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Abstract. It is shown that in a flow reactor, hypercyclic coupling of self- 
reproducing macromolecular species leads to cooperation, i.e. none of the 
concentrations will vanish. On the other hand, autocatalytic selfreproducing 
macromolecules usually compete, and the number of surving species increases 
with the total concentration. Both results are proved under very general 
assumptions concerning the growth rates. 
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1. Introduction 

Considering chemical kinetics as a whole, autocatalysis plays rather the role of an 
interesting curiosity than that of a central issue. In biological systems, in contrary, 
selfreplication is an obligatory feature. Molecular biology reveals the details of 
multiplication on the molecular level. Although our present knowledge of these 
mechanisms is far from being complete we have learned a lot already from various 
in vitro experiments on viral and bacterial replication. One can study the replication 
of biological macromolecules in simple idealized model systems (see section 2) 
which are accessible to straightforward kinetic analysis. From the theorist's point 
of view it seems interesting now to learn more about the basic features of 
selfreplicating systems. Some studies performed along these lines were dealing with 
the role of error propagation in template induced replication (Eigen, 1971; 
Thompson and McBride, 1974; Jones et al., 1976; Eigen and Schuster, 1977). 

Selfreplicating elements usually compete with each other. An important 
question, therefore, concerns the conditions and mechanisms which lead to 
cooperation or, in other words, force the system to avoid Darwinian selection of the 
"fittest" species (Eigen, 1971, Eigen and Schuster, 1978; Schuster et al., 1978, 1979 
a and b; Hofbauer et al., 1979). For the sake of simplicity the autocatalysis of a 
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hypercyclic mechanism was modeled by product terms of power two in the 
differential equations. It has been shown that these product terms result as 
asymptotic rate laws from more elaborate mechanisms under certain conditions, in 
particular sufficiently low concentrations (Eigen et al., 1980). 

In this paper we make an attempt to generalize our previous proofs in order to 
become independent of a specific form of the rate equations. 

In a somewhat similar spirit we generalize and globalize certain results by 
Epstein (1979a) concerning autocatalytic species in a flow reactor. This author 
investigated systems where the growth rates decrease monotonicly with concentra- 
tion. 

2. The Flow Reactor 

The dynamics of polynucleotide replication, in general, is very complicated and 
difficult to analyze. Thus, we have to search for a model system which is accessible 
both to theoretical analysis and experimental verification. The primary goal of 
such a device is to be seen in the creation of a constant environment whose 
parameters may be easily controlled. At the same time the number of variables such 
as pressure, temperature and concentrations of supplementary material has to be 
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Fig. 1. The evolution reactor. This kind of flow reactor consists of a reaction vessel which allows for 
temperature and pressure control. Its walls are impermeable to the biological macromolecules, in 
particular to polynucleotides. Energy rich material ("food") is poured from the environment into the 
reactor. The degradation products ("waste") are removed steadily. Material transport is adjusted in such 
a way that food concentration is constant in the reactor. A dilution flux q~ is installed in order to remove 
the excess of selfreplicative units produced by multiplication. The experimental verification of evolution 
reactors has been discussed extensively by Kiippers (1979) 
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reduced to a minimum. The most simple and suitable system from the theorist's 
point of view is a kind of flow reactor shown in Fig. 1. The formal mathematics 
underlying chemical reactions in flow reactors has been derived by Feinberg and 
Horn (see e.g. Feinberg, 1977). As mentioned before we do not intend to discuss any 
particular mechanism for polynucleotide polymerization here, but attempt to 
generalize some common features of selfreplication. We shall simulate the whole 
replication process by an "over-all" single reaction step 

I t+ ~ v i zA~(+I j )~2I i (+I j ) ,  i , j=  1,2 , . . . ,n .  (2.1) 
,Z=l 

By It we denote an individual polynucleotide. Az are the activated building blocks, 
e.g. the nucleoside triphosphates ATP, UTP (TTP), GTP and CTP (ATP = 
adenosine 5'-triphosphate, UTP = uridine 5'-triphosphate, TTP = thymidine 5'- 
triphosphate, GTP = guanosine 5'-triphosphate, and CTP = cytidine 5'-tri- 
phosphate). 

