(C) Springer-Verlag 1982

Game Dynamics in Mendelian Populations ${ }^{\star}$

Josef Hofbauer, Peter Schuster, and Karl Sigmund
Institut für Mathematik and Institut für Theoretische Chemie und Strahlenchemie der Universität, Wien, Austria

Abstract

A game theoretical model for the evolution of strategies in animal conflicts is considered, using methods from dynamical systems and population genetics. It is shown that the Hardy-Weinbergequilibrium is readily approached. The differential equation for the gene frequencies is more complicated than that which has been studied previously in the corresponding asexual case.

1. Introduction

The notion of evolutionarily stable strategy, as developed by Maynard-Smith (1974), has shed much light on the problem of altruism in nature and the role of ritual fighting in animal conflicts. The game theoretical approach has been supplemented by a dynamical model for the evolution of strategies (see Taylor and Jonker, 1978; Zeeman, 1980; Hofbauer et al., 1979; Schuster et al., 1981).

Both the static and the dynamic approach have neglected the genetic mechanism, however, and proceeded as if the species considered would multiply asexually. No doubt it was rightly felt that the insights offered by the idea of evolutionary stability could be best displayed by using the simplest possible models. The widespread recognition of the theory of Maynard Smith makes it seem appropriate now to apply it to more realistic genetic models. The present note is a step in this direction. We first resume, in Sect. 2, some well established results in game dynamics for asexual populations. In Sect. 3 we set up a model for Mendelian populations and obtain a differential equation for the evolution of genotypes. In Sect. 4 we show that a Hardy-Weinberg-law holds and that the gene frequencies obey an equation which has certain similar-

[^0]ities to the "replicator equation" of the asexual model. In Sect. 5 we derive a few properties for this equation and in Sect. 6 we consider some examples.

2. Game Dynamics for the Asexual Model

Let E_{1}, \ldots, E_{n} be the n possible pure strategies for a given type of conflict within an animal species. If x_{i} denotes the frequency of E_{i}, then the state of the population is given by the vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ belonging to the simplex
$S_{n}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): \sum x_{i}=1, x_{i} \geqq 0, i=1, \ldots, n\right\}$.
Let $a_{i j}$ be the payoff for an animal using strategy E_{i} against an opponent using E_{j}. This payoff, the success in the game of evolution, is just the reproduction rate of the animal. The matrix $A=\left(a_{i j}\right)$ is the payoff-matrix corresponding to the game. Since x_{j} is the probability that the opponent uses E_{j}, the mean payoff for strategy E_{i} is given by
$\sum_{j} a_{i j} x_{j}=(A \mathbf{x})_{i}$.
The mean payoff for a population in state $\mathbf{y} \in S_{n}$ confronting a population in state \mathbf{x} is given by
$\sum_{i, j} y_{i} a_{i j} x_{j}=\mathbf{y} \cdot A \mathbf{x}$
and in particular
$\sum_{i, j} a_{i j} x_{i} x_{j}=\mathbf{x} \cdot A \mathbf{x}$
is the average payoff for conflicts within the population x. According to Maynard-Smith (1974), a state $\mathbf{p} \in S_{n}$ is called evolutionarily stable if it satisfies the following conditions:
a) equilibrium condition: for all $\mathbf{x} \in S_{n}$
$\mathbf{p} \cdot A \mathbf{p} \geqq \mathbf{x} \cdot A \mathbf{p} ;$
b) stability condition: whenever equality holds in (5) for $\mathbf{x} \neq \mathbf{p}$, then
$\mathbf{p} \cdot A \mathbf{x}>\mathbf{x} \cdot A \mathbf{x}$.
These conditions mean, in biological context, that if a random mutation introduces a small population deviating from state \mathbf{p}, then this population will fare less well than average in the total population, and will therefore be wiped out.

Let us now assume that the species is haploid, multiplies asexually, and that each strategy corresponds to a different allele.

