
1 Motivating examples:

Ex. 1:

An oil company has to decide on a new location of a petrol

station. There are two alternatives: the suburbs (a1) or the city

center (a2). The attainable profits and turnovers are known and

given in the following table:

profit turnover

a1 (suburbs) 150.000 1 800.000

a2 (center) 125.000 2 000.000

Assume, that the only goal of the company is to maximize the

profit ⇒ choose a1

If additionally the turnover should be maximized ⇒ ”conflict of

goals” ⇒ multi objective optimization

Relationships of goals:

• congruent: higher realization of goal 1 implies higher realiza-

tion of goal 2

• conflict: higher realization of goal 1 implies less realization of

goal 2

• neutral: degree of realization of goal 1 has no influence on goal

2
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Ex.2:

Consider the oil company from ex. 1 and assume that the firm

wants to maximize profits. The government has plans to build a

by-pass and the expected profits depend on whether this by-pass

will be built or not; i.e. the possible ”states of the world” are

”z1 · · · no by-pass” and ”z2 · · · by-pass”.

z1 (no by-pass) z2 (by-pass)

a1 (suburbs) e11 = 150.000 e12 = 80.000

a2 (center) e21 = 125.000 e12 = 125.000

Decision under ambiguity, if the decision maker has no

information on the probabilities of the different states of the world.

Decision under risk, if these probabilities are known.

2 Basic model

• The decision maker has to choose one action out of a set of

alternatives, the ”Alternative space”A = {a1, a2, · · · am}.

Assumptions:

– The decision maker has to choose one action out of the

set of alternatives under consideration (completeness)
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– at the same time only one alternative can be realized, i.e.

the alternatives are mutually exclusive (exclusivity).

• The consequences of the chosen alternative depend on the

”state of nature” z1, z2, · · · zn. The set of all relevant states of

nature are summarized in the state space Z = {z1, z2, · · · zn}.

• The Decision matrix (a [m×n]-matrix) describes the out-

come for each of the alternatives and each of the states of

nature. eij is the outcome if alternative ai is chosen and state

zj occurs.

z1 z2 · · · zn

p1 p2 · · · pn

a1 e11 e12 · · · e1n

... ... ... ... ...

am em1 em2 · · · emn

Principles of dominance:

1. absolute dominance

An alternative ai dominates an alternative aj absolutely,

iff the worst outcome of ai is not worse than the best outcome

of aj.
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ai dominates aj absolutely ⇔ min
k

eik ≥ max
l

ejl

(under the assumption that higher values of eij are better.)

Ex.

z1 z2 z3 min max

a1 70 80 10 10 80

a2 50 90 20 20 90

a3 20 10 20 10 20

a2 dominates a3 absolutely.

2. statewise dominance

An alternative ai dominates an alternative aj statewise, iff

ai is not worse than aj for each state zj, j = 1, · · ·m and

better for at least one state, i.e.

ai dominates aj statewise ⇔


eik ≥ ejk for all k

eil > ejl for at least one l

Ex.
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z1 z2 z3 min max

a1 70 80 10 10 80

a2 50 90 20 20 90

a3 20 10 20 10 20

a4 60 95 30 30 95

a4 dominates a2 statewise.

3. stochastic dominance:

(only for decisions under risk!)

For each alternative ai the outcome is a random variable. Let

us denote with fi(.) the corresponding density function and

Fi(.) the cumulative distributon function of these random vari-

ables.

• ai dominates aj according to 1st order stochastic domi-

nance, iff

Fi(x) ≤ Fj(x),∀x, and Fi(x
∗) < Fj(x

∗) for at least one x∗.

Fi(x) ≤ Fj(x) ⇔ 1 − Fi(x) ≥ 1 − Fj(x)

i.e. the probability to achieve an outcome better than x

is higher when choosing alternative ai than when choosing

aj.
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• ai dominates aj according to 2st order stochastic domi-

nance, iff

∫ x

−∞ Fi(ξ)dξ ≤
∫ x

−∞ Fj(ξ)dξ, ∀x

where strict inequality should hold for at least one value

of x.

Ex. 1:

z1 z2 z3 z4

p1 = 0.3 p2 = 0.2 p3 = 0.4 p4 = 0.1

a1 20 40 10 50

a2 60 30 50 20

F1(x) =



0 x < 10

0.4 10 ≤ x < 20

0.7 20 ≤ x < 40

0.9 40 ≤ x < 50

1 50 ≤ x

F2(x) =



0 x < 20

0.1 20 ≤ x < 30

0.3 30 ≤ x < 50

0.7 50 ≤ x < 60

1 60 ≤ x

⇒ a2 dominates a1 according to 1st order stochastic domi-

nance.

