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Abstract. A game theoretical model for the evolution 
of strategies in animal conflicts is considered, using 
methods from dynamical systems and population 
genetics. It is shown that the Hardy-Weinberg- 
equilibrium is readily approached. The differential 
equation for the gene frequencies is more complicated 
than that which has been studied previously in the 
corresponding asexual case. 

1. Introduction 

The notion of evolutionarily stable strategy, as de- 
veloped by Maynard-Smith (1974), has shed much 
light on the problem of altruism in nature and the role 
of ritual fighting in animal conflicts. The game theoreti- 
cal approach has been supplemented by a dynamical 
model for the evolution of strategies (see Taylor and 
Jonker, 1978 ; Zeeman, 1980; Hofbauer et al., 1979 ; 
Schuster et al., 1981). 

Both the static and the dynamic approach have 
neglected the genetic mechanism, however, and pro- 
ceeded as if the species considered would multiply 
asexually. No doubt it was rightly felt that the insights 
offered by the idea of evolutionary stability could be 
best displayed by using the simplest possible models. 
The widespread recognition of the theory of Maynard 
Smith makes it seem appropriate now to apply it to 
more realistic genetic models. The present note is a 
step in this direction. We first resume, in Sect. 2, some 
well established results in game dynamics for asexual 
populations. In Sect. 3 we set up a model for 
Mendelian populations and obtain a differential equa- 
tion for the evolution of genotypes. In Sect. 4 we show 
that a Hardy-Weinberg-law holds and that the gene 
frequencies obey an equation which has certain similar- 
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ities to the ~ equation" of the asexual model. 
In Sect. 5 we derive a few properties for this equation 
and in Sect. 6 we consider some examples. 

2. Game Dynamics for the Asexual Model 

Let EI, . . . ,E,  be the n possible pure strategies for a 
given type of conflict within an animal species. If x i 
denotes the frequency of E~, then the state of the 
population is given by the vector x = (xl, ...,x,) belong- 
ing to the simplex 

S , = { x = ( x  a ..... x , ) :~ , x i= l ,  xi>=O,i=l,...,n}. (1) 

Let a~j be the payoff for an animal using strategy E i 
against an opponent using Ej. This payoff, the success 
in the game of evolution, is just the reproduction rate 
of the animal. The matrix A = (a 0 is the payoff-matrix 
corresponding to the game. Since xj is the probability 
that the opponent uses E j, the mean payoff for strategy 
E i is given by 

aijx j = (Ax)i, (2) 
J 

The mean payoff for a population in state yeS ,  
confronting a population in state x is given by 

.~.Yla~jxj=y. Ax (3) 
t , J  

and in particular 

.~. aqxix j = x. Ax (4) 
t~J 

is the average payoff for conflicts within the population 
x. According to Maynard-Smith (1974), a state pe S, is 
called evolutionarily stable if it satisfies the following 
conditions : 

a) equilibrium condition: for all x~ S, 

p.Ap=>x.Ap ; (5) 
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b) stability condition: whenever equality holds in 
(5) for x+p ,  then 

p . A x > x . A x .  (6) 

These conditions mean, in biological context, that 
if a random mutation introduces a small population 
deviating from state p, then this population will fare 
less well than average in the total population, and 
will therefore be wiped out. 

Let us now assume that the species is haploid, 
multiplies asexually, and that each strategy corre- 
sponds to a different allele. 

The x~ are just the gene frequencies now. The 
number of offspring of an El-individual is given by its 
payoff, i.e. by (Ax)~. Hence the frequency of strategy Ei, 
one generation later, is given by 

~bx' i = xi(Ax) i i=  1 ..... n, (7) 

where 

= Y x~(Ax),. 
i 

The usual method of deriving a differential equation 
from the difference equation (7) yields 

