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Abstract.  Ecological communities can lose their permanence if a predator or 
a competitor is removed: the remaining species no longer coexist. This well- 
known phenomenon is analysed for some low dimensional examples of 
Lotka-Volterra type, with special attention paid to the occurrence of hetero- 
clinic cycles. 
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1. Introduction 

A favourite theme in theoretical ecology is the relationship between complexity 
and stability (May 1973; Svirezhev and Logofet 1983). An interesting aspect of 
this is the role of a top predator in an ecosystem. Paine (1966) has shown that 
after removal of the top predator from an intertidal community consisting of 16 
species, the number of surviving species dropped to 8 within a couple of years. 
Thus the occurrence of parasites may increase the diversity of a community. 
(This seems to have a parallel in human societies.) 

Mathematical analyses have to stick to lower dimensional models of such 
phenomena. Their prototype was introduced by Parish and Saila (1970). These 
authors showed by computer simulation that in a two-prey, one-predator model 
of Lotka-Volterra type, the absence of the predator may shorten the time of 
coexistence of the two-prey species. A local stability analysis of the two-prey, 
one-predator equilibrium was performed by Cramer and May (1972) and, in a 
more general setup, by Fujii (1977), Vance (1978) and Hsu (1981). This showed 
that the three species may coexist in stable equilibrium while the two-prey 
subsystem admits no equilibrium. But the stable coexistence of species is not 
necessarily related to the existence of an asymptotically stable equilibrium. This 
was pointed out in Hutson and Vickers (1983) where the two-prey, one-predator 
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model was fully analysed from the point of view of permanence (see Sect. 2). We 
shall adopt this approach and investigate some four-dimensional ecological 
equations in the same spirit. In particular, we shall study the joint effect of two  

supplementary competing species (or one competing and one predating species) 
upon a bistable community, thus complementing Kirlingers (1986) work on 
two-prey, two-predator systems. We shall also investigate the effect of a predator 
(or a competitor) upon an ecological community consisting of three cyclically 
competing species which was originally studied by May and Leonard (1975). 
This yields examples where the removal of the top predator turns a four-species 
system into a one-species system, and where it is completely impossible to predict 
which species will be the survivor. Before turning to these examples, we shall 
briefly sketch some recent results on permanence for Lotka-Volterra equations. 
One point of this note is to show how these results facilitate the analysis of three- 
and four-dimensional systems considerably. 

2. Permanence for Lotka-Volterra models 

Like the authors mentioned above, we shall describe the ecological models by 
Lotka-Volterra equations, being more interested in general properties of the 
interaction networks than in specific biological situations. If Xx . . . . .  x, describe 
the species densities, their evolution is described by 

This is a dynamical system on the positive orthant leaving the boundary faces 
invariant. Such a system is said to be p e r m a n e n t  if there exists a compact set K 
in the interior of R~_ such that if x,.(0) > 0 for all i, then _x(t) e K for all t 
sufficiently large. Thus no species will tend to extinction. If  (1) is permanent, 
there exists a unique fixed point in the interior of the orthant, but this 
equilibrium need not be stable. We refer to Hofbauer and Sigrnund (1988) for a 
survey on permanence. Here, we shall only use two results, both related to the 
notion of a s a t u r a t e d  rest point. 

A fixed point z of (1) is said to be saturated if ri <~ (Ag) i  for all i for which 
z~ = 0. (If z,. > 0, then the fixed point z must satisfy ri = (A_z)i.) The expression 
r~ - (Az_)~, which we shall sloppily denote by 2 i / x i ,  is a t ransver sa l  eigenvalue of 
the Jacobian of (1) at _z, in the sense that the corresponding (left) eigenvector is 
ei and hence transversal to the boundary face {x e R~_ : x s = 0 whenever zj = 0} 
containing _z. If  g were not saturated, there would exist a missing species whose 
rate of increase 2~/x i  is positive if it is introduced in a small amount. A fixed 
point in int R n is trivially saturated. + 

Let us examine transversal eigenvalues in some low dimensional cases. For 
two competing species, (1) reduces without restriction of generality to 

