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Abstract. The ordinary differential equation which 
transformes the game theoretical model of Maynard- 
Smith into a dynamical system is discussed and some 
important theorems and applications to symmetric 
contests in animal societies are presented. 

1. Introduction 

This series of three papers deals with different related 
classes of ordinary differential equations, which arise 
from a dynamical view of game theoretical models for 
selfreplication in a wide sense. 

The concept of evolutionary stability introduced by 
Maynard-Smith (1974) and used by himself and by a 
number of other biologists to explain some features of 
social behaviour of animals was successful for two 
reasons: primarily it provides an explanation for 
"altruism" based on the benefit of the individual's 
genes. Within this model the widely used concepts of 
group selection or benefit of the species become dis- 
pensible. A second feature consists in the creation of a 
semi-quantitative scale which may be used to invert 
observed behaviour into relative genetic values. In 
general, non trivial quantitative features are rare in the 
"biology of entire organisms" and hence it appears to 
be worth-while to analyse this aspect of the theory in 
more detail. 

The contribution presented consists of three parts. 
In the first paper we discuss models of symmetric 
contests. Equation (5) derived here covers a wide 
variety of applications. One of them (a~j=a~i) cor- 
responds to the Fisher-Wright-Haldane model for 
selection in population genetics (see e.g. Hadeler, 1974 
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or Crow and Kimura, 1970). Another special case is 
the elementary hypercycle (aq = aj6~, j + 1) introduced by 
Eigen and Schuster (1979). The mathematical features 
of the general equation were discussed extensively by 
Hofbauer et al. (1980). Here we mention briefly the 
relevant results and use them to analyse two concrete 
models for animal behaviour : 1) The hawk - mouse - 
bully - retaliator - prober-retaliator game (Maynard- 
Smith and Price, 1973) and 2) a discrete version of the 
war of attrition (Maynard-Smith, 1974). 

In the second part we derive equations for asymmet- 
ric contests without self-interaction. We show that the 
notion of evolutionary stability is no longer as useful 
as in the symmetric case. We treat some examples and 
also show that our equations lead to a simple com- 
putation of the minimax strategies for zero-sum games. 

Part three introduces self-interaction into asym- 
metric contests. Special cases of the equations obtained 
here play an important role in Cowan's theory of 
nervous networks (Cowan, 1970). We discuss explicitly 
the two dimensional phase portraits and give a quanti- 
tative description and classification. 

In order to present a guide line through the 
concepts involved we sketched a flow chart which will 
be discussed in the next three sections (Fig. 1). 

2. Scores, Payoff, Games, and Differential Equations 

In order to start with a semi-quantitative model for 
animal contests we have to fix certain parameter values 
for gains, risks and losses. We use the word "invest- 
ment" as a general expression for these three notions 
and denote the corresponding input parameters as 
"scores" o~1, a 2 .. . . .  am. The second class of input con- 
sists in the "characters". A character is a type of 
behaviour. There are several, let us say n different 
characters in the population under consideration. For  
the purpose of our analysis a character is completely 
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Fig. 1. The flow chart for the analysis of a model for the social 
behaviour of animals 

defined by a listing of outcomes of the contests with all 
characters present in the population. In general a given 
character may adopt different strategies with certain 
frequencies. In this paper we shall assume, however, 
that all characters use pure strategies only. The stra- 
tegies are denoted byXt ,X2,  ...,X n. Then the entire list 
of all possible outcomes is given by the payoff-matrix 
A of the game theoretical approach. The element a u is 
the payoff for the player adopting strategyX~ when the 
opponent uses Xj. The elements of A are assumed to be 
linear combinations of the score values: 

aij= ~ YfJ)0-k" (1) 
k=l  

At a certain instant t the population is character- 
ized by a state vector x(t)=(xt(t),  x2(t), ...,%(0). The 
components are the probabilities with which the stra- 
tegies X1,X 2 ..... X ,  are played in the population. 
Hence, the state vector lies on the simplex of strategies: 

(2) 

The average payoff for strategy X~ in the population is 
given by 

E i = ~ aijx i = e i �9 Ax, (3) 
) = t  

where e i is the vector pointing to the i-th corner of S,. 
The mean values of the average payoffs in the entire 
population, the "mean average payoff '  is simply 
obtained as 