5ci= x i (~  ai~x j -  ~) i= 1,...,n (8) 

on the (invariant) simplex S,. This "replicator equa- 
tion" can also be obtained by arguing that the rate of 
increase 5h/x ~ of strategy E~ corresponds to the differ- 
ence between payoff (Ax)~ for strategy E~ and the 
average payoff x .Ax within the population. The re- 
plicator equation has been studied in some details [see 
the papers quoted in the introduction, and also 
Zeeman (1981), Hofbauer (1981), and Schuster et al. 
(1980)]. It is equivalent to the Volterra-Lotka-equation 
in n -  1 variables. The special case a~j = aj~ corresponds 
to the selection equation of Fisher, Haldane, and 
Wright in population genetics. If pc S, is evolutionarily 
stable, then p is an asymptotically stable equilibrium of 
(8). The converse is not valid. For n < 3, the replicator 
equation has no limit cycles. For n > 4, it has limit cycles 
for certain payoff matrices. If there is no fixed point in 
the interior of S,, then every orbit converges to the 
boundary of S,. If, on the other hand, the boundary is 
repelling, then there exists a unique fixed point in the 
interior, which corresponds to the time average of every 
orbit in the interior of S,. 

3. Game Dynamics for Mendelian Populations 

3.1. The Assumptions 

There is, of course, a great variety of possible models 
for the inheritance of strategies in sexual populations. 

We shall make the following assumptions: the strat- 
egies are determined by one autosomal locus. Each 
genotype determines a strategy: but several genotypes 
may lead to the same strategy. These strategies are 
used for fighting between males. Hence, the genes 
influence only male behaviour, although they are 
carried by females too. Furthermore, we assume ran- 
dom mating. The payoff (for a male) is proportional to 
the number of its descendants, or (what amounts to the 
same) to the number of its encounters with females. 
For the sake of clarity, we shall consider first two, then 
n alleles. 

3.2. The Case of Two Alleles 

Let A 1 and A 2 be the two alleles. The three genotypes 
A IA  l, A1A2, and A z A  2 have frequencies x, 2y, and z 
(x + 2y + z = 1) and correspond to the strategies El, E2, 
and E3, respectively. If A=(aij  ) is the 3 x 3 payoff 
matrix, then the average payoffs for E l, E 2, and E 3 are 
given by a, b, and c, where 

a=a~lx  + 2a12Y+a13z 

b = a z l  x + 2 a z 2 y  + a23  z 

c=a31x + 2a32Y+a33z. 

The following Table 1 yields the frequencies of 
genotypes in the progeny: 

Table 1 

Father Mother Frequency of Probability 
progeny genotypes 
(unnormalized) in the progeny 

A i A  i x A t A  1 a x  2 1 0 0 

x AtA2 2a x y  1/2 1/2 0 
x A 2 A  2 a x z  0 1 0 

A t A  2 x A I A  i 2b Xy 1/2 1/2 0 
• A I A  2 4b y2 1/4 1/2 1/4 
x A 2 A  2 2b zy  0 1/2 1/2 

A 2 A  2 x A I A  I c x z  0 1 0 
x A I A  2 2 c y z  0 1/2 1/2 
X A 2 A  2 C z 2 0 0 1 

The genotype frequencies x', 2y', and z' among the 
progeny are given by 

~b x' = (x + y) (ax + by) 

2y' = (x + y) (by + cz) + (y + z) (ax + by) (9) 

~bz' = (y + z) (by + cz) , 

where �9 is the total progeny, i.e. the sum of the right 
hand sides : 

~b = ax + 2by + cz. (10) 



The corresponding differential equation is 

5c = (x + y)(ax + by) - x ~  

2 ) = ( x + y ) ( b y + c z ) + ( y + z ) ( a x + b y ) - 2 y e b  (11) 

= (y + z) (by + cz) - zCI) 

on the set defined by x + 2y + z = 1, x >_- 0, y_-> 0, z_-__ 0. 

