For the expression 

w+b 
A(q) = cs+d 

given in Section 3.B above, we have 

a=@-P)[w(l--y)+f(l-q’)]+(T-P)fi, 

b = (S - P)[y + wyp + fiq’] + (T - P)(y’+ wyr + wq’+ fq’), 

d=L-pn& 

;zre r=p-q’and f=w2(1-w) -? A rather tedious computation shows 

ud-bc=(l-w) -'w(l+m)[qw+y(l-w)][(T-P)Tw--(F-S)]. 

me first four factors on the right-hand side are always positive, so that 
q --, A(q) is strictly increasing in [0, l] if and only if the parameter q’ satisfies 
q’<cj, with 

P-S 1 
--- e=P T_Pw’ 

which is independent of y. 
In the same manner, we obtain that p --) A(p) is strictly increasing if and 

only if the parameter p’ satisfies p’ ) fi, with 

P-S 1 
fi=fJ+-- 

‘s-Pw’ 



It is interesting that the two conditions for A(9) and A(p) to increase are 
actually the same. Thus let us consider a population with strategy (p, 9) and 
a small mutant population with a strategy slightly differing in either its p or 
its 9 value. If 

P-S 1 
-- 

p-9’ T-Pw’ (6) 

“&en the mutant can invade and take over iff its strategy is more cooperative 
(higher p or 9); if the inverse inecpality holds, the mutant can invade iff its 
strategy is less cooperative. 

(r 
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.7 

.6 

.5 

.4 

.3 

.2 

.I 

0. 

0 .I .a .3 .4 .s -6 .f .8 .I) I.0 

P 

FIG. 3. Cooperation increases in the corner defined by Equation (6). 
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Since R < k(T + S) and R + P = S + T by assumption, we have 
(P-S)/(T-P)<l. If w<(P-S)/(T-P), there is no region in the 

(P, 9) sP== PJI 2 where more cooperative strategies succeed. The evolution 
tends to the fixation of AI&n. If fo > (P - S)/(T - P), then there exist a 
region (in the southeast comer of the parameter square [0, I]‘) where 
cooperativity is favored, while in the remaining zone it is discriminated 
against (see Figure 3). An evolutionary alternation of seIection and small 
mutations tends to ALLD if it starts in this zone of defection, and to 

P-S 1 
p=l, 9=bp;, - 

if it starts in the zone of cooperation. (Larger fluctuations, however, can lead 
the evolutionary path from one zone to the other and hence complicate the 
outcome.) There is no tendency to approach TFT. On the other hand, a result 
by Axelrod implies in the present case that for w > (P - S)/(T - P), the 
strategy TIT cannot be invaded by ALLD. This agrees well with our result that 
fDr such w, no strategy near TFT (large p, small 9) can be invaded by a less 
cooperative strategy (with lower p or 9 value). 

4. OSCILLATING BEHAVIOB 

A. llhree Strategies 

The most interesting phenomenon, in the case of three strategies, is that of 
cyclic competition: strategy E, dominates E,, E, dominates Es, and E, in 
its turn dominates E,. This occurs if the modified pay03 matrix (a ii - ai i), 
whose diagonal is zero, has the sign structure 

This happens for a fairly substantial set of strategies in the (y, p, 9) space. As 
examples we mention 

(a) E, = (0.40,0.75,0.75), E, = (0.40,0.75,0.25), E, = (0.40,0.95,0.25j; 
(b) E, = (0.75,0.75,0.75), E, = (0.75,0.75,0.25), E, = (0.54,0.95,0.3!& 

(We remark that in the first case ail y-values are the same.) The results from 
Section 3.D srrggest that this can only happen if one of the strategies has 
Iarge p and small 9, i.e. is a neighbor of m. This cyclic “stone-scissors-paper” 
structure determines the behavior at the boundary of the state space Sa. Its 



comers are saddles, and its edges saddle connections (i.e. orbits having one 
comer as c&mit and another as &limit). The cyclic arrangement of these 
saddle connections forrras a soiled hetemclinic cycle. Wi& respect to 
generic perturbations of a dynamical system, such a cycle is not structurally 
stable: within the class of game-dynamical equations of type (3), however, it 
is stable in general. 