21 = Xlrl(1 - x l  - Cl2X2), 
(2) 

22 = x z r 2 ( 1  - c21xt - x2), 
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with r;, c U > 0. There are three rest points on bd RE,  namely 0, e 1 and e2. The 
origin 0 has two positive transversal eigenvalues, namely r, and r2, and is never 
saturated. The rest point el has the transversal eigenvalue r2(1 -c21)  (=X2/X2) 
and _e 2 has the transversal eigenvalue r ~ ( 1 -  c12 ). We may distinguish three 
generic cases: 

(a) if both transversal eigenvalues are positive, (2) has a globally stable equi- 
librium in int RE.  This is the case of  c o e x i s t e n c e .  

(b) if both eigenvalues are negative, i.e. both el and e2 are saturated, then there 
exists a saddle equilibrium in int R2+ whose stable manifold separates the basins 
of attraction of  el and e2. This is the case of  b i s t a b i l i t y .  

(c) if one eigenvalue is positive and the other negative, then all orbits in int R2+ 
converge to the saturated fixed point. This is the case of d o m i n a n c e .  

In the same way, the predator-prey model is completely specified by the 
transversal eigenvalue of  the equilibrium consisting of  prey alone, without 
predator. 

But with three-species systems, the signs of the transversal eigenvalues of the 
boundary fixed points are no longer sufficient to classify the behaviour in the 
interior of the state space. This is best seen with the model of three cyclically 
competing species (May and Leonard 1975): 

s  = x l r l ( 1  - -  x l  - -  ~ 2 x 2  - -  f 1 3 x 3 ) ,  

5~2 = x z r 2 (  1 - f l l  x l  - -  x 2  - ~3x3), (3) 

23 = x3r3(  1 - -  e 1 x 1 - -  f 1 2 x 2  - -  x3) , 

with ri > 0 and 0 < f l i  < 1 < ei. The fixed points on the boundary are Q (with 
eigenvalues rl, r2, r3 > 0) and the unit vectors. The transversal eigenvalues ofe~ are 
r~+ l(1 - fli) > 0 and r~ l(1 - e~) < 0 (indices counted mod 3). In the face xi = 0, 
the (xz + 1, x;_ 1)-subsystem describes competition with dominance of  e~_ 1. Thus 
1 is dominated by 2, 2 by 3 and 3 by 1. The three saddles e~ are connected by orbits 
oi lying in the face x,. = 0 and with m-limit e~_ l and e-limit ei+ 1 (see Fig. 1). As 
shown in Hofbauer and Sigmund (1988), there are two generic cases: 

(a) if 1-I ( e~ -  1) > 1-[ (1 - f l i ) ,  then (3) is permanent; 

(b) if the reverse inequality holds, (3) is not permanent. 

In this case, the heteroclinic cycle consisting of  the saddles e~ and the connecting 
orbits oe is an attractor for the neighbouring orbits. In the former case, it is a 
repeller. 

We shall use two main results in the sequel: 

(a) the index theorem of Hofbauer (Hofbauer  and Sigmund 1987), or more 
precisely, its corollary stating that in the generic case when all boundary fixed 
points are hyperbolic, the number of saturated fixed points is odd; 

(b) the permanence condition of Jansen (1986): if the orbits of  (1) are uniformly 
bounded (in the sense that for some K > 0, all orbits satisfy x i ( t )  < K for all i 
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Fig. 1. The heteroelinic cycle for (3) 

and for all t sufficiently large), then (1) is permanent provided there exists a 
solution p_ e int R~_ of the system of inequalities 

y~ p;(r ,  - (Az),) > 0, (4) 

where z runs through all fixed points on bd R~_. The boundedness condition will 
be trivially satisfied for the following examples. 

We shall always make the genericity assumption that no eigenvalues are zero. 

