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Abstract. A discussion of the game dynamics for 
asymmetric contest between two animal populations is 
presented by means of qualitative analysis. 

1. Introduction 

In Part I we have only dealt with symmetric contests 
between equally matched opponents. Asymmetric con- 
tests have also received much attention. We refer only 
to Maynard-Smith and Parker (1976), Dawkins (1976), 
Parker (1979), Hammerstein (1980), and Schuster and 
Sigmund (1980). 

Typical examples are: the conflicts between in- 
truder and owner, between predator and prey, or 
between male and female. An example of this last 
conflict, the so-called "parental investment conflict" 
(Trivers, 1972) will be briefly discussed in Sect. 7. At 
first, we shall describe the general form of our models. 

2. Differential Equations for Asymmetric Contests 
without Selfinteraction 

Let X and Y be two populations, X 1 . . . . .  X,, resp. 
Y~, . . . , Y , ~  the pure strategies and x 1 . . . . .  %, resp. 
Yl . . . .  ,Ym the corresponding frequencies. (The two 
populations may be two groups of the same species or 
of two different species.) We assume that individuals of 
the X-population react only with individuals of the 
Y-population, and vice versa. This is what we mean by 
"no selfinteraction". 

Let a u (resp. bu)  be the expected payoff for strategy 
X i played against Y~ (resp. Y~ against X) .  Thus we 
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consider the bimatrix game described by the matrices 
A = (au) and B = (bu). If ei resp. f t denotes the i-th (resp. 
j-th) corner of S,, (resp. Sin) , then e i - Ay (resp. fj- Bx) is 
the payoff for the pure strategy X~ (resp. Y) against 
strategy Y=(Yl, . . - ,Ym)[resp.  x = ( x  1 . . . . .  x,)-l, and 
x- Ay (resp. y. Bx) the payoff for the mixed strategies x 
resp. y. The same argument as in Part  I leads to the 
differential equation 

2 = x i ( e  i �9 A y -  x. Ay) i = 1, ..., n 
(36) 

~j  = y j ( f j "  B x -  y- Bx) j = 1 . . . .  , m 

on the (invariant) state space S, x Sm. 

3. Evolutionarily Stable Strategies 

For asymmetric games, the notion of ESS seems 
somewhat poorer than in the symmetric case. In 
particular, ESS have to be pure. This was proved by 
Selten (1978) in a game theoretic context considerably 
more general than the one described here. 

In this section, we restrict ourselves to a less 
sophisticated discussion of evolutionary stability. Let 
us denote by (x,y)ES, x S  m the state of two popu- 
lations engaged in a birnatrix game as described in 
Sect. 2 and assume that (p, q) is an evolutionarily stable 
state. What does this mean ? First of all, we obviously 
should request that p is a best reply to q and q a best 
reply to p, i.e. 

p-Aq>__x.Aq Vx~S, 
(37) 

q - B p > y . B p  g y e S  m. 

This just means that (p, q) is an equilibrium pair (see, 
e.g., Rauhut et al., 1979). What about  the stability of 
this equilibrium? It is not easy to give a good de- 
finition. For  symmetric games, if x and p are both "best 
replies" to the ESS p, then p fares better, against x, than 
does x. Shall we assume, in the asymmetric case, that q 
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fares better, against p, than against x? The biological 
relevance of this condition seems dubious. Besides, the 
corresponding inequality 

q . B ( p - x ) > 0  Vx~S,,  x * p  

can obviously only be valid if p is pure. 
In some interesting situations, it seems legitimate 

to consider the total payoff, i.e. the sum of the payoffs 
of the two populations. The pair of strategies (p, q), 
then, is a best reply against itself if 

p .Aq+q.Bp>x .Aq+y .Bp  

for all (x,y)eS~xS,,.  This is satisfied if (p,q) is an 
equilibrium, ff (x, y), now, is an alternative best reply 
against (p, q), then one can postulate as stability con- 
dition that (p, q) fares better, against (x, y), than does 
(x, y) against itself: 

p.Ay +q.Bx> x .Ay + y.Bx 

for all (x, y) + (p, q) for which equality holds in (37). 
This leads to 

(p-- x). (A + BT)(q-- y) < 0 

which, again, can be satisfied only if p and q are both 
pure. 

