
1 Non-linear Optimization with Constraints:

1.1 Kuhn Tucker Conditions:

The following functions are given:

f : IRn 7→ IR, continuously differentiable

~g : IRn 7→ IRm, continuously differentiable

The constraint qualification are fullfilled in point ~z, if the gradients ∂gi(~x)
∂~x

|~z of all

active constraints (i.e. with gi(~z) = 0) are linearly independent, or equivalently, if the

matrix

M =


∂g1

∂x1
· · · ∂g1

∂xn
g1(~z) . . . 0

...
. . .

...
...

. . .
...

∂gm

∂x1
· · · ∂gm

∂xn
0 · · · gm(~z)


has full rank (i.e. rank M = m).

Now consider the optimization problem

max f(~x) s.t. the constraints ~g(~x) ≥ 0. (1)

Kuhn Tucker Theorem:

Let x∗ be a solution of the optimization problem (1) with the constraint qualification

fullfilled. Then there exists a unique vector of Lagrange multipliers ~λ ∈ IRm such that

the following conditions hold for the Lagrange function

L(~x,~λ) = f(~x) + ~λt~g(~x) = f(~x) +
m∑

j=1

λjgj(~x)

•
∂L

∂xi

=
∂f

∂xi

+
m∑

j=1

λj
∂gj(~x)

∂xi

= 0, i = 1, · · ·n (2)

•
∂L

∂λj

= gj(~x
∗) ≥ 0 j = 1, · · ·m (3)

•

λj ≥ 0, j = 1, · · ·m (4)
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•
~λt~g(~x∗) =

m∑
j=1

λjgj(~x
∗)︸ ︷︷ ︸

≥0

= 0 (5)

As the summands of (5) are all non-negative, condition (5) is equivalent to the m

conditions

λjgj(~x
∗) = 0, ∀j = 1, · · ·m. (6)

Remark: Under the constraint qualification conditions (2)-(4) & (6) are necessary

conditions for an optimal solution. If additionally the functions f and gj are concave,

then these conditions are also sufficient.

If the constraint qualification does not hold, then the above conditions are NOT

necessary.

Interpretation of Lagrange multiplier:

λj equals the marginal increase of the objective value, if constraint gj(~x) ≥ 0 is

marginally relaxed, i.e. if ~x∗(ε) is the solution of max f(~x) subject to the constraint

~g(~x) ≥ −ε then

~λ =
∂ ~f(~x∗(ε))

∂ε

∣∣∣∣∣∣
ε=0

2 Optimal Control Theory

A firm wants to maximize its profit over a given planning horizon [0, T ]. The ”state” of

the firm is described by a vector of capital values ~x(t) ∈ IRn. At each instant of time

the firm has to decide on its investments, prices, level of production, etc., denoted by

~u(t) ∈ IRm.

The state ~x(t) together with the control ~u(t) determine the profit at each instant of

time and is denoted by Π(~x(t), ~u(t), t).

Integrated over the time horizon [0, T ] and discounted at the non-negative discount

rate ρ ≥ 0 the firm wants to maximize

J =
∫ T

t=0
e−ρtΠ(~x(t), ~u(t), t)dt + e−ρT S(~x(T ), T ) (7)

where S(~x(T ), T ) denotes the salvage value.
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Remark: The objective functional defined by (7) is known as Bolza-form. If

S(~x(T ), T ) = 0 the problem is known as Lagrange problem. In the case that Π(~x(t), ~u(t), t) =

0 the problem is denoted as Mayer problem. All 3 formulations are equivalent.

The state evolves according to the differential equation

~̇x = f(~x(t), ~u(t), t), with given initial state ~x(0) = ~x0

The problem can be summarized as

max
~u(t)∈Ω⊂IRm

{J =
∫ T

t=0
e−ρtΠ(~x(t), ~u(t), t)dt + e−ρT S(~x(T ), T )}

subject to

~̇x = f(~x(t), ~u(t), t), ~x(0) = ~x0

Assumptions:

• Π(~x, ~u, t) and f(~x, ~u, t) are continuously differentiable w.r.t. ~x and continuous w.r.t.