3. Stabilizing bistable communities 

The general Lotka-Volterra equation for one predator and two competing prey 
is of the form 

~Cl - -  x l r a ( 1  - x l  - c 1 2 x 2  - k l y ) ,  

JC 2 = x 2 r 2 (  1 - c21 x 1 - x a - k 2 y ) ,  (5) 

= y r (  - 1 + l x x  1 + 12X 2 - -  g y ) ,  

with nonnegative parameters. Hutson and Vickers (1983) have shown that if the 
(Xl, x2)-subsystem describes competition with dominance, the three-species sys- 
tem is permanent for some values of k i, li and g. In this sense, a predator may 
'stabilize' a system of two competing prey. Hutson and Vickers (1983) have also 
shown that if the (x~, Xz)-subsystem is bistable, then (5) is never permanent. 
Kirlinger (1986) has shown, however, that the introduction of t w o  suitable 
predator species can lead to a permanent four-species model. 

A similar situation holds if supplementary competing species are added to a 
system of three competing species. The general Lotka-Volterra model for three 
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competing species is 

21 ---- X l r l ( l  - -  X!  - -  C t 2 X  2 - -  C13X3) ,  

2 2 ----- x 2 r 2 ( 1  - -  c21 x l - -  x 2 - -  c 2 3 x 3 )  , ( 6 )  

23 = x 3r 3(1 -- Ca lX  1 -- c32x 2 - x 3). 

Let us assume first that the (x,, x2)-system describes competition with domi- 
nance: say c21 > I and Cl2 < 1. Then species 1 dominates 2. It is easy to choose 
C23 , C31 ~ ( 0 ,  l )  and C13 , C32 > 1 such that 

( 1  - c 1 2 ) ( 1  - c 2 3 ) ( 1  - c31) ~< (c21 - -  1 ) ( C 3 2  - -  1 ) ( C l 3  - -  1) .  

This is a system of  type (3) which is permanent. 
On the other hand, (6) can never be permanent if the (xl, x2)-subsystem is 

bistable. In this case, c~2 > 1 and c21 > 1. In order to be permanent, the system 
can admit no saturated fixed point on the boundary. The two transversal 
eigenvalues of e3 are 1 -c23 and 1 - c , 3 .  Without restricting generality, we may 
assume c23 > c~3. Since e3 is not saturated, at least its larger eigenvalue 1 - c13 
must be positive. Since el cannot be saturated, but (22/x2)(e~) < 0, we must have 
(X3/X3) (_C1)  ~--- 1 - - C 3 1  > 0 .  N O W  C31 < 1 a n d  c13 < 1 imply the existence of an 
equilibrium F13 = (21,0, 23) in the face x2 = 0. Its transversal eigenvalue is 

X2 ( F 1 3 )  = 1 - -  C21X 1 - -  C23X 3. 
X2 

This expression is smaller than 1 - 2~ - c~323. But this last expression is 0, since 
F13 is a fixed point. Hence F~3 is a saturated boundary fixed point, a contradic- 
tion to permanence. 

Theorem 1. A bistable compet i t ion  can be stabil ized by the introduction o f  two 

suitable competi tors .  

Proof .  If x3 and x4 denote the frequencies of the two supplementary competitors, 
then the system is of the form 

21 = x l r l ( 1  

22 = x2r2(1 

2 3 = x 3 r 3 ( l  

2 4 = X g r 4 ( 1  

- -  X l - -  C12X2 - -  C13X3 - -  C14X4)  , 

- -  C21Xl - -  X 2 - -  C23X 3 - -  C24X4)  ~ 

- -  C31Xt - -  C32X 2 - -  X 3 - -  C34X4)  ~ 

- -  C41XI - -  C42X 2 - -  C43X 3 - -  2 4 ) .  

(7) 

The positive parameters r~, r2, c,2 and c21 are given (with 1 ~< c12, c21 since they 
describe bistable competition). The other (nonnegative) parameters will be 
chosen in such a way that the species 1 and 4 can coexist, as well as the species 
2 and 3, while 4 is dominated by 2 and 3, and 3 is dominated by 1. There will 
be a heteroclinic cycle F1 ~F,4--* F2--* F23--+ F,; species 1 will be invaded by 4, 
the resulting equilibrium FI4 superseded by species 2, which in turn is invaded by 
3, leading to an equilibrium F23 which is superseded by 1. For suitable parameter 
values, this cycle will be repelling and the full system permanent. 
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Table 1. Transversal eigenvalues for (7) 