The behavior on the boundary does not specify the behavior in the interior 
of the state space. There exists a unique interior fixed point f (the unique 
Nash solution of the game), but two generic cases can occur: 

(i) iii is gZ&zU~ stable. AU orbits in int S3 converge in an oscillatory 
manner towards 2. The system is permanent. This occurs if det A’ > 0, as for 
example (a). (See I?&ure 4.) 

(ii) P is unstable. In this case all orbits in int S3 (with the exception of 
the fixed point itself) converge to the boundary. More precisely, their &xnit 
is the whole heteroclinic cycle. Hence the orbits follow the boundary, 
remaining for exponentially increasing times near a comer and switching 
suddenly, after such a period of near-rest, to the next comer. Such behavior 
has been described (in other contexts) by several authors (for a survey see 
[7]). It seems particularly interesting that the time averages (4) do not 

FIG. 4. Phase portrait of (3) with E, =(0.40,0.75,0.75), E2 ==(0.40,0.75,0.25), E3 = 
(0.40,0.95,0.25). All interior orbits converge to P, The boundary is a repdor. 
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El 
b 

E2 

FIG. 5. Phase portrait of (3) with E,=(0.75,0.75,0.75), E,=(O.75,0.75,0.255, Es= 
(0.54,0.95,0.30). All interior orbits converge to the boundary. 

converge in this case. Their accumulation points form a triangle contained in 
int Ss and containing f. Numerically the roundoff error will wipe out one 
species, and one strategy reaches eventually fixation, but it is impossible to 
predict which. This type of behavior occurs if det A’< 0, and example (b) is 
the case in point (Figure 5). 

Of course, it can also happen that det A’= 0. The point % is a center 
surrounded by closed orbits filling up int Sn. This case of “neutral oscillations” 
is highly degenerate, of course. 

Another interesting case, mentioned in the introduction, is that of the 
threestrategiesE,=~, Es=Ar+Lc,and E,=(y,l,O)withO~y<l.This 
Iast strategy can be viewed as a sort of suspicious TFJT, which starts with a 
random move. The uncertainty of m in the first move seems to be realistic 
in a biological context, because in contrast to ALLD and ALLC, = is able both 
to cooperate and to defect. There exists one three-species equilibrium, which 
can be shown to be a sink; two two-species equilibria, between (y, 1,0) and 
ALU= and between (y, 1,0) and AUD, one of which is stable and the other 
unstable in the two-strategy subsystem; and the three one-species equilibria, 
of which qne, namely ~LLWD, is a sink and hence evolutionarily stable. It 
follows that the three-species equilibrium cannot be an ESS. In fact, we have 



FIG. 6. Phase portrait of (3) with El = (O,O,O), E2 = (1, 1, l), E3 = (0.9,1,0). The interior is 
divided into two basins of attraction. 

here Zeeman’s [ZO] example of an attractor which is not evolutionarily stable. 
It is surprising that Awx: and ALLD can coexist if there is a sufficient amount 
of suspicious TET in the population (Figure 6). 

In the case tu = 1 (i.e. no discount of the future), E,, E,, and E3 as above 
form a “stonescissors-paper” cyck, and the state space Sn is filled with 
periodic orbits around the stable (but no longer asymptotically stable) poly- 
morphic equilibrium. If w < 1 and y = 1, then most initial conditions yield a 
mixture between ALLC and TET, with ALLD eliminated (Figure 7). 