3.3. The Case of  n Alleles 

Let us now consider the case of n alleles A~ ..... A n. We 
denote by x ,  the frequency of homozygotes A~A~, and 
by 2x~j the frequency of heterozygotes A~Aj(i4=j). 
Hence 

~, Xkl = 1. (12) 
l,k 

With a~j,k ~ we denote the payoff for a male of genotype 
A~Aj against another male of type AkA z. The mean 
payoff for an AiAj-male is then 

bij = ~ alj, uXk, (13) 
k,l 

and the mean total payoff in the male population is 

.~. b l j x l j  " 

The frequency of AiAj-progeny can be computed by 
using Table 1 as in Sect. 3.2. A shorter approach is the 
following: the amount of gene A~ in the female gene 
pool is given by 

x i = ~ x . .  (14) 
l 

Since the reproductive success for an A~Aj-male is 
weighted by his payoff b~j, we may operate as if there 
were 2b~jxij males of genotype A~Aj(i 4@ and buxu of 
type A~Ai. Hence the effective amount of gene A~ in the 
male gene pool is given by 

Bi = 2 bikXik ( 1 5 )  
k 

which can be viewed as mean payoff for allele A i. 
Since an A~Aj-offspring is obtained by drawing at 

random one gene from the female and one gene from 
the effective male gene pool, we get for the frequencies 
X'~j : 

cbx'i j=�89 l <=i,j<=n, 

where �9 is the sum of all right hand sides. Clearly 

�9 = ~ , B , .  (16) 
i 

The corresponding differential equation is 

.iclj = �89 j + Bix i) - xlj ,I~ (17) 

on the simplex of genotype frequencies. 
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4. The Hardy-Weinberg-Law and the Selection 
Equation 

On the simplex of genotype frequencies, t h e  orbits 
approach an equilibrium of Hardy-Weinberg type. 

Let us again consider first the case n = 2. From (11) 
we get 

( 2  2 - -  XZ)" : 2y)  - 2z - i x  

=y(x + y)(by + cz) + y(y + z)(ax + by) - 2y2 

- z(x + y)(ax + by) - xzC# 

- x (y + z) (by + cz) - zx eb 

= _ (y2 _ xz)(ax + 2by + cz). 

This implies that the set where yZ = x z  holds is in- 
variant. If �9 = ax + 2by + cz is positive (as is the case if 
all elements in the payoff matrix are positive) then 
every orbit of (11) converges to the subset of 
x + 2 y + z =  1 where y2 = X Z  (see Fig. 1). 

Let us next consider the general case. We obtain 
from (17) 

B i + x i ~  x i~=�89  (18) 2i = ~ 2ij  - 2 
J 

Hence 

( x i i -  xlxj)" = 5c i j -  Y q x j -  5:~x~ 

= �89 j + Bjx  i) -- xifi~ 

-- �89 j -  xixjq~ ) -- �89 i -x ix jq~ ) 

= - ( x ~ j -  x i x j )  el). 

Again, the submanifold where 

x i j=x ix  j for l < i , j < n  (19) 

is invariant, and if ~ > 0 ,  then every orbit in the 
xij-space converges to this submanifold. In particular 

x 2 - X u X j j ~ O  l <=i,j<=n. (20) 

We are therefore justified to assume that (19) is 
valid. Under this condition, Eq. (18) for gene frequen- 
cies becomes 

5ci = �89  xi eb)= �89 b i jx i j -  xi Cr#) 

or  

�9 x i 

Since by (13) and (19) 

bij = ~ alj,klXkX l 
k,l 

we obtain the selection equation for gene frequencies 

xi = ,15) 
Xi = 0 - (  Z aij, klXjXkXl (22) 

~j,k,l 

on the (invariant) simplex S n. This is the counterpart of 
the replicator equation (8) in the Mendelian case. 



54 (AIA2) 
2 

a 

(AIAI) I 3 (A2A2) 

(At A21 

(AIA;) I 3 (A2A21 

(AI A2 ) 
2 

c i 

(A1AI) 1 3 (A2A21 

Fig.  la--c. Phase  por t ra i t s  of Eq. (11) in the special  case of  two  alleles 
( n =  2) and  d o m i n a n c e  of  gene A 2. W e  dis t inguish  three qua l i t a t ive ly  
different s i tuat ions.  The  numer ica l  values  chosen  are  a w = 7, v = - 1, 
b w = l ,  v = 3 ,  and  e w = - 3 ,  v = - I  

5. Some Properties of the Selection Equation for Gene 
Frequencies 

Since x i = 0 is a solution of (22), it follows that every 
subface of S. is invariant. The restriction of (22) on a 
subface defined by xi=O for i~1, where I is a proper 

subset of the index set {1, ...,n}, is of the same type as 
(22), again. 