From the point of view of game theory, therefore, 
equilibria which are not pure seem to have little 
biological relevance, since they are not evolutionarily 
stable. We shall see that in the dynamic context of Eq. 
(36), however, mixed equilibria may be quite 
important. 

4. Invariant Faces 

The faces of the state space S n • S,, (i.e. the products of 
a face of Sn with a face of Sin) are all invariant under 
Eq. (36), and the restriction of (36) to such an invariant 
face is again an equation of the same type. 

Each face is obtained by setting some x~ and yj 
equal to 0. We can decompose each such face into its 
interior and its boundary, which again consists of 
faces. It is sufficient, therefore, to investigate the re- 
striction of (36) to the following invariant sets: 

1) At least one of the population plays only one pure 
strategy; 

2) both populations play properly mixed strategies. 

This means 
1) xi=l  or y j=l  for some i or j ;  
2) x i > 0 for several i, and Yi > 0 for several j. 

It is clear that one does not lose generality, then, if 
one investigates the restriction of (36) only for the 

following two sets 
1') S. x {fl}; 
2') interior of S. x Sm. 
All other restrictions of type 1) or 2) have the same 

form as restrictions of type 1') or 2'). 
Case 1') is easy to deal with. The dynamical system 

is now described by 

•  ~ aljxj) i= l , . . . , n  (38) 
j = l  

together with (x~ ... . .  x,)eS, and Ya -= 1. This equation 
has been described in Eigen and Schuster (1979). 

With a-- max al~ , we obtain x ~ 0  for all i such that 

all <a.  In the typical case, there exists a unique j with 
alj= a, and then x j~ l .  If there are several such j, the 
corresponding xj still increase to a limit. If ati = atj , the 
ratio x.]xj remains constant. 

Equation (38), then, describes the population X 
playing against a constant environment. The strategies 
Xj with highest fitness a~j will be selected. 

Case 2') is more delicate, in general, and will be 
discussed in the next section. 

5. Fixed Points 

The fixed points of (36) in the interior of S n • S m are the 
strictly positive solutions of the equations 

~ a l j y  j . . . . .  ~a,,jyj ~yj=l, (39) 
j = l  j = l  j = l  

~ blix ~ . . . . .  ~,, bmix i ~ xj=l. (40) 
i = l  i = 1  i = 1  

If n>m then (39) has a solution only if matrix A 
satisfies some degeneracy condition, while the so- 
lutions of (40) form a linear manifold of dimension 
> n -  m. Hence the set of fixed points in the interior of 
S, x Sm is either empty (this is the typical case) or it 
contains an (n-m)-dimensional plane. An isolated 
fixed point can exist only if n = m. If it exists, it is 
unique. 

In order to compute the Jacobian at a fixed point, 
we set 

x n = l - x l -  ... - x , - 1  Ym= I -Y l  - " ' "  --Ym-l" 

Equation (36) becomes 

5el = xi \j = 1 a~ + ai'(1 - Yt - ..- - Y,,- 1) - x. Ay) 

i=1,  . . . , n -  1 
(41) 

Y=Yi i b j l x i + b j " ( 1 - x l - " ' " - x " - t ) - y ' B x  

j = l ,  . . . , m -  1 



with 

n--1 
x . A y =  ~ x i 

i=1 

�9 (a i lY l  + . . .  + ai ,m- l Y , , -  1 + %,(1 - Yl - ... - Ym- 1)) 

+ ( l - x 1  - ... - x , -  1) 

�9 (aoly  1 + . . .  + a,,  m-  lYe, - 1 + a,m(1 -- Y l  -- "'" -- Ym - 1)) 

and an analogous expression for y. Bx. 
At a fixed point of (36), one obtains 

c~(2"i)8xj = x i ( - ~ x j ( x ' A y ) ) = 0  

for 1 < i, j < n -  1, since relations (39) imply 

cgx~ (x. Ay) = a j l y  1 + . . .  + ajm(1 - Yl - - . -  - Y~- 1) 