~u and t.

• S(~x, T ) is continuously differentiable w.r.t. ~x and T.

• As admissible controls we consider all piecewise continuous functions defined on the

time interval [0, T ] with values in Ω ⊂ IRm.

• Substituting an admissible control trajectory into the state dynamics leads to a

continuous, piecewise continuously differentiable state trajectory ~x(t), t ∈ [0, T ].

• If profit Π as well as dynamics f do not explicitly depend on time t, then the system

is said to be autonomous.

To present Pontryagin’s Maximum Principle, we define the current value Hamiltonian

H(~x, ~u,~λ, t) = Π(~x, ~u, t) + ~λtf(~x, ~u, t)

where ~λ ∈ IRn denotes the co-state or adjoint variable.

Maximum Principle: (Theorem 1)

Let ~u∗(t) be the optimal control of the above problem and ~x∗(t) the correspond-

ing state trajectory. The there exists a continuous, piecewise continuously differentiable

vector-valued function ~λ(t) ∈ IRn (denoted as adjoint variables) such that the following

statements hold:
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• At time points where ~u∗(t) is continuous, the control has to maximize the Hamilto-

nian, i.e.

H(~x∗(t), ~u∗(t), ~λ(t), t) = max
~u∈Ω

H(~x∗(t), ~u, ~λ(t), t)

• The adjoint variable has to follow the differential equation

˙~λ(t) = ρ~λ(t) − ∂H(~x∗(t), ~u∗(t), ~λ(t), t)

∂~x

• at the endpoint the transversality condition

~λ(T ) =
∂S(~x∗(T ), T )

∂~x

has to hold.

3 ”Proof” of Pontryagin’s Maximum Principle by Dy-

namic Programming

Define the Value Function V (~x, t) by

V (~x, t) = max
~u(s)∈Ω

{∫ T

t
e−(ρ(s−t)Π(~x(s), ~u(s), s)ds + e−ρ(T−t)S(~x(T ), T )

}

Now we consider a short time interval [t, t + ∆]. According to Bellmann’s Principle of

Optimality we get

V (~x, t) = max
~u(s)∈Ω

{∫ t+∆

t
e−(ρ(s−t)Π(~x(s), ~u(s), s)ds + e−ρ∆V (~x(t + ∆, t + ∆)

}

Because of continuity assumptions, maximizing over the time interval [t, t+∆] can be

approximated by maximizing only at time t, i.e.

V (~x, t) = max
~u(t)∈Ω

{
Π(~x(t), ~u(t), t)∆ + e−ρ∆V (~x(t + ∆, t + ∆) + o(∆)

}
(8)

Due to continuity assumptions, V can be expanded to

V (~x(t + ∆), t + ∆) = V (~x(t), t) + V~x(~x(t), t)~̇x∆ + Vt(~x, t)∆ + o(∆) (9)

Plugging in (9) into (8) yields

V (~x, t) = max
~u(t)∈Ω

{Π(~x(t), ~u(t), t)∆ + (1 − ρ∆)[V (~x(t), t)+ (10)
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+V~x(~x(t), t)~̇x∆ + Vt(~x, t)∆] + o(∆)
}

(11)

where e−ρ∆ = 1 − ρ∆ + o(∆).

Dividing by ∆ and taking lim∆→0 leads to

0 = max
~u(t)∈Ω

{Π(~x(t), ~u(t), t) − ρV (~x(t), t) + V~x(~x(t), t)f(~x, u, t) + Vt(~x, t)} (12)

As boundary condition we have

V (~x, T ) = S(~x, T ) (13)

Now define the adjoint variables as

~λ =

(
∂V (~x(t), t)

∂xj

)
j=1,···n

Defining the Hamiltonian

H(~x, ~u,~λ, t) = Π(~x, ~u, t) + ~λ~f(~x, ~u, t)

equation (12) can be written as

0 = max
~u(t)∈Ω

{
H(~x, ~u,~λ, t) − ρV (~x(t), t) + Vt(~x, t)

}
(14)

which leads to the Hamilton-Jacobi-Bellman Equation

ρV (~x(t), t) + Vt(~x, t) = max
~u(t)∈Ω

{H(~x, ~u, V~x, t)} (15)

Obviously, the optimal control has to maximize the Hamiltonian, i.e.