E :  ~ x iEi :  ~.~.x~aqxj:x .Ax.  (4) 
i ~ l  l j 

According to the basic assumption of the theory 
the behaviour of an individual is influenced genetically. 
The strength of this influence ranges from almost 
complete genetic determination like in insect societies 
to partial determination like in flocks of mammals 
where learning through education plays a non negligible 
role. In any case more payoff will increase the number 
of offspririg and genes causing the underlying be- 
haviour will spread. In "game dynamics" we identify 
the difference between the average payoff of a certain 
strategy X i and the mean average payoff (E i - E) with 
its relative increase in frequency (Taylor and Jonker, 
1978): 

- - = E i - E = e i . A x - x . A x ;  i=1  .. . . .  n 
x/  

o r  

A x - - x  , J 

The simplex S, is globally invariant under (5). It is 
likewise easy to see that all faces of S, are invariant as 
well. 

The choice of numerical score values a s is some- 
what arbitrary since they are not accessible to direct 
experimental determination. On the other hand certain 
ordering relations, like 0-t > ~ > . . .  > o-,,, will always 
exist. Thus we may suggest to fix the score values up to 
an affine transformation only: 

0-;, =fl0-g + c~; f l > 0 ,  ~ R .  (6) 

Equation (5) at the other end of the mathematical 
analysis is not uniquely defined in terms of payoff 
either : a set of payoff matrices yields the same differen- 
tial equation (Hofbauer et al., i980). Indeed, let us 
perform an affine transformation T of the payoff- 
matrix A : 

' c( a A T B 'bq=f i (  + ~j). (7) 



The transformed differential equation is identical (on 
S,) with the former, except for a linear change of scale 
in the time axis. 

• = ~-~  = xi(ei " B x -  x. Bx) = fl' x i(e ~ �9 Ax -- x. Ax) 

o r  

d x i  
= xi te  i �9 A x -  x. Ax) with 

and 

Both dynamical systems 
trajectories. 

z = f l ' t  

i =  1 ... . .  n. (8) 

thus have identical 

Let us see now how the affine transformation of 
score values is related to the invariance properties of 
the differential equations. Accordingly, we identify 
{a~} with the set of scores leading to the payoff matrix 
B: 

b u = fi'(~' + au) = ~ 7(kU)a'k. (9) 
k 

Making use of Eqs. (6) and (9) we verify the following 
relations between both affine transformations: 

f i = f l '  and ~ = - - .  (10) 

k 

In general, there exists a common affine transfor- 
mation of score values and payoff provided the sum of 
weighting factors y(u) is independent of the particular 
pair of indices (i,j) 1 : 

ZT~iJ)=C V(i,j). (11) 
k 

Equation (11) does not imply a loss in generality. 
Although (11) will not be fulfilled automatically by 
every game of interest we may define a number of 
dummy scores which are chosen such that the sums of 
weighting factors are now constant. We shall discuss 
one concrete example in Sect. 6. There and in most 
other cases the use of dummy scores simply cor- 
responds to the choice of a proper zero on the scale of 
scores. 

3. Evolutionarily Stable Strategies (ESS) 

Maynard-Smith (1974) introduced the notion of an 
evolutionarily stable strategy (ESS) in order to study 

1 Strictly speaking, we would require only ~7~ u) =CjVi since the 

invariance properties of (5) are stronger than just an affine transfor- 
mation (Hofbauer et al., 1980). The whole procedure becomes 
somewhat involved and little is gained. We restrict ourselves to the 
weaker case therefore 

stationary distributions of characters by the game 
theoretical approach. An ESS denoted by the vector p 
may be defined by two conditions: 
1) It is a best reply when played against itself: 

p.Ap>=x.Ap VxeS..  (12) 

2) In case x is another best reply against p, p fares 
better against x then x does against itself: 

p.  A p =  x .  A p ~ p  . A x  > x .  A x .  (13) 

Recently, it has been proven that every ESS cor- 
responds to an asymptotically stable fixed point of (5) 
(Taylor and Jonker, 1978; Hofbauer et al., 1979; 
Zeeman, 1979). Indeed, it is easy to check that p is an 
ESS iff 

p . A x > x - A x  (14) 

for all x4=p in a neighbourhood of p. Now p is the 
unique maximum of the function 

P(x)= h xf'  (15) 
i = i  

and the time derivative of t ~ P ( x ( t ) )  is 

8P 
/5 = ~ ~-- 2i = p(p. A x -  x. Ax) (16) 

i c x i  

which is strictly positive for all x as above. Hence P has 
to increase along all orbits in this neighbourhood 
which therefore must converge to p. The converse, 
however, is not true: there are asymptotically stable 
equilibria which are not ESS. 