J. Hofbauer and K. Sigrnund 

21 22 23 24 

r I x I r2x 2 r3x 3 r4x4 

0 1 1 1 1 
F l 0 1 - c 2 1  < 0  1 - c 3 1  ( 0  1 
F 2 1 - -  C12 ( 0 0 I 1 - -  C42 < 0 

F 3 1 1 - c23 > 0 0 -- 1 
F 4 1 --  r ) 0 1 1 - c34 > 0 0 
F~2 0 0 1 --  C31 "~1 > 0 1 --  r > 0 
F23 l - - q 2 ( 1  --c23 ) > 0  0 0 - -1  - -c42(1  - -c23 ) < 0  
FI4 0 1 --  C21(1 --Ci4 ) > 0  1 --  C31(1 --C14 ) - - t2 '34<0  0 

W e  s h a l l  c h o o s e  c13 = c24 = c32 = c41 ~-- 0 a n d  c43 ~-- 2 .  T h e  equilibria of  (7) a r e  

then 0, F1, F2, F3, F4, Flz = (971,972, 0, 0), F23 = (0, 1 -  c23, 1, 0) and F14 = 
( 1 -  c14, 0, 0, 1). We shall check later that  these are the only fixed points  on 
b d  R 4 The transversal  eigenvalues are given by Table  1 

Since 1 - ffi = c12x2 > 0, we obtain  1 - c3197~ > 0 if c3~ is only slightly larger 
than  1. Similarly, we have 1 - c42972 > 0 if c42 is only slightly larger than 1. Then  
the Jansen inequalities for  F12 will be trivially satisfied. Fur thermore ,  we choose 
C34 < 1, C14 < 1 and c23 < 1 such that  0 < 1 - c23 < ci31 and 0 < 1 - c14 < e~  1 . 
Then  all the signs of  the t ransversal  eigenvalues are as in Table  1, except for the 
sign of  23/x3 at F14 which will be specified later. 

We shall now satisfy the Jansen inequalities by setting Pl = 2, P2 = 5(c2~ - 1), 
P3 = 3(c~2 - 1) and  P4 = (c21 - 1) 2. The  inequalities for  0, F3 and F4 are obviously 
satisfied. F o r  F2, the inequali ty is satisfied if c42 > 1 is sufficiently close to 1, and 
for Fl if  c31 > 1 is sufficiently close to 1. The  inequality corresponding to F23 is 
satisfied if c23 < 1 is sufficiently close to 1. There  remains the inequali ty for  F~4. 
We choose c3~ > 1 so close to 1 tha t  1 - c31(1 - C14 ) > 0, and then c34 < 1 slightly 
larger than  this number ,  so that  )?3 IX3 is a small negative number  and 

22 p2 - -  + p3 X3 > 0. 
X2 X3 

There  remains  to check that  there are no other  fixed points.  The  only possible 
candidates  are interior fixed points  o f  three species systems. But as Fig. 2 shows, 
each three-system has exactly one saturated fixed point  on the bounda ry  and  
hence no fixed point  in the interior. Fo r  x4 = 0 it is F1, for  x3 = 0 it is F2, for  
X 2 = 0 it is F14 and for  xl = 0 it is F23. 

Theorem 2. A bistable compet i t ion can be stabil ized by the introduction o f  a 

suitable pair  o f  a predator  and a compet i tor .  

Proof .  Let  x3 denote the supplementary  compet i to r  and y the predator .  We  shall 
show that  for  any cl2, c21 > 1, the system 

Xl = X l r l (  1 - -  x1  - -  c 1 2 2 2  - -  Y), 

X2 = X E r 2 ( 1  - -  c 2 1 x l  - -  x 2  - -  C 2 3 2 3 ) ,  (8) 
2 3 = x 3 r 3 ( 1  - -  C31X 1 - -  X 3 - -  13y), 

= yr(  -- 1 + dlX 1 q- l x 2 )  
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Fig. 2.  T h e  t h r e e - d i m e n s i o n a l  boundary f a c e  f o r  (7). a x 4 = 0; b x 3 = 0; c x 2 = 0; d x I = 0 