H(~x∗(t), ~u∗(t), ~λ(t), t) ≥ H(~x∗(t), ~u, ~λ(t), t)

The transversality condition has to hold due to

V (~x, T ) = S(~x, T ) and ~λ =

(
∂V (~x(t), t)

∂xj

)
j=1,···n

The adjoint equations can be obtained as follows:

Plugging in the optimal solution into equation (14) leads to

H(~x∗, ~u∗, V~x(~x
∗, t), t) − ρV (~x∗, t) + Vt(~x

∗, t) = 0 (16)

which is the maximum value the function

H(~x, ~u∗, V~x(~x, t), t) − ρV (~x, t) + Vt(~x, t) (17)
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can obtain.

For interior solutions we get

H~x(~x
∗, ~u∗, V~x(~x

∗, t), t) − ρV~x(~x
∗, t) + Vt~x(~x

∗, t) = 0 (18)

Differentiation of the Hamiltonian with respect to ~x yields H~x = Π~x + V~x~xf + V~xf~x

and therefore

Π~x + V~x~xf + V~xf~x − ρV~x(~x
∗, t) + Vt~x(~x

∗, t) = 0 (19)

Now
dV~x

dt
= V~x~x~̇x + V~xt = ρV~x − Π~x − V~xf~x

Now assuming that ~λ only depends on time and not on the state, we obtain the adjoint

equation

~̇λ = ρ~λ − Π~x − ~λf~x

Extensions

Consider the optimal control problem

max
~u(t)∈Ω⊂IRm

{J =
∫ T

t=0
e−ρtΠ(~x(t), ~u(t), t)dt + e−ρT S(~x(T ), T )}

subject to

~̇x = f(~x(t), ~u(t), t), ~x(0) = ~x0

with additional terminal conditions (0 ≤ n1 ≤ n2 ≤ n) :

xj(T ) · · · arbitrary , j = 1, · · · , n1

xj(T ) = xT
j j = n1 + 1, · · · , n2

xj(T ) ≥ xT
j j = n2 + 1, · · · , n

We define the Hamiltonian as

H(~x, ~u, λ0, ~λ, t) = λ0Π(~x, ~u, t) + ~λtf(~x, ~u, t)

where λ0 is a non-negative constant.

Remark: For the standard problem (normal case) the constant can be set to λ0 = 1.

Under the assumption of additional terminal conditions, the ”abnormal” case λ0 = 0

cannot be excluded a priori.
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Maximum Principle for the standard problem with terminal conditions:

Let ~u∗(t) be the optimal control of the above problem and ~x∗(t) the corresponding state

trajectory. The there exists a constant λ0 ≥ 0 and a continuous, piecewise continuously

differentiable vector-valued function ~λ(t) ∈ IRn (denoted as adjoint variables) such that

the following statements hold:

• (λ0, ~λ(t)) 6= (0,~0)∀t ∈ [0, T ]

• At time points where ~u∗(t) is continuous, the control has to maximize the Hamilto-

nian, i.e.