The x_{i} are just the gene frequencies now. The number of offspring of an E_{i}-individual is given by its payoff, i.e. by $(A \mathbf{x})_{i}$. Hence the frequency of strategy E_{i}, one generation later, is given by
$\Phi x_{i}^{\prime}=x_{i}(A \mathbf{x})_{i} \quad i=1, \ldots, n$,
where
$\Phi=\sum_{i} x_{i}(A \mathbf{x})_{i}$.
The usual method of deriving a differential equation from the difference equation (7) yields
$\dot{x}_{i}=x_{i}\left(\sum_{j} a_{i j} x_{j}-\Phi\right) \quad i=1, \ldots, n$
on the (invariant) simplex S_{n}. This "replicator equation" can also be obtained by arguing that the rate of increase \dot{x}_{i} / x_{i} of strategy E_{i} corresponds to the difference between payoff $(A \mathbf{x})_{i}$ for strategy E_{i} and the average payoff $\mathbf{x} \cdot A \mathbf{x}$ within the population. The replicator equation has been studied in some details [see the papers quoted in the introduction, and also Zeeman (1981), Hofbauer (1981), and Schuster et al. (1980)]. It is equivalent to the Volterra-Lotka-equation in $n-1$ variables. The special case $a_{i j}=a_{j i}$ corresponds to the selection equation of Fisher, Haldane, and Wright in population genetics. If $\mathbf{p} \in S_{n}$ is evolutionarily stable, then \mathbf{p} is an asymptotically stable equilibrium of (8). The converse is not valid. For $n \leqq 3$, the replicator equation has no limit cycles. For $n \geqq 4$, it has limit cycles for certain payoff matrices. If there is no fixed point in the interior of S_{n}, then every orbit converges to the boundary of S_{n}. If, on the other hand, the boundary is repelling, then there exists a unique fixed point in the interior, which corresponds to the time average of every orbit in the interior of S_{n}.

3. Game Dynamics for Mendelian Populations

3.1. The Assumptions

There is, of course, a great variety of possible models for the inheritance of strategies in sexual populations.

We shall make the following assumptions: the strategies are determined by one autosomal locus. Each genotype determines a strategy: but several genotypes may lead to the same strategy. These strategies are used for fighting between males. Hence, the genes influence only male behaviour, although they are carried by females too. Furthermore, we assume random mating. The payoff (for a male) is proportional to the number of its descendants, or (what amounts to the same) to the number of its encounters with females. For the sake of clarity, we shall consider first two, then n alleles.

3.2. The Case of Two Alleles

Let A_{1} and A_{2} be the two alleles. The three genotypes $A_{1} A_{1}, A_{1} A_{2}$, and $A_{2} A_{2}$ have frequencies $x, 2 y$, and z $(x+2 y+z=1)$ and correspond to the strategies E_{1}, E_{2}, and E_{3}, respectively. If $A=\left(a_{i j}\right)$ is the 3×3 payoff matrix, then the average payoffs for E_{1}, E_{2}, and E_{3} are given by a, b, and c, where
$a=a_{11} x+2 a_{12} y+a_{13} z$
$b=a_{21} x+2 a_{22} y+a_{23} z$
$c=a_{31} x+2 a_{32} y+a_{33} z$.
The following Table 1 yields the frequencies of genotypes in the progeny:

Table 1

Father		Mother	Frequency of progeny (unnormalized)	Probability genotypes in the progeny		
$A_{1} A_{1}$	\times	$A_{1} A_{1}$	$a x^{2}$	1	0	0
	\times	$A_{1} A_{2}$	$2 a x y$	1/2	1/2	0
	\times	$A_{2} A_{2}$	$a \times z$	0	1	0
$A_{1} A_{2}$	\times	$A_{1} A_{1}$	$2 b x y$	1/2	1/2	0
	\times	$A_{1} A_{2}$	$4 b y^{2}$	1/4	1/2	1/4
	\times	$A_{2} A_{2}$	$2 b z y$	0	1/2	1/2
$A_{2} A_{2}$	\times	$A_{1} A_{1}$	c $x z$	0	1	0
	\times	$A_{1} A_{2}$	$2 \mathrm{c} y z$	0	1/2	1/2
	\times	$A_{2} A_{2}$	$c z^{2}$	0	0	1

The genotype frequencies $x^{\prime}, 2 y^{\prime}$, and z^{\prime} among the progeny are given by

$$
\begin{align*}
\Phi x^{\prime} & =(x+y)(a x+b y) \\
\Phi 2 y^{\prime} & =(x+y)(b y+c z)+(y+z)(a x+b y) \tag{9}\\
\Phi z^{\prime} & =(y+z)(b y+c z),
\end{align*}
$$

where Φ is the total progeny, i.e. the sum of the right hand sides:
$\Phi=a x+2 b y+c z$.