Many useful notions developed in game theory 
have little relevance in biological situations where the 
players do not obey any axiom of rationality. For 
example, the concept of Pareto equilibrium makes little 
sense here. The dynamical approach allows a better 
understanding of the effect of fluctuations. 

Another advantage of game dynamics consists in 
the accessibility of time dependent phenomena, like 
approach to equilibrium, limit cycles, time averages 
etc ..... In the next sections we shall show this by means 
of a few examples. 

4. Hopf Bifurcations and Limit Cycles 

Let us consider 

0 1 - #  0 

0 0 1 - #  
A =  

- #  0 0 1 

1 - #  0 0 



with ]#r < 1. Cyclic symmetry implies immediately that 
there exists a unique fixed point in the interior of S 4, 
namely 

p ,1 1 1 1~ (17)  = ~$, g, g, ~) .  

The tacobian \~x~] of (5) at p is obviously also 

circulant. Its first row is given by 

(-#8 1' 8 ' # + 1  - # - 1  # - 8  ' 81-) (18) 

and the eigenvalues of (5), restricted to S 4 at the point 
p, are easily seen to be 

=�88 
(19) 

= � 8 8  1 - #). 

The function (15) is now 

P = (X1X2X3N4) TM (20) 

and 

P = P{(1 +/g)(X 1 -]- X 3 - -  1 ) 2  

- ~#[(x, - xa) 2 + (x 2 - x4) 2] }. (21) 

For  # < 0 ,  P > 0  in the interior of S 4. By (16) it 
follows that p . A x > x . A x ,  i.e. that p is evolutionarily 
stable. 

For  # = 0 ,  we have the case of the hypercycle 
(Schuster et al., 1978). p is still asymptotically stable, 
but no longer an ESS, since/5 vanishes on the plane 
x 1 + x  3 =�89 through p. It is easy to check that the fixed 
points in the boundary of S 4 are not stable either, so 
we have an example of a game without ESS. 

For  # > 0, p is no longer stable. A Hopf  bifurcation 
has occurred. Indeed, we see that for small #, the 
eigenvalue 0) 2 is always negative. The pair 0),.a of 
complex conjugate eigenvalues, however, crosses the 
imaginary axis from left to right, as # increases from 
negative to positive values. At # =  0, the real parts of 
0),, a have strictly positive derivatives as functions of #. 
The imaginary part is nonvanishing; and p is asymp- 
totically stable. All the ingredients of the classical 
Hopf  bifurcation theorem are satisfied (Marsden and 
McCracken, 1976) and we conclude that, for small 
/~>0, there exists a stable limit cycle, i.e. a periodic 
orbit which attracts all orbits in some neighbourhood. 
Hence : 

T h e o r e m  1. For  n = 4, there exist equations of type (5) 
with stable limit cycles. 

In Hofbauer et al. (1980) it is shown that stable 
limit cycles exist for all n>4 .  Zeeman (1979) proved 
that there are no Hopf  bifurcations for n = 3. Hofbauer 

(1980) extended this to show that for n = 3, there are no 
stable limit cycles. 

5. M e a n  V a l u e s  and F i x e d  P o i n t s  

A fixed point of (5) in the interior of S, has to satisfy 

% . A x  = e 2 �9 Ax . . . .  = %. Ax (22) 

as well as 

~ x  i = l , x  i > 0  for i = l  . . . . .  n. (23) 

Suppose now that an orbit x(t) in the interior of S, 
remains bounded away from the boundary of S,. This 
means that for some 6 > 0  we have xi(t)>6 for 
i = 1 .. . . .  n and all t sufficiently large, 

Now 

(log xi)" = - -  = ei. A x -  x-Ax 
Xi 

which gives, if one integrates from 0 to T 

T 

logxi(T)-logxi(0)  = ~ air [, xj(t)dt 
j = l  0 

T 

- 5 (x. Ax)dt (24) 
0 

The left hand side is bounded. Dividing by T, and 
letting T ~  + oo, it converges to zero, and hence, if 

1 rm 
y~= lim ~ -  ~ xj(t)dt 

T m ~ + m l m  0 

(]=1 . . . .  ,n) is some accumulation point of time- 
averages of xj(t), then y is a solution of (22) and (23). 