The equilibria of (22) in the interior of S, are the 
positive solutions of the n - 1  cubic equations 

al j ,  klXjXkX, . . . .  = 2 anj,klXjXkXt (23) 
j,k,l j,k,l 

together with 

x 1+ ... + x , = l .  (24) 

For  given j, k, and l, we may add a constant c~u to 
all coefficients aij, k~(i = 1 ..... n) without affecting (22) on 
S,. [Note that Eq. (17) for the genotypes, however, is 
affected. In particular, the Hardy-Weinberg subman- 
ifold which is always invariant as we showed above, 
can change from an attractor to a repellor. In biologi- 
cally reasonable cases at1 elements of the original 
payoff matrix are positive and this will never happen.] 
Indeed, if aij, k i is replaced by alj,m + Cjkl, then 

aU, klXjXkXi 
j,k,l 

is replaced by 

aU, kiXjXkXl + ~ C~kzXjXkXI 
j,k,1 j,k,l 

and 

aij,kIXiXjXkXl 
i,j,k,l 

by 

~) --t- ~ CjklXjXkXI 
j,k,I 

since (24) holds. Hence (22) remains unchanged. 
We also have the relation 

for x s>0  ( l< t , s<n) .  
We show next that just as the replicator equation 

(8) can be transformed into a Volterra-Lotka equation, 
so (22) can be transformed into a biquadratic equation 
on R, +. 

Indeed, let us consider an equation of type (22), but 
in n + 1 variables (Xo, x~ . . . . .  x,)~ S,+ 1- By adding ap- 
propriate constants, we obtain, without loss of gener- 
ality, that aoj,u = 0 for all j, k, I. For  x o > 0 we set 

Xi yi = - -  i_0 ,  1 . . . . .  n. (26) 
X 0 

Obviously y 0 = l  and y i>0  for i=1 ,2 ,  ...,n. Our 
change of coordinates is a diffeomorphism from 

{(Xo, Xl, . . . , x ,~S ,§  :Xo >0} 



onto R~ + = {(Yl . . . .  ,Y,):Yi->-O}, its inverse is given by 

x i _  Yi . i=0 ,1  . . . . .  n. (27) 
n 

yj 
j = 0  

Using (25) and the fact that 

ao j ,ktX jXkxt  --= 0 
j , k , l = O  

one obtains 

Xi " 

/ X 3 \  / n 1 
= ( 2 ) Y ' [  Z a,j, klYjYkY,'] 

\ / \ j , k , l = O  

Since Xo3>0 is independent of i, we may simply 
omit it (up to a change in velocity), and obtain 

) );i -= Yi aij,klyjYkYl, ; i = 1 . . . . .  n 
\ j , k , l = O  

with Yo = 1. This is just the general equation of the 
form 

Yt = YiQi(Yl,. . . ,  Yn) i= 1 . . . .  , n, (28) 

where Qi(Yl, . . . ,  y,,) is a polynomial of degree < 3 in 
Yl . . . . .  Yn- Conversely, any equation of this type can be 
transformed into an equation of type (22). 

Note that if the polynomials Q~ are all of degree 
< 1, (28) is just an equation of Volterra-Lotka type. It 
follows that the class of equations of type (22) contains 
the replicator equation. 

This can also be seen in the case that the genotypes 
act as the sum of the corresponding alleles, without 
dominance effects, i.e. if 

aij,k 1 = aik -t- a i l+  ajk -t- aft .  

This is the case if the heterozygote AIA j ptays with 
probability 1/2 the strategy of AiA~ and with probabi- 
lity 1/2 the strategy of AjAj.  