A first attempt to describe self replication under the conditions of a flow reactor 
has been made by Eigen (1971). It turned out to be useful to split the time 
dependence of the concentrations xi into two contributions, a specific growth 
function and a global flux (Eigen and Schuster, 1978b). The differential equations 
then are of the following form: 

-~i = Fi - xiq~; i = 1,2 . . . . .  n. (2.2) 
c 

By F~ we denote the individual growth function for the polynucleotide I~ and ~b is an 
adjustable global flux. We shall only consider the simplest case where ~ = ~ i  Fi. In 
this case we have ( xi) 

Z~i  = Z C ~  1 - . (2.3) 
i 

If ~ i  Fi >~ 0 then the total concentration ~ xz approaches the stationary value c. 
Thus, the orbits converge to the concentration simplex 

S~ = { (x l , . . . , x , ) eR" ,x i  >~ O, ~ xi = c, i=  1 . . . .  ,n} 

which is invariant for (2.2). From now on we shall consider (2.2) restricted onto S: 
and the stationary total concentration ~ x~ = c. 

In the function F~ we subsume the mechanism of replication. Depending on the 
particular system to be considered these functions may vary from simple constants 
to highly complicated algebraic expressions involving all variables. A particular 
example which illustrates the meaning of this procedure is given below. 

Let us assume a molecular mechanism as shown in Fig. 2. The formation of a 
binary complex precedes the replication of the molecule. Complex formation 
occurs reversibly whereas the synthetic reaction (2.4c) is an irreversible step. The 
variables, free concentrations of macromolecules and association complexes, are 
denoted by z~ and y~ respectively. 1 Then the total concentrations of macromolecules 

1 Indices are counted modulo n 



158 J. Hofbauer et al. 

C O M P L E X  F O R M A T  

f~ l i_ 1 * I i > I i -1 ,  

C O M P L E X  DI  S S O C  

ON 

A T I O N  

f |  
Ii_1, i " ~ l i_ 1 * I i 

P O L Y M E R I  Z A T  I O N  

I i - l , i  * ~ Vi~,  A~.  kl 

C Y C L I C  C O U P L I N G  

(2'4 ct) 

( 2 '4 b) 

I i_ l j  i + I i ( 2 '4  c) 

�9 ,~ C A T A L Y T I C  A C T I O N  V I A  C O M P L E X  

F O R M A T  I ON 

Fig. 2. An example for a mechanism of catalyzed self replication (see also Eigen et al., 1980). The index iis 
understood modulo n 

are of  the fo rm 

x i  = zl  + Yi + Y i + l .  (2.5) 

F r o m  equat ions  ( 2 . 4 a -  c) we formula te  the ra te  equat ions  for  un l imi ted  growth  
(~b = 0) according  to mass  ac t ion kinetics 

z* = f -  ~Y~ + f -  ( i -  1 )Y i -  1 + k l y l  - f i z i z i -  1 - f i  + 1zizi + 1 (2.6) 

and  

~fi = f i z i z i - i  - f - i Y i ;  i =  1,2 . . . .  ,n. (2.7) 

The  t ime dependence  o f  the to ta l  concent ra t ions  then has the simple fo rm:  

Yci = zi  + P~ + .Yi + 1 = k i y i ;  i = 1,2 . . . . .  n. (2.8) 
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Now, we make two assumptions: 
(a) Complex formation and dissociation described by (2.4a, b) are fast processes 

compared with polymerization (2.4c). Accordingly, reaction (2.4a, b) may be 
treated as a preequilibrium and hence 

Y~ f 
- -  - K ,  - (2.9) 
Zi " Z i - i  f - i  

where K i denotes the equilibrium constant. 
(b) The concentrations are bounded, ~ xi = c < ~ .  

From equations (2.5) and (2.9) follows 

x l  = zi(1 + K i z i - 1  + K i + l Z i + l ) .  (2.10) 

These relations give z~ as implicit functions of the total concentrations 
x~, i = 1,2 . . . . .  n. It is difficult to evaluate these functions explicitely. But we can 
make use of (2.8) and find 

x l  = k i K i z i z l -  1 

= x l x i - l { k i K i ( 1  + K i z i - 1  + K i + , z i + , ) - l ( 1  + K i - , z l - 2  + Ki-lZi) -1} 

= x i x i - l F i ( x l  " " x , )  = F v  (2.11) 

Again it is difficult to derive an explicit expression for Fi. We shall, however, prove 
our results on cooperativity in section 4 under the general assumptions that the 
functions F~ are continuous and bounded from below by positive constants a~: 

0 < a i <~ F i < o0. (2.12) 

For the special mechanism used above as an example these inequalities hold 
because the total concentrations are bounded. 