H(~x∗(t), ~u∗(t), λ0, ~λ(t), t) = max
~u∈Ω

H(~x∗(t), ~u, λ0, ~λ(t), t)

• The adjoint variable has to follow the differential equation

˙~λ(t) = ρ~λ(t) − ∂H(~x∗(t), ~u∗(t), λ0, ~λ(t), t)

∂~x

• at the endpoint the following transversality conditions have to hold

λj(T ) = λ0
∂S(~x∗(T ),T )

∂xj
for j = 1, · · · , n1

λj(T ) arbitrary for j = n1 + 1, · · · , n2

λj(T ) ≥ λ0
∂S(~x∗(T ),T )

∂xj
for j = n2 + 1, · · · , n

[λj(T ) − λ0
∂S(~x∗(T ),T )

∂xj
][x∗

j(T ) − xT
j ] = 0

Sufficiency Conditions

Up to now we only dealt with candidates for optimal solutions, as the above theorems

only give necessary conditions. There are 3 possibilities to make sure that a candidate is

indeed optimal:

1. one proves the existence of an optimal solution and that the candidate is the only

one which fullfils the necesarry optimality conditions.

2. For a given feasible solution find the value function V (~x, t) and show that the

Hamilton-Jacobi-Bellman equation holds for this solution.

3. Show that additional concavity assumptions hold for the Hamiltonian.
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Necessary optimality conditions for the standard problem:

Let ~u∗(t) be a feasible control of the standard problem and ~x∗(t) the corresponding

state trajectory. Moreover there exists a trajectory of adjoint variables ~λ(t) ∈ IRn such

that the conditions of the maximum principle hold, i.e.

•

~̇x∗ = f(~x∗, ~u∗, t), ~x(0) = ~x0

•

˙~λ(t) = ρ~λ(t) − ∂H(~x∗(t), ~u∗(t), ~λ(t), t)

∂~x
, ~λ(T ) =

∂S(~x∗(T ), T )

∂~x

•

H(~x∗(t), ~u∗(t), ~λ(t), t) = max
~u∈Ω

H(~x∗(t), ~u, ~λ(t), t) = H◦(~x∗(t), ~λ(t), t)

Define the maximized Hamiltonian as

H◦(~x,~λ(t), t) = max
~u∈Ω

H(~x, ~u,~λ(t), t)

If the maximized Hamiltonian H◦(~x,~λ(t), t) is concave and continuously differentiable

w.r.t. ~x for all (λ(t), t) and if the salvage value S(~x, T ) is concave w.r.t. ~x, then the

control ~u∗ is optimal, i.e. the conditions of the maximum principle are also sufficient.

In case that H◦ is stricktly concave, the optimal solution is unique.

Infinite time horizon

We now consider problems of the form

max
~u(t)∈Ω⊂IRm

{J =
∫ ∞

t=0
e−ρtΠ(~x(t), ~u(t), t)dt}

subject to

~̇x = f(~x(t), ~u(t), t), ~x(0) = ~x0

Assumptions:

• Π(~x, ~u, t) and f(~x, ~u, t) are continuously differentiable w.r.t. ~x and continuous w.r.t.

~u and t.

• S(~x, T ) is continuously differentiable w.r.t. ~x and T.
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• As admissible controls we consider all piecewise continuous functions defined on the

time interval [0, T ] with values in Ω ⊂ IRm.

• Substituting an admissible control trajectory into the state dynamics leads to a

continuous, piecewise continuously differentiable state trajectory ~x(t), t ∈ [0, T ].

• The integral converges for all admissible solutions.

We define the Hamiltonian as

H(~x, ~u, λ0, ~λ, t) = λ0Π(~x, ~u, t) + ~λtf(~x, ~u, t)

Theorem: Maximum Principle for infinite time horizon

Let (~u∗(t), ~x∗(t)) be a pair of feasible control and state trajectories. Necessary for

the optimality of the pair (~u∗(t), ~x∗(t)) is the existence of a constant λ0 ≥ 0 and of a

continuous co-state trajectory ~λ(t) such that (λ0, ~λ(t)) 6= (0,~0)∀t ∈ [0,∞) and that the

following conditions hold:

• At time points where ~u∗(t) is continuous, the control has to maximize the Hamilto-

nian, i.e.