- [ a ,  l Y l  + . . .  + a,m(1 - Y l  - "- - Ym- 1)] =0" 

s . . . .  a(~) lmlmny, ~ = 0, and thus the Jacobian at a fixed 
oyf 

point of (36) is of the form 

,=[o 
where the two blocks of 0's on the diagonal are 
( n -  1) x ( n -  1) resp. ( m -  1) x ( m -  1)-matrices. For  the 
characteristic polynomial p(Z)= d e t ( J - 2 I ) ,  one has 

p(Z) = ( -  1)"- rap(- 2) 

as can be seen by changing sign of the first n - 1  
columns and the last m -  1 rows of J -  21. Also 

p(2) = 2 I ' - '< f (2 )  , 

where f(2) is a polynomial of degree n + m -  2 -  I r a -  n]. 
Indeed, at least In -m[  eigenvalues of J vanish at our 
fixed point, because the set of fixed points contains an 
]m-nl-dimensional  linear manifold. Thus f(2) is an 
even polynomial. It follows that if Z is a nonvanishing 
eigenvalue of J, so is - 2. Hence 

Theorem. The fixed points of (36) in the interior of 
S, x S m are neither sinks nor sources. Isolated fixed 
points, which exist only if n = m, are saddles or centers. 

In particular, only corners of S n x S m can be sinks 
for (36). This corresponds to the absence of properly 
mixed ESS, see Sect. 3. 

Con jec tu re .  If an isolated fixed point in the interior of 
S, x S,, is of center-type (all eigenvalues on the imag- 
inary axis), then it is stable, but no t  asymptotically 
stable. 

We can prove this conjecture only for n = 2 (Sect. 6) 
and check it for higher dimensions under supplemen- 
tary assumptions (see Sects. 8 and 9). 
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Just as in the symmetric case (see Part  I, 5), time- 
averages along orbits bounded away from the bound- 
ary, and in particular along periodic orbits, satisfy Eqs. 
(39) and (40) and correspond consequently to interior 
fixed points of (36), and hence to mixed equilibria of 
the bimatrix game. Thus even those equilibria which 
are not evolutionarily stable may be of practical 
relevance. We shall examplify this in Sect. 7. 

6. The  T w o - D i m e n s i o n a l  Case  

The case n = r n = 2 ,  treated in Schuster and Sigmund 
(1980), is quite instructive�9 Since we may subtract a 
constant from each columns of A and B, we can 
assume that all diagonal terms are 0. Thus 

Since x 2 =  1 - x ,  and Y2- -1 -Yl ,  it is enough to study 
the evolution o f x  1 and Yl, which we call x and y. Thus 
(36) reduces to 

2 = x(1 - x)(a  12 - (al 2 + a20Y) 
(42) 

s = y(1 - y)(b 12 - (b t 2 + b 21)x) 

on the space Q 2 = { ( x , y ) : 0 < x , y _ _ < l } ~ S  2 x S  2. 
If a12a21__<0, 2 does not change sign; hence x is 

either constant or converges to 0 or 1. Similarly if 
b12b21<0. There remains the case where a12a21>0 
and b12b21 >0.  There is a unique fixed point, in this 
case, in the interior of Qz, namely 

( - / ) 1 2  a l e - / .  (43) 
F =  \b12+b21 , alz+a21/ 

The Jacobian of (42) at F has eigenvalues __ 2, 
where 

22 = alza21b12b21  

(a12 + azl)(b12 + b21 ) " 

If a12b12 >0,  then F is a saddle. Almost all orbits in 
the interior of Q2 will converge to one or the other of 
two opposite corners. If a12b12 <0, F is of center type�9 
In this case, all orbits in the interior of Q2 spiral 
around F. Indeed, the function 

V(x ,  y) = x Ib~21(1 - x)  Ibz*lj/a121(1 - y)la211 (44) 

which vanishes on the boundary of Q2 and is strictly 
positive in the interior of Q2, with F as unique 
maximum, satisfies 

d V  OV 8 V  
- ~+~-y~=o 

as is easily checked, remembering the signs of a u and 
b u. Hence V is constant along the orbits of (42) which 
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are, therefore, periodic: they correspond to constant 
value curves of V. Clearly 

T 
l i x ( t )d t=;  b12- l !y(t)dt= a12 (45) 
To  /)12 +b21 T al;+a21' 
where T is the length of the period. 