The corresponding differential equation is

$$
\begin{align*}
\dot{x} & =(x+y)(a x+b y)-x \Phi \\
2 \dot{y} & =(x+y)(b y+c z)+(y+z)(a x+b y)-2 y \Phi \tag{11}\\
\dot{z} & =(y+z)(b y+c z)-z \Phi
\end{align*}
$$

on the set defined by $x+2 y+z=1, x \geqq 0, y \geqq 0, z \geqq 0$.

3.3. The Case of n Alleles

Let us now consider the case of n alleles A_{1}, \ldots, A_{n}. We denote by $x_{i i}$ the frequency of homozygotes $A_{i} A_{i}$, and by $2 x_{i j}$ the frequency of heterozygotes $A_{i} A_{j}(i \neq j)$. Hence
$\sum_{l, k} x_{k l}=1$.
With $a_{i j, k l}$ we denote the payoff for a male of genotype $A_{i} A_{j}$ against another male of type $A_{k} A_{l}$. The mean payoff for an $A_{i} A_{j}$-male is then
$b_{i j}=\sum_{k, l} a_{i j, k l} x_{k l}$
and the mean total payoff in the male population is
$\sum_{i, j} b_{i j} x_{i j}$.
The frequency of $A_{i} A_{j}$-progeny can be computed by using Table 1 as in Sect. 3.2. A shorter approach is the following: the amount of gene A_{i} in the female gene pool is given by
$x_{i}=\sum_{l} x_{i l}$.
Since the reproductive success for an $A_{i} A_{j}$-male is weighted by his payoff $b_{i j}$ we may operate as if there were $2 b_{i j} x_{i j}$ males of genotype $A_{i} A_{j}(i \neq j)$ and $b_{i i} x_{i i}$ of type $A_{i} A_{i}$. Hence the effective amount of gene A_{i} in the male gene pool is given by
$B_{i}=\sum_{k} b_{i k} x_{i k}$
which can be viewed as mean payoff for allele A_{i}.
Since an $A_{i} A_{j}$-offspring is obtained by drawing at random one gene from the female and one gene from the effective male gene pool, we get for the frequencies $x_{i j}^{\prime}$:
$\Phi x_{i j}^{\prime}=\frac{1}{2}\left(x_{i} B_{j}+x_{j} B_{i}\right) \quad 1 \leqq i, j \leqq n$,
where Φ is the sum of all right hand sides. Clearly
$\Phi=\sum_{i} B_{i}$.
The corresponding differential equation is
$\dot{x}_{i j}=\frac{1}{2}\left(x_{i} B_{j}+B_{i} x_{j}\right)-x_{i j} \Phi$
on the simplex of genotype frequencies.

4. The Hardy-Weinberg-Law and the Selection Equation

On the simplex of genotype frequencies, the orbits approach an equilibrium of Hardy-Weinberg type.

Let us again consider first the case $n=2$. From (11) we get

$$
\begin{aligned}
\left(y^{2}-x z\right)= & 2 y \dot{y}-\dot{x} z-\dot{x} x \\
= & y(x+y)(b y+c z)+y(y+z)(a x+b y)-2 y^{2} \Phi \\
& -z(x+y)(a x+b y)-x z \Phi \\
& -x(y+z)(b y+c z)-z x \Phi \\
= & -\left(y^{2}-x z\right)(a x+2 b y+c z) .
\end{aligned}
$$

This implies that the set where $y^{2}=x z$ holds is invariant. If $\Phi=a x+2 b y+c z$ is positive (as is the case if all elements in the payoff matrix are positive) then every orbit of (11) converges to the subset of $x+2 y+z=1$ where $y^{2}=x z$ (see Fig. 1).