The experimental verification of selfreplicating systems dates back to the serial 
transfer experiments by Spiegelmann (1971). Polynucleotides, originally taken 
from Q/%bacteriophages, were allowed to multiply in solutions containing enzymes 
for replication and nucleoside triphosphates. Later experiments revealed a number 
of interesting molecular details of the replication process (Sumper and Luce, 1975 ; 
Ktippers and Sumper, 1975; Kfippers, 1979). By suitable technical devices the 
discrete step technique can be replaced by continuous reactions in a flow reactor. 
An example of replication studies with synthetic homopolynucleotides (poly(A) 
and poly(U) and RNA polymerase as catalyst) performed in a stirred flow reactor 
was recently reported by Schneider et al. (1979). 

3. Competition of Selfreproducing Systems 

Epstein (1979a) analyzes the fixed points of the equation 

xi  = x i  ; i = 1 , . . . ,  n (3.1) 
"[- e i x  i 

where di t> 0 and ei > 0 are constants. This equation models the competi- 
t ion-under  the constraint of constant concentration-of macromolecules 
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whose self-reproduction is assisted by a specific enzyme in accordance with 
Michaelis-Menten kinetics. 

First, we reproduce Epsteins results. Without restriction of generality one may 
assume 

dl ~< d2 ~< " '"  ~< d.. (3.2) 

Defining 

it is easy to see that 

k dk -- dj (3.3) 
ak = ~, - - ,  k = l , . . . , n  

j=~ ej 

0 = a x  ~<a2~< " '" ~<a,. 

A fixed point exists in the interior of S~ iff c > a,. In this case it is unique and stable. 
Its coordinates are 

Pi = c + ~ d j -  , i =  1 . . . .  ,n. (3.4) 
i ;= ~ ej 

There are no stable fixed points on the boundary. 
If c~(ak, ak+a] with 1 ~< k < n, there exists a unique stable fixed point in S~, 

given by 
p~ = 0 for i > k 

and 

for  i ,  . . . . .  k p i =  c +  = 
j= 1 j=l ej 

This shows that as c grows, more and more species can coexist in a steady state. 
Epstein (1979a) also shows that similar results are valid for the equation 

Y q = x i ( d , - e i x i  : ) ,  i = 1  . . . . .  n (3.6) 

which represents the competition of  selfreproducing macromolecules. In this 
particular case it has been assumed that the macromolecules are degraded with a 
quadratic decay term. 

In this section, we generalize Epsteins results by considering more general 
classes of growth terms, and globalize his theorems; the proofs are considerably 
shorter. 

Thus we consider the equation 

Jq= x , ( G i ( x O - ~ ) ,  i = 1  . . . . .  n (3.7) 

where the G~ are strictly decreasing functions from R + into E. 

Theorem A. For every c > O, there exists a unique point p = (Px, . . . , P,) in S~, which is 
the o)-limit o f  every orbit in the interior o f  S~,. I f  p lies in the interior o f  some face, then 
it is also the ~o-limit o f  every orbit in the interior o f  this face. For sufficiently large e, p 
is in the interior o f  S~,. 
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Proof .  We assume wi thout  restricting generality that  

GI(O) >~ a2(o)  >>. " "  >1 G,(O) >1 0 (3.8) 

where the last inequali ty follows f rom the fact that  one can add a constant  to all Gz's 
wi thout  changing the equat ion  (3.7) on S~. 