7. The Dawkins Game 

We shall illustrate (42) by an example due to Dawkins 
(1976), and dealing with an aspect of the battle of 
sexes: 

Male sex cells are much smaller than those of 
females. At the moment of conception, a mother is 
already much more committed to her child than the 
father is. She would have more to lose by the death of 
the child, in the sense that she would have to invest 
more to bring a substitute child to the same level. Thus 
fathers are much more tempted to desert and look for 
a new mate, leaving the mother in charge of the baby. 

The obvious counter-tactic for females would be to 
force the male to commit himself heavily before copu- 
lation. A long engagement period would test the 
perseverence and fidelity of her mate. More to the 
point still, his desertion would lead him to another long 
and arduous courtship. It would be better for him to 
stay home and invest his resources in the upbringing of 
his present offspring rather than increase his future one. 

Thus a "conspiracy" of coy females would force the 
males to be faithful. 

Among faithful males, however, a fast female would 
fare better than a coy one, since she would not lose 
time by a long courtship period. So her genes will 
spread quicker. After some generations, the population 
will include a large proportion of fast females. But 
then, philandering males will have an easy life and 
many opportunities to spread their genes�9 Faithful 
husbands will become rare. Females would do well, 
then, to be coy. The argument seems to have turned 
full circle. 

Let us assume that the benefit for raising a child 
successfully is equal to + a for each parent, the total 
cost for looking after the child is - b  and the cost of 
prolonged courtship is - c  (a, b, c >  0). Let x be the 
proportion of faithful males and y the proportion of 
coy females. 

If a faithful male meets a coy female, the payoff for 
b 

each is a - c - ~ .  If a faithful male encounters a fast 

b 
female, both earn a -  ~. A philandering male meeting a 

fast female makes off with + a while the female gets 
a -  b. If a philanderer meets a coy female, the payoff for 
both is 0. 

After adding constants to the columns of A and B 
so that the diagonal terms are 0, we obtain 

b 
a12----- _ ~ ba2 = b - a  

b (46) 

a z l = C - - a + ~  b21=c. 

We always have a12 <0  and b21 >0. If 

b c+ ~ <a<b (47) 

as in the numerical example given by Dawkins (a = 15,. 
b=20,  c=3),  there exists an equilibrium F in the 
interior of Q2, but of course it is not, as claimed by 
Dawkins (1976), evolutionarily stable. Nevertheless, it 
is of great interest, as it reflects the time-averages of the 
endlessly oscillating mixtures of strategies. Indeed, (47) 
implies that F is of center type. The time-averages, 
given by (45) as 

b - a  , b 
F'-(bq-c~-a 2 ( a -  c)) (48) 

are independent of initial conditions. If (47) does not 
hold, then a pair of pure strategies evolves. 

8. Zero Sum Games 

Let (p, q)~ S n x S m be an equilibrium pair, or optimal, in 
the sense of (37). Let us define 

Q:IIyT'. 
Clearly, we have 

P = P(p. A y -  x-Ay) 0 = Q(q" B x -  y. Bx). (49) 

For  zero sum games, which are defined by B - - - A  r 
(the loss of one player is the gain of the other one), 
optimal strategies correspond to minimax strategies 
(see Rauhut et al., 1979) and (37) can be written as 

x.Aq<=p.Aq<__p.Ay for all x , y ~S , .  (50) 

Theorem. (p,q)eS n x S ,  is an optimal pair iff PQ is a 
constant of motion. In this case (p, q) is stable, but not 
asymptotically stable, and we have 

r 1 T 
�9 1 lrim ~ ! y(t)dt, p = l~m ~ I x(t)dt q = 

0 

where the time-average is along every orbit in the 
interior of S n x S,. 