Ex. 2:
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z1 z2 z3

p1 = 0.4 p2 = 0.2 p3 = 0.4

a1 120 100 30

a2 60 0 110

F1(x) =



0 x < 30

0.4 30 ≤ x < 100

0.6 100 ≤ x < 120

1 120 ≤ x

F2(x) =



0 x < 0

0.2 0 ≤ x < 60

0.6 60 ≤ x < 110

1 110 ≤ x

F2(x) − F1(x) =



0 x < 0

0.2 0 ≤ x < 30

−0.2 30 ≤ x < 60

0.2 60 ≤ x < 100

0 100 ≤ x < 110

0.4 110 ≤ x < 120

0. 120 ≤ x

a1 dominates a2 according to 2st order dominance, because

∫ x
−∞(F2(ξ) − F1(ξ))dξ ≥ 0
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3 Decisions under Ambiguity

3.1 Maximin-criterion

(Mini-max criterion, Wald rule)

Choose the alternative which maximizes the worst outcome

Ex.

z1 z2 z3 z4 min

a1 60 30 50 60 30

a2 50 90 20 20 20

a3 60 95 30 -30 -30

⇒ choose a1.

Properties:

extremely risk avers, values the alternatives only by their worst

outcome.

z1 z2 z3 z4 min

a1 1000 1000 1 1000 1

a2 1.1 1.1 1.1 1.1 1.1

⇒ chooses a2.

Maximax-criterion

Choose the alternative which maximizes the best outcome.

Ex.
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z1 z2 z3 z4 min max

a1 60 30 50 60 30 60

a2 50 90 20 20 20 90

a3 60 95 30 -30 -30 95

⇒ Choose a3.

Properties:

extremly risk seeking, values each alternative by its best out-

come.

Hurwicz-Rule

Combines Maximin-criterion and Maximax-criterion.

λ ∈ [0, 1] · · · parameter of optimism.

Choose the alternative which maximizes the preference function

Φ(ai) = λ maxj(eij) + (1 − λ) minj(eij).

z1 z2 z3 z4 min max Φ(λ = 0.4)

a1 60 30 50 60 30 60 42

a2 50 90 20 20 20 90 48

a3 60 95 30 -30 -30 95 20

⇒ choose a2.

Savage-Niehans-Rule

Minimax Regret criterion

• Find for each column of the decision matrix, i.e. for each state

of nature the best outcome.

9



• Compute the regret matrix R = (rij). Fo each state of na-

ture substract the outcomes of the alternatives from the best

outcome possible for this state. i.e. rij = maxk(ekj) − eij

• find for each row of the regret matrix (i.e. for each alternative)

the largest regret value.

• choose the alternative which minimizes the maximum regret.

z1 z2 z3 z4

a1 60 30 50 60

a2 50 90 20 20

a3 60 95 30 -30

Regret-Matrix:

z1 z2 z3 z4 max

a1 0 65 0 0 65

a2 10 5 30 40 40

a3 0 0 20 90 90

⇒ choose a2.

Laplace-criterion:

Assume that each of the n states of nature have the same proba-

bility p = 1/n. Compute for each alternative the expected outcome

and choose the alternative with the highest expected outcome.
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z1 z2 z3 z4 Φ

a1 60 30 50 60 50

a2 50 90 20 20 45

a3 60 95 30 -30 38.75

⇒ choose a1.

In a [m × n] Decision matrix

z1 z2 · · · zn

p1 p2 · · · pn

a1 e11 e12 · · · e1n

... ... ... ... ...

am em1 em2 · · · emn

eij is the outcome if alternative ai is chosen and state zj occurs.

Which properties should hold for a ”reasonable” decision rule?

A decision rule assigns a relation ” ≥ ” between the alternatives

{ai, i = 1, · · ·m}.

3.2 10 Axioms of Milnor:

(John Milnor, 1954, ”Games Against Nature”, in R.M. Thrall,

C.H. Combes, R.L. Davis (eds.), Decision Processes, J. Wiley, New

York.)

For this relation the following 10 axioms should hold:
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1 Ordering: The relation ” ≥ ” is a complete ordering of the

alternatives {ai, i = 1, · · ·m}, i.e. a transitive relation such

that any pair of alternatives can be compared.