Let us first show how to compute  the coordinates  p~ of  the equil ibrium p. We 
shall show tha t  to every c > 0 there exists a unique K < GI(0) and u n i q u e p ~ , . . .  ,p ,  
with ~p~ = c such tha t  

G I ( p l )  . . . .  = Gin(pro) = K, 

and 

Pl > O , . . . , p m  > O, 

Pm+l = " '"  =Pn  = 0 

where m is the largest integer j with Gj(O) > K. 
Indeed,  let G (  1 be the inverse funct ion of  G~ defined on (G~(+ oe ), Gi(0)]. For  

x />  G~(0) we set G~-~(x) = 0. The  function 

n 

n =  Z a ; '  
i = 1  

is defined on (max~ ~i~,  Gi(+  oe), GI(0)]  and strictly decreases f rom + oc to 0. Fo r  
any c > 0 there exists a unique K < GI(0) such that  H ( K )  = e. Let  

Pi = GF I (K)  �9 

Obviously  we have ~,7=lPi = c. I f  Gi(O) <<. K then Pi = 0, if G~(0) > K then 
G~(p~) = Kandp~  > 0. Thus  ifH(G~(0)) < c t h e n p l  > 0 , . . .  ,Pi > 0. In part icular,  if  
all Gi(0) are equal  then for  all c > 0, p = (Pl . . . . .  p , )  is in the interior of  S~. I f  the 
G~(0) are distinct, then with increasing c more  and more  p~ are strictly positive. 
Clearly p is a s ta t ionary  point.  

We next show that  p is globally stable. Indeed,  note first that  the funct ion 

p = ~ F p t y p 2  , P n  
~ 1  ~ ' 2  " " X n  

is strictly positive iff xi > 0 for all i with p~ > 0, i.e. for all i ~< m. Also, its unique 
m a x i m u m  on S~, is p. This follows f rom 

8P p~ 
- p 

8xi xi 

and the constraint  ~, xi = c which implies that  at the m a x i m u m  all 8P/Ox~ have to be 
equal. We next show that  

t w-~ P( t )  = X P l l ( t ) . . . x ~ , ( t )  

is a L y a p u n o v  function. Indeed 
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P = P Pi-- = P Pi Gi(xi) - 
i = 1  Xi i = 1  

i = 1  C i = l  

= P i ( P i  - -  x i ) G i ( x i )  > / O .  
i = l  

This last inequality follows from the fact that the strict monotonicity of the G{s 
implies 

( p i  - x 3 ( G , ( x , )  - G~(p,)) >1 0 
i=1  

with equality only for xl -- p~ and hence 

(p, - >1 E (p, - 

i = 1  i = 1  

i = l  i = 1  

Now for i ~< m we have G~(A) = K and ~ ~__ lPi = ~ ~=, xi = c and so the right-hand 
side is equal to 

i x i ( K -  G,(pl)) = ~ x , ( K -  Gi(O)) >1 0 
i= l i=m+ l 

since K > Gi(O) if i > m. 
Furthermore 

{x: P(x) = O} = {x: P(x) = 0 or x = p} 

which is the union of those faces of S~ that are bounded away from p and p. From 
Lyapunov's  theorem follows that all orbits in the interior of S~ and all faces 
touching p have p as m-limit. 

4. Cooperation in Generalized Hypercycles 

We consider the equation 

Xi-=xi(xi-lFi(x1 ..... Xn)-~);  i = 1  . . . . .  n (4.t) 

on the simplex S~. We shall assume that the functions Fi are continuous on S~ and 
bounded away from 0. Thus there exists a constant q > 0 such that 

Fi(xl . . . . .  x,) >1 q (4.2) 

for i = 1 . . . . .  n and all x = ( x l , . . . ,  x , ) e  S~. 
Examples of  such functions are 

fi(x) = kl 
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(where the ki are positive rate constants) and 

kl 
FI(x) = 

dixi + elxi-1 + 1 

(where ki > 0, di ~> 0, ei/> 0). The first case (the elementary hypercycle) has been 
discussed extensively in previous papers (Eigen and Schuster, 1978b; Schuster et al. 
1978, 1979; Schuster and Sigmund, 1980b). In our main example, however, the 
functions Fi are described by (2.11), reflecting a chemically more realistic model of 
hypercyclic coupling. 

Theorem B. There exists a constant p > 0 such that i f  xi(O) > O fo r  i = 1 , . . . ,  n, then 
xi(t) > p for  all t sufficiently large, i = 1 . . . . .  n. 

Thus in our chemical model, if the initial concentrations are all strictly positive, 
then after some time all will be larger than p. None of the species, then, is threatened 
with extinction by a small perturbation. Similar results for special cases have been 
obtained in Schuster, Sigmund and Wolff (1979). 