Proof. From (49) with B = -  A r, we get 

(PQ)' = PQ(p. A y -  x. Aq). (51) 



If P Q - c o n s t  along every orbit, one has 

p .Ay=x-Aq  

for all (x, y) in the interior of S, x S,. This implies (50). 
Conversely, if (p, q) is an equilibrium, then (Aq)i = const 
for all i, and hence x-Aq = p. Aq (=  value of A), and 
similarly p . A y = x . A q ,  which implies (PQ)'=0. This 
implies that every orbit in the interior remains on a 
surface of constant value of PQ, and hence cannot 
converge to the boundary. The rest of the theorem is 
obvious. 

Note that in the zero-sum case, the eigenvalues of 
the equilibrium (p, q) are on the imaginary axis. This 
follows from the theorem in Sect. 5 and the stability of 
the fixed point, but it is also easy to check it directly. 

9. Cyclic Symmetry 

An interesting special case is obtained for n--m when 
both A and B are cyclically symmetric, i.e. such that 
aij = a j _  1 and bij = bj_ 1 for 1 < i, j < n (indices are 
counted mod n). By adding the constant 

1 
n(a0-~- ... -t-an_ l) 

to each column of A, we may assume that the row sums 
of A are all 0, and similarly for B. 

The eigenvalues of the cyclic matrix A are 

2~i 
nc~k = ~ ?@jk 2 = e " (52) 

and the eigenvectors are 

(2 k,22k . . . .  ,2 "k) (53) 

for k=0,  1, ..., n -  1, as is easy to check. The analogous 
results holds for B, the eigenvalues are called ilk, the 
eigenvectors are the same. 

Let F denote the fixed point (~, ~) of Eq. (36) in the 

interior of S, xS,.  Clearly x = y = ( 1 , . . . , ~ ) .  Thus 

~.-A~ = 0. At the point F, therefore 

t?(2i)- x,(Ay)k= 0 
cOxj 

~(2i) 
= xi(aij-- (xA)) = 1 aii 

c3y j 

and thus, up to a multiplicative factor _1, the Jacobian /,/ 
of (36) at F is 

j = [ O  A]. (54) 
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The eigenvalues are the zeros of 

p(2) = det [-B 21 hA/]. 

Now since 

[2/1B ~][-B 21 

we have 

___~I] = ['-0 ~'I 2-1A;_ 2i] 

p(2) = det ( -  21) det ()~- t A B -  2I) = det (2z I -  AB). 

The cyclic matrices A and B have the same eigenvec- 
l:ors (53), hence the eigenvalues of d B  are ekflk, 
k = 0, ..., n, and hence those of J are _+ ~]f~k~" It is easy 
1Lo see that the pair corresponding to k = 0 (a pair of 
zeros) gets eliminated since we consider only the 
restriction of (36) to S n x S,. 

Theorem. In the case of cyclic symmetry, the eigenval- 

ues of (36) at the interior equilibrium F are • ~]/-~k~, 
k = l , . . . , n - 1 .  

F is a saddle except iff ekflk < 0 for all k. For n = 2, 
this just means atb I <0, a condition we know from 
Sect. 6. If n = 3, it means 

albj=a2b 2 and alb2<O. (55) 

In this case, it is easy to check that 

b 2 ( x "  Ay) = al(y. Bx) (56) 

for all x, y in the interior of $3, and that 

( X l XE X3)lbEl(y t y 2Y 3) lal [ 

is a constant of motion. Hence in the 3-dimensional 
cyclic case, if F is not a saddle, then it is stable, but not 
asymptotically stable. 

10. A 3 x 2-Game 

As we saw in Sect. 5, Eq. (36) has in general no fixed 
point in the interior of S, x S,,, if n+  m. In this case, a 
consideration of the time-averages as in Part I, 5 shows 
that some strategies will sometimes be extremely im- 
probable, and likely to be wiped out by random 
fluctuations. 