Let us next consider the general case. We obtain from (17)
$\dot{x}_{i}=\sum_{j} \dot{x}_{i j}=\frac{B_{i}+x_{i} \Phi}{2}-x_{i} \Phi=\frac{1}{2}\left(B_{i}-x_{i} \Phi\right)$.
Hence

$$
\begin{aligned}
\left(x_{i j}-x_{i} x_{j}\right)= & \dot{x}_{i j}-\dot{x}_{i} x_{j}-\dot{x}_{j} x_{i} \\
= & \frac{1}{2}\left(B_{i} x_{j}+B_{j} x_{i}\right)-x_{i j} \Phi \\
& -\frac{1}{2}\left(B_{i} x_{j}-x_{i} x_{j} \Phi\right)-\frac{1}{2}\left(B_{j} x_{i}-x_{i} x_{j} \Phi\right) \\
= & -\left(x_{i j}-x_{i} x_{j}\right) \Phi .
\end{aligned}
$$

Again, the submanifold where
$x_{i j}=x_{i} x_{j}$ for $1 \leqq i, j \leqq n$
is invariant, and if $\Phi>0$, then every orbit in the $x_{i j}$-space converges to this submanifold. In particular
$x_{i j}^{2}-x_{i i} x_{j j} \rightarrow 0 \quad 1 \leqq i, j \leqq n$.
We are therefore justified to assume that (19) is valid. Under this condition, Eq. (18) for gene frequencies becomes
$\dot{x}_{i}=\frac{1}{2}\left(B_{i}-x_{i} \Phi\right)=\frac{1}{2}\left(\sum_{j} b_{i j} x_{i j}-x_{i} \Phi\right)$
or
$\dot{x}_{i}=\frac{x_{i}}{2}\left(\sum_{j} b_{i j} x_{j}-\Phi\right)$.
Since by (13) and (19)
$b_{i j}=\sum_{k, l} a_{i j, k l} x_{k} x_{l}$
we obtain the selection equation for gene frequencies
$\dot{x}_{i}=\frac{x_{i}}{2}\left(\sum_{j, k, l} a_{i j, k l} x_{j} x_{k} x_{l}-\Phi\right)$
on the (invariant) simplex S_{r}. This is the counterpart of the replicator equation (8) in the Mendelian case.

Fig. 1a-c. Phase portraits of Eq. (11) in the special case of two alleles ($n=2$) and dominance of gene A_{2}. We distinguish three qualitatively different situations. The numerical values chosen are a $w=7, v=-1$, b $w=1, v=3$, and $\mathbf{c} w=-3, v=-1$

5. Some Properties of the Selection Equation for Gene Frequencies

Since $x_{i}=0$ is a solution of (22), it follows that every subface of S_{n} is invariant. The restriction of (22) on a subface defined by $x_{i}=0$ for $i \in I$, where I is a proper
subset of the index set $\{1, \ldots, n\}$, is of the same type as (22), again.

The equilibria of (22) in the interior of S_{n} are the positive solutions of the $n-1$ cubic equations
$\sum_{j, k, l} a_{1 j, k l} x_{j} x_{k} x_{l}=\ldots=\sum_{j, k, l} a_{n j, k l} x_{j} x_{k} x_{l}$
together with
$x_{1}+\ldots+x_{n}=1$.
For given j, k, and l, we may add a constant $c_{j k i}$ to all coefficients $a_{i, k l}(i=1, \ldots, n)$ without affecting (22) on S_{n}. [Note that Eq. (17) for the genotypes, however, is affected. In particular, the Hardy-Weinberg submanifold which is always invariant as we showed above, can change from an attractor to a repelior. In biologically reasonable cases all elements of the original payoff matrix are positive and this will never happen.] Indeed, if $a_{i j, k l}$ is replaced by $a_{i j, k l}+c_{j k l}$, then
$\sum_{j, k, l} a_{i j, k l} x_{j} x_{k} x_{l}$
is replaced by
$\sum_{j, k, l} a_{i j, k l} x_{j} x_{k} x_{l}+\sum_{j, k, l} c_{j k l} x_{j} x_{k} x_{l}$
and
$\Phi=\sum_{i, j, k, l} a_{i j, k l} x_{i} x_{j} x_{k} x_{l}$
by
$\Phi+\sum_{j, k, l} c_{j k l} x_{j} x_{k} x_{l}$
since (24) holds. Hence (22) remains unchanged.
We also have the relation
$\left(\frac{x_{t}}{x_{s}}\right)=\left(\frac{x_{t}}{x_{s}}\right)\left(\sum_{j, k, l} a_{t j, k l} x_{j} x_{k} x_{l}-\sum_{j, k, l} a_{s j, k l} x_{j} x_{k} x_{l}\right)$
for $x_{s}>0(1 \leqq t, s \leqq n)$.
We show next that just as the replicator equation (8) can be transformed into a Volterra-Lotka equation, so (22) can be transformed into a biquadratic equation on R_{n}^{+}.