The proof  begins with a series of definitions and lemmas. 

Definition. Let F denote the set of fixed points of (4.1) on the boundary of S~. 

Lemma 1. F = (x E S~: qS(x) = 0} = {x = (xl . . . . .  x ,)  E SCn : XiX i_  1 : 0 for all i}. 

Proof. (1) Suppose xEF.  Since x is on the boundary of S~, there exists a j 
with xj = 0 but xj+l > 0. Since x is a fixed point we have xj+l = 0. Hence 
xjF2+ l(X) - ~b(x)/c = 0 and so ~b(x) = 0. 

(2) Conversely, qS(x) = 0 implies xix i -1  = 0 and hence xi = 0 for all i. 

Definition. Let x ~ S~ and T > 0 be given and let U be an open subset of S~. Let x(t) 
be the orbit of (4.1) with x(0) = x. The set 

Ur = {t~ E0, T]:  x(t)E U} (4.3) 

is a subset of [0, T] open in the relative topology. We denote the Lebesgue measure 
on [0, T] by m and set 

1 
p(x, U, T) = ~m(Ur) .  (4.4) 

p(x, U, T) is the fraction of time that the orbit o fx  spends in U, up to time T. Clearly 
p(x, u, T) e [0, 1]. 

Definition. For any r E (0, 1), x e S~, is called r-good for U if 

p(x, U, T) > r for some T > 1. (4.5) 

(Instead of 1 we could use any other positive constant). If x is r-good for U, we may 
define 

T~:(x) = inf{T > 1" p(x, U, T) > r}. 

We denote by d the Euclidean metric on S~,. 

Lemma 2. The function T ~  is upper semicontinuous, i.e. i f  it is defined for  x ~ S~,, and i f  
> 0 is arbitrary, there is a ~ > 0 such that d(x, y) < fi implies that T~v is defined at y 

and that T~:(y) < T~:(x) + c~. 
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Proof. For  any a, there exists a TG (1, T~(x)  + ~) such tha tp (x ,  U, T) > r, i.e. such 
that  m(Ur)  > rT. There  exists a compac t  subset Vr of  the set Ur  such tha t  
m(Vr)  > rT. N o w  choose e > 0 such that  the e-neighborhood of  the compac t  set 
{x(t): t ~ VT} is contained in U. Since the solutions depend cont inuously  on the 
initial conditions, there exists a 6 > 0 such that  if d(x, y) < 6 and if y(t) is the 
solution of  (4.1) with y ( 0 ) =  y, then d(x(t) ,y( t ))< e for  all t~ Vr, and hence 
p(y, U, T) > r. Thus  T~:(y) exists and is smaller than  T~j(x) + ~. 

Lemma  3. I f  U is an open neighborhood o f f  and r e (0,1), then every x in the boundary 
of  S~, is r-good for U. 

Proof. Since Uis a ne ighborhood  of  {x ~ S~,: q~(x) = 0}, there exists a 6 > 0 such tha t  
z ~ U implies ~b(z) > 6c. Let x be a given point  on the bounda ry  of  S~ and x(t) the 
orbit  with x(0) = x. We shall proceed indirectly and assume that  x is not  r -good for  
U. In part icular,  then, ~b(x(t)) does not  converge to 0, since otherwise x(t) ~ U for  all 
sufficiently large t. 

The point  x being on the boundary ,  there exist indices i such that  x l -  1 = 0 and 
x~ > 0. I f  for every s u c h / w e  have xi+,  = 0, then by L e m m a  1 x G F  : U a n d  we are 
finished. Otherwise there exists a k ~> 1 such that  

Xi+ 1 ) 0 ,  . . . ,  Xi+k > O  and X~+k+a = 0 .  