It is only in degenerate cases that fixed points exists 
for n 4 = m. We shall treat one such case for the sake of 
illustration. Let n = 3  and m=2.  We may assume 
without loss of generality that the bottom line of A and 
B consists of zeros. In order to have fixed points, the 
first row of A must be a multiple of the second one : 
this is the degeneracy condition. For example, 

A =  2 B=  0 0  
0 



X m ..... X 
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(e) 

Fig. la -e .  Phase portrait of Eq. (57) on 
the prism P3 (a the prism P3 and the 
fixed point line; b the phase portrait on 
the face x = 0; e and d the phase 
portraits on two vertical cylinders; e the 
phase portrait on the faces y = 0 and 
x + y = l )  

Setting x l = x ,  x 2 = y ,  and Yl =z ,  we obtain f rom (36) 
the equat ion 

2 = x(1 - 2z) (1 - x -  2y) 

= y(1 - 2z) ( 2 -  x -  2y) (57) 

= z(1 - z) (1 - 3x) 

on the prism P3 = {(x,y,z):  O<x,  y ,z ;  z<= l ; x + y<= l}. 
The fixed points in the interior of  P3 are those on the 

line z -  • - 2 ,  x=�89 Their eigenvalues are 0, and _+ ~ - y .  
Thus  on the face y = 0, we have a saddle, and on the 
face x + y =  1, a center. 

No te  that  

dx x 1 - x - 2 y  
dy y 2 -  x - 2y (58) 

Thus every orbit  of  (57) satisfies a relation between x 
and y, corresponding to (58), and independent  of  z. 
Their x and y-coordinates  are on the solution curves of  

5c = x(1 - x -  2y) (59) 

~ = y ( 2 - x - 2 y )  

an equat ion of  the type (38). The vertical cylinders in 
P3 th rough  the solution curves of  (59) are invariant  for 
(58). As shown in Fig. 1, as these cylinder sheets curve 
more  and more  outward,  the phase portrai t  on them 
changes drastically. If  the sheet intersects the line of  

z 1 x 1 fixed points ( = g, = g), a saddle and a center emerge 
in an unstable configurat ion similar to the flow of  the 
well-known second order  equat ion g = � 8 9  q2). 



15 

References 

Dawkins, R. : The selfish gene. Oxford : Oxford Univ. Press (1976) 
Eigen, M., Schuster, P. : The hypercycle - a principle of natural  self- 

organization. Berlin, Heidelberg, New York: Springer 1979 
Hammerstein, P. : The role of asymmetries in animal contests. J. 

Theor. Pop. Biol. (in press) (1980) 
Maynard-Smith, J., Parker, G.A. : The logic of asymmetric contests. 

Anita. Behav. 24, 159-175 (1976) 
Parker, G.A.: Sexual selection and sexual conflict. In :  Sexual 

selection and reproductive competition in the insects. Blum, 
M.S., Blum, N.A. (eds.), p. 123. New York : Academic Press 1979 

Rauhut, R., Schmitz, N., Zachow, E.W. : Spieltheorie. (Teubner 
Studienbticher.) Stuttgart:  Teubner 1979 

Schuster, P., Sigmund, K. : Coyness, philandering and stable stra- 
tegies. Anita. Behav. (in press) (1980) 

Selten, R. : A note on evolutionarily stable strategies in asymmetric 
animal conflicts. Working Papers, I ls t i tute  of Mathematical  
Economies, University of Bielefeld 1978 

Trivers, R. : Parental investment and sexual selection. In:  Sexual 
selection and the descent of man. Campbell, B. (ed.), p. 128. 
Chicago: Aldine 1972 

Received: July 29, 1980 

Prof. Dr. P. Schuster 
Institut f'tir Theoretische Chemic 
und Strahlenchemie der Universi t i t  
Wihr inger  Strasse 17 
A-1090 Wien 
Austria 