Indeed, let us consider an equation of type (22), but in $n+1$ variables $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in S_{n+1}$. By adding appropriate constants, we obtain, without loss of generality, that $a_{0 j, k l}=0$ for all j, k, l. For $x_{0}>0$ we set
$y_{i}=\frac{x_{i}}{x_{0}} \quad i=0,1, \ldots, n$.
Obviously $y_{0}=1$ and $y_{i}>0$ for $i=1,2, \ldots, n$. Our change of coordinates is a diffeomorphism from
$\left\{\left(x_{0}, x_{1}, \ldots, x_{n} \in S_{n+1}: x_{0}>0\right\}\right.$
onto $R_{n}^{+}=\left\{\left(y_{1}, \ldots, y_{n}\right): y_{i} \geqq 0\right\}$, its inverse is given by
$x_{i}=\frac{y_{i}}{\sum_{j=0}^{n} y_{j}} ; \quad i=0,1, \ldots, n$.
Using (25) and the fact that
$\sum_{j, k, l=0}^{n} a_{0 j, k l} x_{j} x_{k} x_{l}=0$
one obtains

$$
\begin{aligned}
\dot{y}_{i} & =\left(\frac{x_{i}}{x_{0}}\right)^{\cdot}=\frac{1}{2}\left(\frac{x_{i}}{x_{0}}\right)\left(\sum_{j, k, l=0}^{n} a_{i j, k l} x_{j} x_{k} x_{l}\right) \\
& =\left(\frac{x_{0}^{3}}{2}\right) y_{i}\left(\sum_{j, k, l=0}^{n} a_{i j, k l} y_{j} y_{k} y_{l}\right) .
\end{aligned}
$$

Since $x_{0}^{3}>0$ is independent of i, we may simply omit it (up to a change in velocity), and obtain
$\dot{y}_{i}=y_{i}\left(\sum_{j, k, l=0}^{n} a_{i j, k l} y_{j} y_{k} y_{l}\right) ; \quad i=1, \ldots, n$
with $y_{0}=1$. This is just the general equation of the form
$\dot{y}_{i}=y_{i} Q_{i}\left(y_{1}, \ldots, y_{n}\right) \quad i=1, \ldots, n$,
where $Q_{i}\left(y_{1}, \ldots, y_{n}\right)$ is a polynomial of degree $\leqq 3$ in y_{1}, \ldots, y_{n}. Conversely, any equation of this type can be transformed into an equation of type (22).

Note that if the polynomials Q_{i} are all of degree $\leqq 1,(28)$ is just an equation of Volterra-Lotka type. It follows that the class of equations of type (22) contains the replicator equation.

This can also be seen in the case that the genotypes act as the sum of the corresponding alleles, without dominance effects, i.e. if
$a_{i j, k l}=a_{i k}+a_{i l}+a_{j k}+a_{j l}$.
This is the case if the heterozygote $A_{i} A_{j}$ plays with probability $1 / 2$ the strategy of $A_{i} A_{i}$ and with probability $1 / 2$ the strategy of $A_{j} A_{j}$.

Inserting the above relation into (22) gives
$\dot{x}_{i}=x_{k}\left(\sum_{k} a_{i k} x_{k}-\sum_{j, k} a_{i k} x_{j} x_{k}\right)$,
which is just the replicator equation.
An equation of type (22) in three variables may admit a limit cycle. Indeed, it is easy to see that a modified predator-prey equation, namely
$\dot{y}_{1}=y_{1}\left(c\left(a+y_{1}\right)\left(b-y_{1}\right)-d y_{2}\right)$
$\dot{y}_{2}=y_{2}\left(e y_{1}-f\right)$
has a limit cycle if
$\frac{f}{e}<\frac{b-a}{2}$.

Hence, (28) may admit a limit cycle for $n=2$. Thus, in contrast to the asexual case, the equation for gene frequencies may admit limit cycles already in the case of three alleles.