For n = 4, the lxhavior of (3) is not yet fully class&xl, but the perma- 
nence criteria are fairly well understood [8,6]. 0ur feeling is that whatever 
can happen with (3) can be Wed by a suitable IPD game dynamics. 
Numerically, we have found limit cycles, e.g. for 

E,(Q.75,0*75,0.75), E,(O.75,0.75,0.24), E,(0.40,1.00,0.30), 

E,(O.70,1 .oo, 0.00) 

(see Figure 8). 
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FIG. 7. Phase portrait of (3) with E, =(O,O,O), E, = (l,l, l), E3 = (l,l,O). Some orbits 
converge to E,, the others to the edge E&. 
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FIG. 8. Projection on the xl-x2 plane rrf zr~ orbit of (3) with E, = (0.75,0.75,9.75), 
Es = (0.75,0.75,0.25), Es = (0.40,1.00,0.30), E4 = (0.70,1.00,0.90). The orbit anverges to a 
limit cycle. 
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What one can show analytically in this case is that the system is perma- 
nent (no strategy will get eliminated), and that the unique interior fixed point 
% is unstable. Thus the *limit of all interior orbits is disjoint from the 
boundary, and for almost all interior orbits it does not reduce to f. 

5. DISCUSSION 

There are several other dynamical approaches to the IPD in the literature. 
We mention in particular Feldman and Thomas [S], where it is shown, using 
a discrete version of game dynamics, that if the probability w of continuing 
the game is part of the strategy and depends on the previous move, then a 
polymorphism of TFr and ALID can get established. Another investigation, by 
Had [4], studies game dynamics for a modified version of TET: the players are 
not allowed any memory of earlier outcomes, but can use a third (“adaptive”) 
strategy A besides C and D, which splits the game into two subgames, 
playing C on the first game and whatever the other did on the second. The 
encounters are repeated infinitely often (w = I), and the dynamics is given 
by (3), with El= c, E,= 0. *u* D, E, = A. A small perturbation yields a struc- 
turally stable dynamics. It is shown that A is the unique “good” locally stable 
Nash solution (x, = 0) of the stabilized game, and D the unique “bad” one 
( x2 = 1). This is related to (but different horn) a general theory of Smale [IS] 
on dynamical systems associated with noncooperative games, where titegies 
have a bounded memory, where the evolution is based on the players’ 
average accumulated payoff, and where “good” strategies lead to “good” 
solutions (i.e. equilibria of the dynamics) which are stable. 

Of special interest is the approach of Axelrod [3], which reports the effect 
of a genetic algorithm of Holland type upon an ensemble of strategies where 
each move is determined by the history of the last three interactions. It is 
shown that an evolutionary dynamics leads frequently to the establishment of 
strategies which are quite different from m, and that algorithms mimicking 
“sexual” recombination are much faster than “asexual” algorithms in promot- 
ing strategies doing considerably better than m against eight “representa- 
tive strategies” culled from Axelrod’s previous round-robin tournaments. 

Our approach emphasizes the dynamical complexity and unpredictability 
for small numbers of competing strategies, using very simple stochastic 
decision ruIes. It would seem interesting to extend this by taking into account 
more diversified ensembles of strategies with a longer memory. It could well 
be that this “smooths” the dynamics. 

As a first step, one can approach this question by numerical experiments, 
starting with a random distribution of strategies and introducing from time to 
time a mutant close to the prevailing ensemble. If one considers only (y, p, 9) 
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strategies differing in a single parameter, the sitnation is reasonably clear: 
(i) variation of y leads, depending on p and 9, either to a pure state with 
y = 0 or y = 1 or to a rich mixture of strategies with a predetermined average 
y-value; (ii) variation of p leads to an extremal value 0 or 1, depending on g, 
9, and possibly the initial state of the popdation; (iii) variation of 9 leads to a 
monomorphic population with a predetermined q-value. If one admits varia- 
tion iu two or three parameters, the result is less predictable. It depends 
obviously on the initial conditions and the history of mutational events. In 
view of the preceding results, it seems highly unlikely that TFT is the 
evolutionary outcome. A solid statistical analysis is required to settle this 
question. It seems difficult to rely on intuition in this field, and our few 
experiments to date are fai from conclusive. 
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