• 

is permanent ,  if  the positive constants  c31 , c23 , /3 and d~ are suitably chosen. We 
shall p roduce  again a repelling heteroclinic cycle F~ --, F l y  ~ F 2 .-4 F 2 3  ---4. F I  , where 
F 2 3  = ( 0 ,  1 - c23, 1, 0) is the equil ibrium o f  species 2 and 3 and 
F l y  = ( d l  1, 0 ,  0 ,  1 - d i  -1) the equil ibrium of  species 1 and the predator .  The 
other  fixed points  will be 0, F1, F2, F3 and F~2 = (21,22, 0, 0). The transversal  
eigenvalues are given by Table  2. 

I f  c31 is chosen slightly larger than 1, then 1 - c3121 > 0. Pa ramete r  dl will be 
l -  chosen l a r g e r  t h a n  c21 a n d  c31 a n d  s o  t h a t  d l ~  + gx2  > 1. F u r t h e r m o r e ,  o n e  c a n  

Table 2. Transversal eigenvalues for (9) 

21 22 23 
r I x I r2x2  r3x 3 ry 

0 1 1 1 - 1  
F 1 0 1 - c2~  < 0  1 - c 3 z  < 0  d z - 1 > 0  

I F 2 1 --c12<0 0 I -2  
F 3 l 1 - -  c23 > 0 0 - -  l 

F12 0 0 1 - -  C31J?l > 0  dl .~ I + x2 -  1 <0 
2 

Fly 0 1 --dllC21 >0 1 -- dllc31 --13(1 --d(1) <0 0 
F23 1 - -  C12(1 - -C23 ) > 0  0 0 - - 2 - 1 ( 1  +1323 ) < 0  
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choose 6'23 so that  1 - ci~ ~ < c23 < 1. Then the signs o f  the transversal eigenvalues 
are as in Table 2, except that  Yc3/x 3 for F l y  is not  yet specified. 

With p~ = 2, P2 = (dl - 1)/2(c21 - 1), P3 = 2C12 - -  1 and P4 = 1, the Jansen 
inequalities can be satisfied. For  0, F~2, F2 and / :3  this is obvious. The inequality 
for F23 is satisfied if C23 < 1 is sufficiently close to 1. For  F~ it is satisfied if c31 > 1 
is sufficiently close to 1. Finally, we note that  1 - (csl /dl)  > 0, so that  we can 
choose /3 such that  1 - (c31/dl) - / 3 ( 1  - 1/d~) is a negative number  which is so 
small that  the Jansen inequality for Fly is satisfied. 

It  remains to check that  there are no other fixed points on the boundary .  This 
can be done just as in the previous proof.  

4. Stabilizing heteroclinie repellors 

Theorem 3. A three competi tors  sys tem with a heteroclinic at tractor can be 

stabil ized by the introduction o f  a suitable predator.  

P r o o f  We may  assume that  the three cyclically dominat ing competi tors  are 
described by (3). Including the predator,  whose density is given by y, yields 

Jq = xl  rl ( l -- x l  - -  o~2x 2 - -  j~3x3 - -  k l y ) ,  

fc 2 = xzr2(  1 -- 1~1 xl  -- x2 - -  ~ 3 X 3  - -  kzy) ,  
(9) 

x3 = xsr3( 1 - ~lXl - ~2x2 - x3 - ksy) ,  

j~ = yr(  - 1 + llXl + 12x2 + 13x3 - g y ) .  

The nonnegative parameters  k;, li and g can be suitably chosen. We shall use 
k2 = k3 = 1, g = 0, and specify kl and the li in such a way that  the only fixed 
points on the boundary  are F1, F2, F3, the three-species equilibrium 
F l z 3  --- ( -~l ,  X2, X3, 0 )  and the equilibrium Fly between the predator  and the prey 
1. Thus we have to take l I > 1 and 12, 13 < 1. 