6. Several Examples

6.1. The Case $n=2$

In order to simplify the selection equation we add constants to the payoff matrix in such a way that $a_{11}=a_{22}=a_{33}=0$. If we set $x_{1}=x$ and $x_{2}=1-x$ we obtain from (22)
$\dot{x}=\frac{1}{2} x(1-x) g(x)$
with

$$
\begin{aligned}
g(x)= & -a_{21} x^{3}+\left(2 a_{12}+a_{21}-a_{31}\right) x^{2}(1-x) \\
& +\left(a_{13}-a_{23}-2 a_{32}\right) x(1-x)^{2}+a_{23}(1-x)^{3} .
\end{aligned}
$$

In the case gene A_{2} dominates A_{1} the payoff matrix becomes

```
a b b
c d d
c. d d
```

or after adding appropriate constants

```
0 v v
w 0 0
w 0 0.
```

Then
$g(x)=x\left(v-(v+w) x^{2}\right)$.
Just as in the asexual case (Schuster et al., 1981) we may distinguish essentially three subcases:
a) if $v w<0$ threre is no inner equilibrium and one of the genes will be wiped out (see Fig. 1a);
b) if $v w>0$ and $v>0$ there is a unique inner equilibrium \bar{P} which is stable. A mixture of strategies is established (see Fig. 1b);
c) if $v w>0$ and $v<0$ the unique inner equilibrium \bar{P} is unstable. One or the other of the homozygotes will survive depending on the initial values (see Fig. 1c).

Note incidentally that in equilibrium \bar{P} the frequency of strategy E_{1} played in the population is just the same as in the asexual case, namely $v / v+w$.

In case there is no dominance we have three different strategies. The dynamics obviously depends on the correspondence between strategies and genotypes. As an illustration let us consider the well known hawk-mouse-retaliator game of Maynard-

Smith (1974). In modified form the payoff matrix reads

	H	R	M
H	0	-4	4
R	0	0	0
M	2	0	0.

If we assume now that the heterozygote plays retaliator strategy we obtain
$g(x)=x(1-x)(4-14 x)$.
In this case there is a unique stable equilibrium. If, however, the mouse strategy is assigned to the heterozygote (which admittedly is less plausible) then
$g(x)=-x\left(16 x^{2}-18 x+4\right)$.
Depending on the initial value, either the pure retaliator strategy or a stable mixture of all three strategies evolves.

In the most general case we may obtain up to two stable inner equilibria. Obviously, sexual replication introduces a much richer dynamics into the game.

6.2. One Example for $n=3$

Suppose, males play rock-scissors-paper in fighting for females, i.e. there are three strategies E_{1}, E_{2}, E_{3} where E_{2} beats E_{1}, E_{3} beats E_{2} and E_{1} beats E_{3}. The modified payoff matrix is assumed to be

	E_{1}	E_{2}	E_{3}	wherein $\varepsilon<1$ (usually $\varepsilon \sim 0$)
E_{1}	0	-1	$1-\varepsilon$	
E_{2}	$1-\varepsilon$	0	-1	
E_{3}	-1	$1-\varepsilon$	0.	

Then it is easy to see in the asexual case that the mixed population $M=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is an attractor, even an ESS if $\varepsilon<0$, a repellor if $\varepsilon>0$ and a center (all orbits periodic) if $\varepsilon=0$.

In the sexual model let us assume, that the homozygotes $A_{i} A_{i}(i=1,2,3)$ play E_{i} and the heterozygotes $A_{i} A_{i+1}$ plays E_{i} with probability p, E_{i+1} with probability q and, for the sake of generality, may also play the third strategy E_{i+2} (not represented by its two alleles A_{i}, A_{i+1}) with probability r. (We count indices modulo 3.) Then $p+q+r=1$.

Since the Eq. (22) becomes rather complicated we will only state the results: Of course $M=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is a fixed point. The linearized equation (for $r<1$) is essentially the same as in the asexual case. Hence M is an attractor for $\varepsilon<0$ and a repellor for $\varepsilon>0$. But in the critical case $\varepsilon=0$, the behaviour is different: Analysis

Fig. 2. A phase portrait of Eq. (22) in the special case of three alleles $(n=3)$ and a cyclic superiority relation as discussed in Sect. 6.2. The numerical values chosen are $\varepsilon=0.11, p=0.05, q=0.15$, and $r=0.8$
of the higher order terms, using e.g. formula (4.2) of Marsden and McCracken (1976) shows that M is an attractor also in this case if $q>p$ (i.e. if the heterozygotes prefer the "better" of the two strategies corresponding to their alleles) and a repellor if $q>p$. By the Hopf bifurcation theorem, see Marsden and McCracken (1976), limit cycles occur near M. If $q>p$, the bifurcation is supercritical, the periodic orbits are stable and occur for (small) $\varepsilon>0$.