It follows : 

A) If there is no fixed point in the interior of S,, then 
every orbit of (5) comes arbitrarily close to the bound- 
ary, for t ~  + oa, i.e. some coordinates become arbi- 
trarily small. 

B) If there exists a unique fixed point p in the interior 
of S,, then 

Pi = lim xi(t)dt i = 1 ..... n (25) 
T ~ + o ~  i 0 

for every orbit bounded away from the boundary (a 
periodic orbit, for example). 

Note that except for degenerate cases one of these 
two alternatives holds. B) shows that even if the fixed 
point p is unstable, it can be of physical relevance, as a 
time-average. The case of the hypercycle [aij > 0, with 
equality if i # j - 1  (modn)] is an interesting example 
for this. It is shown in Schuster et al. (1979) that every 
orbit is bounded away from the boundary, although 
for n > 5 p is unstable. 



Conjecture. If there is no fixed point in the interior of 
S,, then every orbit converges to a face of the boundary. 

6. Generalized Maynard-Smith Games 

As a concrete example we shall analyse the well-known 
"five character game" introduced by Maynard-Smith 
and Price (1973). 

1) The "hawk"-character (/4) represents the most 
aggressive strategy. A hawk always escalates fighting 
no matter what strategy is applied by the opponent. 

2) The "mouse"-character (M) is the other extreme. 
The answer of a mouse to an escalation of fighting by 
the other contestant is always retreat. 

3) The behaviour of the "bully'-character (B) is 
more sophisticated. The bully escalates in case the 
opponent does not and retreats if it is confronted with 
an escalation. 

4) The "retaliator"-character (R) behaves in a way 
complementary to the bully. A retaliator escalates only 
and always after the other contestant escalated. 

5) The "prober-retaliator '-character (P) exhibits 
the most complex behaviour of all five. It escalates 
eventually, when the opponent avoids escalation but it 
retreats in case the other contestant starts to escalate 
by himself. 

Following Maynard-Smith and Price (1973) we 
attribute score values for the various investments: 

Gain of object = , ,  

Waste of time = y ,  and 

Injury = d .  

At the same time we assume the contestants to be of 
equal strength in accordance with the prerequisites of a 
symmetric game. In case two equal characters come 
upon each other they share the total of all investments 
50 : 50. The payoff matrix as one easily verifies, is of the 
following form: 

A. 

H M B R P 

H ~ ~ 
2 2 

M 0 ~+27 0 e + 2 y  0 
2 2 

B 0 ~ ~ 0 

~ + 5  ~+27 a+27  ~ + 6  
R 

2 2 2 2 

P 0 ~ 0 
2 2 

(26) 

Thus, matrix A does not fulfil (11). In order to 
correct for this deficiency we define a dummy score b 
for the "loss of object" and redefine c = 27. The other 
two scores remain unchanged a = e and d = 6. For  the 
new list of scores 

Gain of object a 

Loss of object b 

Waste of time c (for both contestants) 

Injury d 

we find the payoff matrix : 

A. 

H M B R P 

a + d  a + d  
H a a a 

2 2 

a + c  a + c  
M b b b 

2 2 

a + b  
B b a b a 

2 

a + d  a + c  a + c  a + d  
R a 

2 2 2 2 

a+d  a + d  
P b a b 

2 2 

and 

(27) 

Instead of assigning concrete numerical values to 
the individual investments we assume the easily con- 
ceivable ordering relation a > b > c > d. Thereby we 
state only that the object has a certain value and injury 
is more serious for the contestants than waste of time. 
Now we recall that b was a dummy score: by putting 
b = 0 we may re-establish the previous case (26). 

The five dimensional dynamical system determined 
by (5) and (27) has no fixed points in the interior of the 
population simplex, int S 5. According to the results of 
the previous section this implies already that there is 
no attractor in int S 5 as well. Moreover, the five 
simplices $4, which correspond to the restrictions of 
the fir6 dimensional faces of S 5 (which are obtained by 
setting x i = 0; i = 1 .. . . .  5) are free of fixed points in their 
interior as well. The long term behaviour of the system, 
thus, can be understood completely by an inspection of 
the ten simplices S 3 determined by xi = 0  and x i=0 ,  
i=  1 ..... 4; i<j_<_5. The structure of (5), of course, 
implies that every corner of S 5 is a fixed point. Another 
general result concerns the edge M--R: from (27) we can 
easily derive that every point on this edge is a fixed 
point and we may call such an edge a "fixed point 
edge" as in our previous paper (Schuster et al., 1978). 