Fly has the coordinates ( l T ~ , O , O , ( k ~ l l ) - ~ ( l ~ -  1)). The transversal eigen- 
values are given by Table 3, where Bi = 1 - /~ ;  and A~ = ~e - 1. Since we have a 
heteroclinic attractor,  we may assume (without  restricting generality) that  all Ai 
and B~ are positive and that  A 1 A 2 A  3 > BIB2B3.  Since ~ +/~2x2 + x3 = 1, we 

Table 3. Transversal eigenvalues for (11) 

xl :t2 ~3 P 
?'IXI r2X 2 t'3X 3 ry  

0 1 1 1 -1  
F I 0 B l - A  I l I - 1 > 0 
F 2 - d  2 0 B e 12 -- I < 0  

F 3 B 3 --A 3 0 l 3 -- 1 <0 
Fly 0 (l I -- 1)(k I -- 1) +klB  I >0 (l I - l)(k I - 1) - k l A  1 <0 0 
Fi2 3 0 0 0 11.~1 q--/2x2 -]-/3.~ 3 --  l 

>0 
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have cq ~1 + )?2 + )f3 > 1 and hence 

l~s § 12.~2 § 13X 3 > 1, (10) 

if ~ -  Ii, 1 --/2 and 1 --/3 are in (0, E) for some suitable E. We choose further- 
more Ii such that 

A1AzA3 -- BI B2B3 
< l  1 -  1 <A1,  (11) 

A2A3 + B2B3 

and kl > 1 so large that 

A1A2A 3 - B1B2B 3 
< k i l ( l ~ -  1)(k l -  1). (12) 

A2A3 + B2B3 

With p~ = A3~B3, P'3 = Bs and p~ = 1 +p~ + p )  we obtain 

pt2B 1 -p~3Al § ( l  I - 1)p 4 > 0 ( 1 3 )  

(this follows from the left-hand side of (11)) and 

p~[(l~- 1)(k~- 1) +k,B~] +p~[( /~-  1 ) (k l -  1) -- klA1] > 0  (14) 

(this is just (12)). 
In (14), the coefficient of p~ is positive and that of p~ negative (this last fact 

is a consequence of the rightmost inequality in (l l)). We now set P2 = P ~ -  q, 
P3 =P~ + r/ and P4 = P ~ -  r/. For q > 0 small enough, the inequalities (13) and 
(14) are still valid with Pi instead of p~. They correspond to the Jansen 
inequalities for F1 and Fly (see Table 3). Furthermore 

1 +P2 +P3 -P4  > 0, (15) 

which is (with Pt = 1) the Jansen inequality for 0. By the definition ofp~, we have 
-A2  +P'3B2 = 0, hence -A2  +p3B2 > 0 and thus 

- A  2 § § - 1) > 0, (16) 

if/2 < 1 is suitably close to 1, and similarly 

B3 -PzA3 § - 1) > 0, (17) 

if/3 < 1 is sufficiently close to 1. The Jansen inequalities for F2, F3 and F~23 are 
just (16), (17) and (10). 

It remains to check that there are no other fixed points on the boundary. In 
Fig. 3, we sketch the boundary faces Xl = 0, x2 = 0 and x3 = 0. The points e3, F~y 
and e2, respectively, are the only saturated fixed points on the boundary of the 
resulting three-dimensional system. By the odd number theorem, there can be no 
fixed point in the interior of the corresponding three-space. Hence we have dealt 
with all boundary points. 

Theorem 4. A three competitors system with a heteroclinic attractor can be 
stabilized by the introduction of a suitable fourth competitor. 
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Fig. 3. The three-dimensional boundary faces for (9). a x t = 0; b x 2 = 0; e x 3 = 0 

We  only  sketch the proof .  Let  us cons ider  a system of  the f o r m  

Yq = x l r l ( 1  - Xl  - ~2x2  - f 1 3 x 3  - k w ) ,  

x2  = x a r a ( 1  - -  f l l X l  - x 2  - 1~3x3), 
(18) 