We shall show by induction that  our  assumpt ion  implies 

x~(t)~O, x~+l(t)--->O . . . . .  X~+k-~(t)--*O for  t ~  + o% 

and hence ~b(x(t)) ~ 0, which is a contradict ion.  
(1) I f  ~b(x(t)) does not  converge to 0, there exists a sequence h ,  t2 . . . .  ~ + oo 

and e > 0 such tha t  ~b(X(tk)) > e, k = 1, 2 , . . . .  Actually since I)?j] < M for  some M 
and all j ,  the xj(t) and consequently also q~(x(t)) are uniformly cont inuous  in t. Thus  
there exists a A > 0 such tha t  q~(x(t)) > e/2 for  all t~ [_t,, tk + A]. This and x~_ ~ = 0 
implies 

Jci( t ) e - - 4  
xi( t) 2c 

for  all such t. Since moreover  :~(t) ~< 0 for  all t, we obtain  xi(t) ~ O. 
(2) Suppose now xi+~(t) --, O, for  some s with 0 ~< s < k - 1. Choose  rl ~(r,  1) 

and ~ such that  

e < �89 - rl). (4.6) 

I f  t' is chosen large enough,  our  assumpt ion  implies 

xi+~(t) < e max  F~+~+,(x 
xeS~ 

for all t > t'. Since x is not  r-good,  we have 

m(UT) <~ rT  (4.7) 

for all T >/ 1. For  T large enough, fur thermore ,  
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and hence 

For such T, then 

T 
r < r  1 

T -  t' 

m({ te[ t ' ,  T]"  x(t) �9  U}) 
T -  t t 

(4.8) 

<.m(Ur)__ <. rl. ( 4 . 9 )  

T -  t' 

m({ t � 9  T]: r > 6c}) >>. (1 - r l ) ( T -  t'). 

N o w  

Xi+s+l  q~ 
_ _  - -  X i + s F i +  s - -  - - .  

X i + s +  1 C 

Since ~b/> 0, we have for any t 1> t' that 

21+~+l(t) 
~<e. 

xi+~+l(t) 

(4.10) 

(4.11) 

For those t e [t', T] with r > 6c, one has even 

2i+s+l(t) 
- -  ~< e - 6.  ( 4 . 1 2 )  
xi+s+l(t) 

By (4.10), (4.11) and (4.12), then, 

2i+s+ l ( T )  
~< exp{[-(1 - rl)(e - 6) + r l e ] ( T -  t')} ~< exp ( -  e ( T -  t')) 

xi+s+l(t') 

the last inequality following from (4.6). Hence xi+~+ I(T) ~ 0 for T ~  oe. 
Let us consider the function P(x) = P ( x l , . . . ,  x,)  = x lx2  "'" x,.  
One has P(x) ~> 0 for x �9 S~, with equality if and only ifx is on the boundary. On 

the compact set S~, P attains its unique maximum at the point (e/n . . . . .  c/n). For 
p > 0 we write 

I(p) = {x �9 S~, �9 0 < P(x) ~< p}. (4.13) 

L e m m a  4. For every neighborhood U o f F  and any r �9 (0, 1), there exists a p > 0 such 
that T~v is defined on 

I(p) = {x �9  0 ~< P(x) ~<p}. (4.14) 

Proof. By Lemma 3, T} is defined for every x in the boundary of S~. By Lemma 2, 
f c T~ is defined on a neighborhood Wof the  boundary o S,, and hence on I(p) ifp is 

chosen so small that I (p )  c W. 

Proof  o f  the theorem. The function t ~ P(x(t)) has as its time-derivative 

\ / c ) 
P(x(t)) = P(x(t)) {s(x(t)) - n_ r (4.15) 

where 



166 J .  H o f b a u e r  e t  al .  

s(x) = ~ x i -  1Fi(x). (4.16) 
i = 1  

Since the Fi are bounded away f rom 0, and ~ xi = c, there exists an M > 0 such that  

s(x) > M for all x �9 S~. (4.17) 

Define 

{ n } 
A = xeSC:  s(x) - - q i ( x )  > M . (4.18) 

c 

t t  is easy to see that  A is an open ne ighborhood o f  F. Define 

m = min (s(x) - n ~ ( x ) ) .  (4.19) 
x~S'. 

Note  that  m may be negative. N o w  choose k e (0, M)  and then r �9 (0, 1) sufficiently 
large such that  

M r  + m(1 - r) ~> k. (4.20) 

For  these given A and r, choose p as in Lemma 4, so that T ]  is defined on I ( p ) .  On 
this compact  set there exists an upper  bound T for the upper  semicontinuous 
function T~4. 