I n  the forthcoming analyis we distinguish properly 
three different cases which correspond to topologically 
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Fig. 2. The phase portrait of the HMBRP game defined by (5) and 
(27). Casel: a>2b-d. (Concrete numerical values: a=12, b=0, 
c=-2 ,  d=-10) 
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Fig. 3. The phase portrait of the HMBRP game defined by (5) and 
(27). Case 2: 2b-d>a>2b-c (Concrete numerical values: a=6, 
b=0, c=-2 ,  d=-10) 

different phase portraits. In Figs. 2-4 we show the ten 
phase portraits of the simplices S 3 for each of the three 
cases. 

Case 1 

a > 2 b -  d. (28) 

This is the simplest case and represents a situation 
where the value of the object exceeds the risk of an 
injury. The phase portrait is shown in Fig. 2. There are 
no additional fixed points on the edges or inside the 
faces S 3. The remaining nine edges flow in the direc- 

tions M--*H, B---,H, H-*R,  P ~ H ,  M ~ B ,  M--*P, 
B--->R, P ~ B ,  and P ~ R .  Complete qualitative analysis 
of the phase portrait is straight forward�9 We make use 
of the relation 

and find : 

( ~ ) ' = ( ~ ) [ l ( 2 b - a - d ) ( x l + x s ) + ( b - a ) x 3 ] < O .  

Consequently x 2 will vanish. Furthermore we have 

�9 [�89 + d - 2b)x 1 + �89 - a)x 2 + (a - b)x 3 + �89 - d)x4], 

which is strictly positive if x 2 is sufficiently small. 
Hence x 2 approaches zero and we come close to the 
triangle HBR, where 

Hence, x 1 vanishes and ultimately we have 

( ~ ) ' =  ( ~ )  [�89 + �89 <O. 

Thus, the system finally approaches x 4 -- 1, which is the 
only stable fixed point in the system. The retaliator 
thus represents the strategy which is selected in the 
H MBRP  game. 

If we allow for random fluctuations superimposed 
on the dynamics, a pure retaliator population may be 
invaded by mice because R is not asymptotically stable 
along the axis R-'M. In the neighbourhood of R the 
points on this edge are stable against invasions by 
small numbers of H, B or P. Eventually, the density of 
mice may exceed the critical point of stability against 
H, B or P and the state vector can move into the 
interior of S s. A whole cycle returning to R may start 
again. The lack of stability of R against fluctuations 
along the M R  axis is essentially the same as in Case 2 
where it has been analysed and discussed extensively by 
Zeeman (1979). 

Case 2 

2 b - d > a >  2 b - c .  (29) 

This is the case of intermediate value of the object. It is 
worth less than the risk of injury, but more than waste 
of time. All the concrete numerical examples treated so 
far (Maynard-Smith, 1972, 1974; Dawkins, 1976; 
Zeemann, 1979) fall into this case. The phase portraits 
are given in Fig. 3. In addition to the five corners and 



the fixed poifit edge M R  we find six new fixed points, 
one on each of the edges HM, HB, HP, and ~ as well 
as one on each of the two faces H M P  and HRP. 

Qualitative analysis is straightforward. We proceed 
similarly as above and find: 

�9 [ �89 b)x 3 + �89 a -  d)x 4 + �89 d)xs] > 0. 

Thus, x s ~ 0  and we approach the four dimensional 
system HMBR on S 4. Zeeman (1979) presented a 
detailed analysis of this case. We need not repeat his 
argumentation here. The final result is just as in Case 1 
that R is a stable strategy, but not asymptotically 
stable since it may be invaded by mice. The major 
difference between Case 1 and Case 2 is found in the 
restriction to the two dimensional subsystems. To give 
one example we consider the edge HM: due to the high 
values of the object in Case i - it exceeds the risk of 
injury - the trajectory flows M ~ H  and the hawk is the 
stable strategy. In C~tse2 we find a mixture of 
aH+ ( 1 -  a)M to be internally stable. The value of 

a - - c  

2b - (c + d) 

increases linearly with the value of the object. On the 
edges HB, HP, and MP we find a situation completely 
analogous to that reported for HM. The only differ- 
ence consists in the expression for c~. Thus, we can 
conclude: the higher the value of the object the better 
fares the aggressive character. 