If $q<p$, the bifurcation is subcritical, the periodic orbits are unstable and occur for (small) $\varepsilon<0$.

A local analysis of the flow near the boundary determines the range of ε for which the limit cycle persists: The limit value for which the limit cycle disappears is given by
$\varepsilon_{0}=\frac{q-p}{1-p}$
(at least when the flow on the boundary is cyclic).
A rather interesting, curious effect occurs in the (admittedly unrealistic) case that r is only a bit smaller than one, i.e. if the heterozygotes play usually the third strategy ($r>2 / 3$ will be sufficient): The flow on the boundary edges now is reversed: Although E_{2} beats E_{1}, the gene A_{1} will win (if there is no A_{3}-allele) since it fares better against the heterozygote. Near the fixed point $M=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ the flow remains the same, as noted above. Therefore some orbits will change the orientation of their cycling (Fig. 2).

Furthermore there are 6 additional fixed points besides M in the interior: 3 spiral points (see Fig. 2) and 3 saddle points (not to be seen in Fig. 2) which are necessary to separate the basins of the 4 spiral points.

Choosing $0<\varepsilon<\varepsilon_{0}$ gives 4 stable limit cycles, one around each of the four foci. If $\varepsilon>\varepsilon_{0}$, the limit cycles disappear and (almost) all orbits come from the 4
unstable foci and go with reversed direction of cycling to the boundary.

In higher dimensions $(n>4)$ the existence of strange attractors can be expected.

7. Conclusions

In this paper we extended game dynamics for social behaviour of animals to Mendelian populations. This more realistic model for the evolution of behaviour leads to a differential equation which can be interpreted as the fourth order analogue of the replicator equation discussed extensively before. In general the higher order of the non-linearity introduces a very rich dynamics into the system.

The case of two alleles (for one locus) is relatively easy to study. We are able to show that in case of dominance - the heterozygote and one of the two homozygotes behave identically - the dynamics of Mendelian system is closely related to that of asexually multiplying populations. Then the original concept of evolutionarily stable strategies (ESS) retains its meaning and describes properly the steady state of the population. If the heterozygote shows its own characteristic behaviour, however, the dynamics becomes enormously rich and the purely game theoretical approach is no longer sufficient.

Acknowledgements. Dr. Robert Wolff prepared several computer drawings. Generous supply with computer time by the Interuniversitäres Rechenzentrum der Universität Wien and finan-
cial support of this work by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung are greatfully acknowledged.

References

Hofbauer, J., Schuster, P., Sigmund, K.: A Note on evolutionary stable strategies and game dynamics. J. Theor. Biol. 81, 609-612 (1979)

Hofbauer, J.: On the occurrence of limit cycles in the Volterra-Lotka differential equation. J. Nonlinear Anal. 5, (1981) (to appear)
Marsden, J., McCracken, M.: The Hopf bifurcation and its applications. In: Applied mathematical sciences, Vol. 19. Berlin, Heidelberg, New York: Springer 1976
Maynard-Smith, J.: The theory of games and the evolution of animal conflicts. J. Theor. Biol. 47, 209-221 (1974)
Schuster, P., Sigmund, K., Hofbauer, J., Wolff, R.: Selfregulation of behaviour in animal societies. Biol. Cybern. 40, 1-8 (1981)
Schuster, P., Sigmund, K., Wolff, R.: Mass action kinetics of selfreplication in flow reactors. J. Math. Analysis \& Applications 78, 88-112 (1980)
Taylor, P., Jonker, L.: Evolutionarily stable strategies and game dynamics. Math. Biosci. 40, 145-156 (1978)
Zeeman, E.C.: Population dynamics from game theory. In : global theory of dynamical system, Nitecki (ed.). In: Lecture Notes, Vol. 819. Berlin, Heidelberg, New York: Springer 1980
Zeeman, E.C.: Dynamics of the evolution of animal conflicts. J. Theor. Biol. 89, 249-270 (1981)

Received: July 9, 1981
Prof. Dr. Peter Schuster
Institut für Theoretische Chemie und Strahlenchemie der Universität Wien
Währingerstrasse 17
A-1090 Wien
Austria

[^0]: * This work has been supported financially by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, Projekt No. 3502