(A) We show that  if  x(0) �9 I(p), then x(t) r I(p) for  some t > 0. 
Otherwise one would have x(t) �9 I(p) for  all t >~ 0. We shall show that  this leads 

to a contradiction.  Let  to = 0. By our assumption and Lemma 4, there exists a tl, 
with tl - to �9 (1, ~v), such that  

p ( X ( t o ) , A ,  tl  - to) > r. (4.21) 

Since we assume that  x ( t l ) � 9  I(p), there exists a t2, with t 2 - -  t~ �9 (1, ~ ,  such that  
p ( x ( h ) , A ,  t2 - -  tl) > r. Proceeding inductively, we obtain a sequence to, t l ,  t z , . . .  
with t~+, - t i �9  7") such that  

p ( x ( t i ) , A ,  ti+ x - ti) > r. (4.22) 

But this means that  x(t), for  t �9 [-ti, t~+ ,] ,  spends an amoun t  of  time larger than 
r(t~+l - t3 in the set A, where, by (4.15) and (4.18), 

P 
>~ M. (4.23) 

For  the remainder of  the time, one has 

P 
>t m. (4.24) 

Thus (4.23) and (4.24) imply 

P(x(t,+ ~))/> P (x ( t0 )exp{ [Mr  + m(1 - r)](ti+ ~ - tO} (4.25) 

and hence by (4.20) 
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P(x(ti+ t)) ~> P(x(t i ) )  exp[k( t i+ 1 - ti)] >1 P(x( t l ) )e  k (4.26) 

for  i = 0, 1 , 2 , . . . .  This is a contradict ion to the fact that  P is bounded on S~. 
(B) We show next that  there exists a q s ( O , p )  such that  if x(0)r  then 

x(t) $ I(q) for all t ~> 0. 
No te  first that  it is possible that  x ( t )e  I(p) for  some t > 0. In this case, let 

t o = min{t ~> 0, x(t) E I(p)}. (4.27) 

Clearly P(x(to) ) = p. N o w  define 

q = p exp( - Im[  T(1 - r)). (4.28) 

Just as before, there exists a (1 with t] - t o ~ (1, T) such that  

p(x( to ) ,  A ,  Cl - to) > r. 

During the time-interval [-to, t]],  x(t) spends an amount  of  time less than 
(1 - r)(t' 1 - to) ~< (1 - r )T  outside of  A, where 

p 
- ->~m,  
P 

and the remainder  of  the time in A, where P >~ 0. Hence for every t e [t  o, (1 ] we have 

P(x(t)) i> P(x(to) ) expire(1 - r)(t' 1 - to) ] >~ p exp[- - [m](1  - r)~r] = q. 

Hence x(t) does not  reach I(q) for  0 <~ t ~< t' t. Fur thermore ,  (4.26) (with (1 and t o 
instead of  ti+ ~ and ti) shows that  

P(x(t'l)) ~> P(x( to) )e  k > p 

and hence x(t' 0 ~I(p),  so that  at time t'l we are in the same situation as at time 0. 
Repeating this argument,  we see that  x(t) does not  reach I(q) in positive time. 

Putt ing (A) and (B) together  gives the desired result. If  x(0) is not  on the 
boundary  of  S~, there exists a time t' >~ 0 such that  x( t ' )6  I(p). For  all t /> t', 
x(t) r I(q). 

Choosing p < qc -"+~,  we see that  

x~(t) > p for all t ~> t'. 

5.  C o n c l u s i o n  

As in the case of  Epstein (1979b) we see that  in our  context  one can also obtain 
precise mathematical  results for  chemical growth terms of  a very general class. It 
was not  necessary to attr ibute a concrete algebraic form to the kinetics. The 
properties are stable in the sense that  per turbat ions of  the functions within the given 
class do not  lead to a change in behaviour.  Another  advantage of  this procedure is 
that  it is applicable to examples for  which one does not  know the precise form of  the 
rate equations. This is the case not  only in complex chemical systems but  especially 
in biological applications. An impor tan t  class of  equations of  the form (2.2) and 
(2.3) dealing with the concept  of  evolut ionary stable strategies for  animal behaviour  
(Maynard-Smith,  1974) can be found in Taylor  and Jonker  (1978), Hofbauer  et al. 
(1979) and Zeeman (1979). 
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