Case 3 

a < 2 b -  c. (30) 

In this last example the value of the object is even 
smaller than the waste of time. The phase portraits are 
shown in Fig. 4. The whole situation closely resembles 
Case 2 with only one but nevertheless important differ- 
ence. There is one additional fixed point on the edge 
BR. It is globally asymptotically stable an.d represents 
the,only asymptotically stable character of the game. 
In contrast to Case 1 and Case 2 we have no problem 
with fluctuations. Qualitative analysis is straight for- 

ward. One may start with --'(xa/'<0 as before. Further 
\xs/  

analysis is reduced to the H M B R  game and one may 
proceed in the same way as Zeeman (1979) did. 

Finally, it seems important to stress the fact that 
the three cases (28)-(30) allow complete qualitative 
discussion of the H M B R P  game as given by the payoff 
matrix (27). We applied only one restrictive condition, 
namely a>-b>~c>d. 

H P 

P 
H " " 

M R P 

Fig. 4. The phase portrait of the H M B R P  game defined by (5) and 
(27). Case3: a < 2 b - c .  (Concrete numerical values: a=4, b=0, 
c = - 6 ,  d=-10)  

7. Games of Partnership 

Consider a game of partnership, where the two players 
always fairly share the outcome. In this case a~j = aj~ for 
all i and j. 

Equation (5) with such a symmetric matrix A is well 
known as the Wright-Fisher-Haldane model in popu- 
lation genetics�9 The variables x~ ... . .  x, are the frequen- 
cies of the n possible alms for a given chromosomal 
locus, and ai3 is the fitness of genotype ij. This cor- 
responds indeed to a game of closest possible partner- 
ship, where the two players unite to produce offspring. 

Here, we shall only sketch the main features (cf. 
Hadeler, 1974)�9 Consider the mean average fitness 

q~(x)=x.Ax (31) 

Using the symmetry of A, one gets 

0x~. = 2e/. Ax = 2(Ax)i (32) 

and 

d) w 0~) x = 2 Z(Ax)ixi[(Ax)i-  x. Ax] = L ~xi i 

= 2[Z(Ax) ~ - (Z(Ax)ixi) 2] > O. (33) 

The last inequality is the Cauchy-Schwarz-inequality 
(recall ~ x  i = 1). Equality holds if there exists a c such 
that 

(Ax)ix~/Z=cx~/2 Vi. 

or, equivalently, (Ax)~=c for all i with x~>0. Thus q5 
vanishes exactly for the fixed points of (5). 



We obtain that 4~ is a Lyapunov function; thus if A 
is symmetric, every orbit converges to the set of fixed 
points. 

9, The War of  Attrition 

Another situation which has received interest is that of 
strategies X 1 . . . .  ,X, corresponding to increasing levels 
of escalation and thus of investment el . . . .  ,~,. If the 
value of the object is v, and if player A chooses strategy 
i, player B strategy j, then for i > j  player A wins and his 
payoff is v - e j  (he had only to escalate as far as his 
opponent did) while the payoff for player B is - e j .  If 
i=j ,  we assume both players have equal chances to 

v 
win" the payoff for both of them is ~ -  ej. 

The payoff matrix, then, satisfies condition (,): 
(.) in each column, all entries below the diagonal 

are equal. 
Such a game has been analyzed by Bishop and 
Cannings (1978) with the help of difference equations. 
The situation for differential equations is completely 
analogous. Therefore we shall only outline the de- 
scription of the latter case. 

Note first that we may assume that the entries 
below the diagonal are all zero: it suffices, indeed, to 
add appropriate constants to each column., 

Since for x, > 0 

we get 

In particular 

( ~ ) ' =  (a._ { x " - l ) - - ( a . . - a . , . _ t , )  

which shows that x._ 1 converges to some constant % 
X. n 

Next, we have 

\ x . /  

" (a . -2 . . -  2x. - z + a . - 2 , . -  ix .  - a + a . -2 , . x .  - a...x,,). 

Since, for t large enough, x._ t is almost equal to c.x..  

we obtain that " (x ._  2} " is almost equal to 
\ x . /  

[a .) x,,_ z/ . -  2 . -  2 - -  b (35) 
\ ' Xn 

for some constant b.. Hence x._2 converges. 
x.  

Proceeding inductively, one sees that all ratios x j x .  
converge and hence that every orbit converges to a 
fixed point. 
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