Inserting the above relation into (22) gives 

2 i : X k ( ~  aikxk-~aikxJxkl'j,k / 

which is just the replicator equation. 
An equation of type (22) in three variables may 

admit a limit cycle. Indeed, it is easy to see that a 
modified predator-prey equation, namely 

Yl =Yl(C( a + Yl)( b -  Y l ) -  dY2) 

Y2 = yE(eYl - f )  

has a limit cycle if 

f b - a  < - -  
e 2 
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Hence, (28) may admit a limit cycle for n = 2. Thus, 
in contrast to the asexual case, the equation for gene 
frequencies may admit limit cycles already in the case 
of three alleles. 

6. Several Examples 

6.1. The Case n = 2 

In order to simplify the selection equation we add 
constants to the payoff matrix in such a way that 
a l l = a z e = a 3 3 = O .  If we set X l = X  and x 2 = l - x  we 
obtain from (22) 

2 = �89 - x)g(x) 

with 

g(X) = - -  a 2 1 x  3 + (2ala + a21 - -  a 3 1 ) x 2 ( 1  - - x )  

+ (al 3 - a23 - 2 a 3 2 ) x (  1 - x )  2 + a23 (1  - x )  3. 

In the case gene A 2 dominates A 1 the payoff matrix 
becomes 

a b b  

c d d 

c d d 

or after adding appropriate constants 

0 v v 

w 0 0 

w 0 0. 

Then 

g(x) = x ( v -  (v + w)x2) . 

Just as in the asexual case (Schuster et al., 1981) we 
may distinguish essentially three subcases: 

a) if vw < 0 threre is no inner equilibrium and one 
of the genes will be wiped,out (see Fig. la); 

b) if vw>O and v > 0  there is a unique inner 
equilibrium/5 which is stable. A mixture of strategies is 
established (see Fig. lb); 

c) if vw > 0 and v < 0 the unique inner equilibrium 
/3 is unstable. One or the other of the homozygotes will 
survive depending on the initial values (see Fig. lc). 

Note incidentally that in equilibrium /3 the fre- 
quency of strategy E t piayed in the population is just 
the same as in the asexual case, namely v/v + w. 

In case there is no dominance we have three 
different strategies. The dynamics obviously depends 
on the correspondence between strategies and ge- 
notypes. As an illustration let us consider the well 
known hawk-mouse-retaliator game of Maynard- 
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Smith (1974). In 
reads 

H R M 

modified form the payoff matrix 

H 0 - 4  4 

R 0 0 0 

M 2 0 0. 

If we assume now that the heterozygote plays 
retaliator strategy we obtain 

g(x) = x(1 - x) (4 - 14x). 

In this case there is a unique stable equilibrium. If, 
however, the mouse strategy is assigned to the hetero- 
zygote (which admittedly is less plausible) then 

g(x) = - x ( 1 6 x  2 - 18x + 4). 

Depending on the initial value, either the pure re- 
taliator strategy or a stable mixture of all three 
strategies evolves. 

In the most general case we may obtain up to two 
stable inner equilibria. Obviously, sexual replication 
introduces a much richer dynamics into the game. 

6.2. One E x a m p l e  f o r  n = 3 

Suppose, males play rock-scissors-paper in fighting for 
females, i.e. there are three strategies El, E 2, E 3 where 
E 2 beats El, E 3 beats E 2 and E 1 beats E 3. The 
modified payoff matrix is assumed to be 

E~ E 2 E 3 wherein e < 1 (usually e ~ 0) 

E 1 0 - 1  1 - e  

E 2 1 - e  0 - 1 

E 3 --  1 1 - e  O. 

Then it is easy to see in the asexual case that the 
El i I~ mixed population M = ~, g, gj is an attractor, even an 

ESS if e<0 ,  a repellor if e > 0  and a center (all orbits 
periodic) if e = 0. 

In the sexual model let us assume, that the homo- 
zygotes A i A i ( i =  1,2, 3) play Ei and the heterozygotes 
AiAi+ 1 plays E i with probability p, El+ 1 with probabil- 
ity q and, for the sake of generality, may also play the 
third strategy E~+ 2 (not represented by its two alleles 
A i, Ai+ i) with probability r. (We count indices modulo 
3.) Then p + q + r = l .  