2~ 3 = x3r3(1 - -  cq x 1 - -  f12x2 - -  X3) , 

3) = y r ( 1  - l l x l  - 12x2 - 13x3 - y ) ,  

where  kl and  the li are to be sui tably  chosen.  W e  shall ob ta in  the same  
pa t t e rn  o f  fixed poin ts  and  t ransversal  e igenvalues (wi th  the add i t ion  o f  
Fy  = e_4) as in the p r o o f  o f  T h e o r e m  3, by  letting kl < l, Ii < 1,/2 > l, l 3 > 1. 
The  t ransversal  e igenvalues o f  the two species equi l ibr ium Fly = 
((1 -- k i l l ) - 1 ( 1  - kl) ,  0, 0, (1 - k l l l ) - l ( 1  - ll)) are given by  Table  4. F r o m  
1 - f l lXl  - 22 - ~33~3 = 0 fol lows tha t  1 - ll)71 - 129~2 - - / 3 X 3  • 0 if II is close to 
fll < l, l 2 close to  1 and  13 close to l (  <e3)-  N o w  we take Pl = 1,p2 < A 3 1 B 3  and  
P3 > B21A2 and  choose  P4 > 0 sufficiently large, so tha t  the Jansen  inequal i ty  for  
F1 is satisfied. N e x t  we p i c k / 2  a n d / 3  smaller  t han  1, bu t  so close to 1 tha t  the 
inequali t ies for  F2 and  F3 are  satisfied. Final ly,  we can  find kl < 1 such tha t  
1 - kl Ii - el ( 1 - k 1) is negative,  bu t  so close to 0 tha t  the Jansen  inequal i ty  for  

Table 4. Transversal eigenvalues for (18) 

)?l :/2 :?3 x4 
rl x I r2x2 r3x3 r4x4 

0 1 1 1 1 
Fl 0 B 1 -- A I 1 -- 11 > 0 

F= - A 2 0 B2 1 - 12 < 0 

F 3 B 3 - A  3 0 1- - /3<0 
F4 1 - k l > 0  1 1 0 
Fly 0 1 - - k l l t  - i l l (1  - k l )  >0  1 - - k l l l - - c q ( 1  - k l )  < 0  0 
FI23 0 0 0 1 -- llXl --/2Jr -- 1323 

>0  



On the stabilizing effect of predators and competitors on ecological communities 547 

Fly holds. The inequalities for 0, Fy and F~23 are trivial. As in the previous proof  one 
checks that there are no other fixed points. 

5. Discussion 

The examples discussed above are obviously meant as thought experiments rather 
than as descriptions of  real ecological communities. It need not be stressed that a 
'suitable predator '  cannot be constructed at will. Real ecosystems are the result of  
a long history and the interaction terms are modelled by coevolution. Nevertheless, 
the models considered here show that even for very simple ecological systems, the 
removal of  a predator or a competitor can have drastic effects (namely reduce the 
system to one species). These examples also point out the possibly important role of 
heteroclinic cycles in ecosystems. It is extremely difficult, of  course, to conceive 
empirical studies which support the idea that a few extra competitors or predators 
can ensure a large increase in the diversity of an ecosystem, or that heteroclinic 
cycles can occur in 'real life'. On the other hand, it seems unjustified to dismiss these 
phenomena offhand as artificial spinoffs from oversimplified equations. Their 
biological possibility, if not plausibility, should be kept in mind. 

Mathematically, several questions concerning Lotka-Vol ter ra  equations 
emerge in this context. It seems, for example, that there is a kind of equivalence 
between predator and prey: if a predating species stabilizes a community, then a 
competing species can also do the job, and vice versa. We know so far no 
explanation for this (except that the number of free parameters is the same). More 
generally, it would be interesting to find rules specifying the minimal number of  
additional predator species needed to stabilize a given ecosystem. In spite of recent 
progress (Kirlinger 1988), even the four-dimensional Lotka-Vol ter ra  equation is 
not completely understood from the viewpoint of permanence and invadability of 
subsystems. Recently developed tools, in particular the theorem of Jansen, seem to 
offer new opportunities for progress, however. An interesting question in this 
context concerns ecological networks with ' random interactions' (see Ginzburg et 
al. (1988) for a recent survey). So far, most authors seem to have addressed the 
question by looking for asymptotically stable fixed points in the interior of the state 
space. It seems more natural to check whether the permanence conditions are 
satisfied. 
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