H(~x∗(t), ~u∗(t), λ0, ~λ(t), t) = max
~u∈Ω

H(~x∗(t), ~u, λ0, ~λ(t), t)

• The adjoint variable has to follow the differential equation

˙~λ(t) = ρ~λ(t) − ∂H(~x∗(t), ~u∗(t), λ0, ~λ(t), t)

∂~x

Remark:

• The corresponding transversality condition

lim
t→∞

e−ρt~λ(t) = ~0

is NOT a necessary condition for optimality.

example:

Maximize J =
∫ ∞
0 (1 − x)udt, subject to ẋ = (1 − x)u, x(0) = 0, 0 ≤ u ≤ 1.

Obviously we have

J =
∫ ∞

0
(1 − x)udt =

∫ ∞

0
ẋdt = lim

t→∞
x(t) − x(0) = x(∞).

9



Each feasible solution which maximizes x(∞) is optimal. The maximum value for

x(∞) is x(∞) = 1.

For example u∗ = 0.5 is an optimal solution.

The Hamiltonian is H = (λ0 + λ)(1 − x)u

and therefore

u∗ =


0 for Hu < 0

undefined for Hu = 0

1 for Hu > 0

For the optimal solution u∗ = 0.5 therefore we have Hu = (λ0 + λ)(1 − x) = 0

and thus λ0 = −λ. λ < 0 because of (λ0, λ) 6= (0, 0) and λ0 ≥ 0 violating the

transversality condition limt→∞ λ = 0 (Note that ρ = 0.

• Contrary to the standard problem with finite time horizon the constant λ0 cannot

be set to λ0 = 1 a priori.

Example:

Maximize J =
∫ ∞
0 (u − x)dt, subject to ẋ = u2 + x, x(0) = 0, 0 ≤ u ≤ 1.

If u 6= 0 on a time interval of non-zero length, then x will diverge to ∞ and J = −∞

as u ≤ 1. Therefore the optimal solution is u∗ = 0.

The Hamiltonian is H = λ0(u − x) + λ(u2 + x)

Consider the derivative of the Hamiltonian w.r.t. u at u = 0.

∂H
∂u

∣∣∣∣∣
u=0

= λ0 + 2λu|u=0 = λ0 ≥ 0

In case that λ0 6= 0 the Hamiltonian is increasing at u = 0 and therefore u cannot

maximize the Hamiltonian, which leads to a contradiction. Therefore λ0 = 0.

3.1 Optimal choice of terminal time T

ex: optimal maintanance and optimal choice of time to sell the machine.

Consider the optimal control problem with finite terminal time where additionally the

terminal time has to be chosen optimally to maximize
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max
~u(t)∈Ω⊂IRm

{J =
∫ T

t=0
e−ρtΠ(~x(t), ~u(t), t)dt + e−ρT S(~x(T ), T )}

Additionally to the necessary conditions of the Maximum Principle (Theorem 1) we

have

dJ

dT
|T=T ∗ = 0

Taking the derivative of the objective functional w.r.t. T leads to

e−ρT Π + e−ρT (S~xẋ + ST − ρS) = 0

This implies

H(~x∗(T ∗), ~u∗(T ∗), ~λ(T ∗), T ∗) = Π + ~λf =

= Π + S~x~̇x = ρS(~x∗(T ∗), T ∗) + ST (x∗(T ∗), T ∗)

linear optimal control models

We now consider optimal control models with the property that the Hamiltonian is linear

in the control u. To avoid unbounded values for the control we have to assume, that

u(t) ∈ [u, ū].

Define the switching function σ(t) = Hu. The optimal control is then given as

u(t) =


u if σ(t) < 0

undefined if σ(t) = 0

ū if σ(t) > 0

A solution is called a bang-bang solution if the optimal control only takes the values

u and ū.

If σ(t) = 0 for all t ∈ [t1, t2] (t1 < t2), then the optimal control can take values in the

interval [u, ū]. Such parts of the optimal solution are called singular arcs.

Along the singular arc we have σ(t) = σ̇(t) = 0 for all t ∈ [t1, t2]. From this condition

the optimal control can be computed.
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