Since the Eq. (22) becomes rather complicated we 
Ea i i~ is a will only state the results: Of course M = ~g, g, g, 

fixed point. The linearized equation (for r < 1) is essen- 
tially the same as in the asexual case. Hence M is an 
attractor for s <0  and a repellor for s >0. But in the 
critical case s = 0, the behaviour is different: Analysis 

A 2  

A1 "- ~ A3 
Fig. 2. A phase portrait of Eq. (22) in the special case of three alleles 
(n = 3) and a cyclic superiority relation as discussed in Sect. 6.2. The 
numerical values chosen are s=0.11, p=0.05, q=0.15, and r=0.8 

of the higher order terms, using e.g. formula (4.2) of 
Marsden and McCracken (1976) shows that M is an 
attractor also in this case if q >p  (i.e. if the hetero- 
zygotes prefer the "better" of the two strategies corre- 
sponding to their alleles) and a repellor if q > p. By the 
Hopf  bifurcation theorem, see Marsden and 
McCracken (1976), limit cycles occur near M. If q >p, 
the bifurcation is supercritical, the periodic orbits are 
stable and occur for (small) e > 0. 

If q <p,  the bifurcation is subcritical, the periodic 
orbits are unstable and occur for (small) s < 0. 

A local analysis of the flow near the boundary 
determines the range of e for which the limit cycle 
persists: The limit value for which the limit cycle 
disappears is given by 

q - p  

~ o -  1 - p  

(at least when the flow on the boundary is cyclic). 
A rather interesting, curious effect occurs in the 

(admittedly unrealistic) case that r is only a bit smaller 
than one, i.e. if the heterozygotes play usually the third 
strategy (r>2/3 will be sufficient): The flow on the 
boundary edges now is reversed: Although E 2 beats 
E 1, the gene A 1 will win (if there is no A3-allele ) since it 
fares better against the heterozygote. Near the fixed 
p o i n t M =  1 1 l (~, 5, ~) the flow remains the same, as noted 
above. Therefore some orbits will change the orienta- 
tion of their cycling (Fig. 2). 

Furthermore there are 6 additional fixed points 
besides M in the interior: 3 spiral points (see Fig. 2) 
and 3 saddle points (not to be seen in Fig. 2) which are 
necessary to separate the basins of the 4 spiral points. 

Choosing 0 < e < e o gives 4 stable limit cycles, one 
around each of the four foci. If s > ~o, the limit cycles 
disappear and (almost) all orbits come from the 4 



unstable  loci  and  go with  reversed d i rec t ion  of  cycling 
to the boundary .  

In  higher  d imensions  (n > 4) the existence of  s t range 
a t t rac tors  can be expected. 

7. Conclusions 

In this pape r  we extended game dynamics  for social  
behav iour  of  an imals  to  Mende l i an  popula t ions .  This 
more  realist ic mode l  for the evolu t ion  of  behav iour  
leads to  a differential  equa t ion  which can be in- 
te rpre ted  as the four th  o rder  a n a l o g u e  of  the repl ica tor  
equa t ion  discussed extensively before. In  general  the 
h igher  o rde r  of  the non- l inear i ty  in t roduces  a very rich 
dynamics  into the system. 

The case of  two alleles (for one locus) is relat ively 
easy to study.  W e  are able  to show tha t  in case of  
dominance  - the he te rozygote  and  one of  the two 
homozygo te s  behave  ident ical ly  - the dynamics  of 
Mende l i an  system is closely re la ted  to  tha t  of  asexually 
mul t ip ly ing  popula t ions .  Then  the or iginal  concept  of 
evolu t ionar i ly  s table s trategies (ESS) re ta ins  its mean-  
ing and  describes p rope r ly  the s teady state of the 
popula t ion .  If  the  he te rozygote  shows its own charac-  
terist ic behaviour ,  however ,  the  dynamics  becomes  
enormous ly  r ich and  the pure ly  game theore t ica l  ap-  
p roach  is no longer  sufficient. 
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