2 Symmetry: The ordering does not depend on the numbering

of alternatives or numbering of states of the world.

3 strong statewise domination If eij > ekj ∀j = 1, . . . n,

i.e. if alterantive ai is strictly better than ak for all states zj,

then ai should be strictly preferred to ak.

4 Continuity

If the matrices (ek
ij) converge to (eij) and if alternative ai is

strictly prefered to al with respect to the outcomes (ek
ij), then

ai is prefered to aj with respect to outcome (eij).

5 Linearity:

The ordering relation between the alternatives ai does not

change if all outcomes {eij} are transformed according to the

positive linear transformation

e′ij = α + βeij, β > 0

6 Row adjunction:

The ordering between two alternatives depends only on the di-
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rect comparison of these two alternatives and does not change

when further alternatives are added.

7 Column linearity:

The ordering is not changed if a constant is added to a column,

i.e. if for state j the outcomes are change according to e′ij =

eij + αj, i = 1, · · ·m.

8 Column duplication:

The ordering is not changed if a new column, identical with

an existing column, is added to the matrix.

9 Convexity:

If the outcome of an alternative ai is the average of the outcome

of two equivalent alternatives al and ak, i.e. eit = (elt +

ekt)/2, t =, · · ·n, then ai is at least as good as al.

10 Special row adjunction:

The ordering between the old alternatives is not changed by

the adjunction of a new alternative, provided that no outcome

of this new alternative is greater than the corresponding out-

comes of all old alternatives.
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criterion not compatible with

Savage-Niehans row adjunction

Hurwicz column linearity, convexity

Laplace column duplication

maximin column linearity

4 Decisions under risk

4.1 Expected value

Decision matrix

z1 z2 · · · zn φ(.)

p1 p2 · · · pn

a1 e11 e12 · · · e1n
∑n

j=1 pje1j

... ... ... ... ... ...

am em1 em2 · · · emn
∑n

j=1 pjemj

Choose the alternative with the highest expected outcome. (sug-

gested by Fermat, Pascal, etc.)

• Many repetitions: average outcome converges to expected value.

• No risk preferences

Ex.
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z1 z2 φ(.)

pi 0.5 0.5

a1 0 0 0

a2 10 -10 0

a3 100000 -100000 0

A (risk neutral) decision maker is indifferent between these 3

alternatives.

Ex.: A decision maker is confronted with the following ”catas-

trophe” x̃.

x p(x)

0 0.9

-1000 0.1

E(x̃) = −100, σ2(x̃) = 90000

Assume that 10 000 persons are in an identical situation, where

the catastrophes are mutually independent and the outcomes are

shared between these people.

ỹ =
1

10000

10000∑
i=1

x̃i

Prob{ỹ =
−1000k

10000
} =


10000

k

 0.1k0.910000−k, k = 0, · · · , 10000
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E (ỹ) = −100, σ2 =
90000

10000
= 9

4.2 expected value/variance criterion

µ − σ− criterion

Φ(.) = h[E(x̃), σ2(x̃)]

Properties of h :

• Monotonicity
∂h(E, σ2)

∂E
> 0

• Risk attitudes

1. ∂h(E, σ2)/∂σ2 = 0 : the decision maker is risk-neutral.

2. ∂h(E, σ2)/∂σ2 < 0 : the decision maker is risk-avers.

3. ∂h(E, σ2)/∂σ2 > 0 : the decision maker is risk-seeking.

Φ(x̃) = E(x̃) − kσ2(x̃)

4.3 ”safety-first” criterion

Consider the following two lotteries:
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x p(x)

−8 1
11

3 10
11

y p(y)

1 10
11

12 1
11

Computing expected value and variance leads to

E(x) = − 8

11
+

30

11
= 2, E(x2) =

64

11
+

90

11
=

154

11

E(y) =
12

11
+

10

11
= 2, E(y2) =

144

11
+

10

11
=

154

11

Using the µ/σ− criterion a decision maker would be indifferent.

Risk ∼= variability of x̃ below the threshold t.

Semi-Variance:

σ2−(t) =
∫ t

−∞(x − t)2f (x)dx

Variance vs. Semi-Variance:

Variance: mean squared distance to the expected value

Semi-Variance: mean squared distance to the threshold, given

that the values are below the threshold.

The decision is made according to the preference function

Φ[x̃] = E(x̃) − kσ2−(t)

Ex.

Consider the following 2 alternatives:
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A B

x p x p

0 0.2 -20 0.01

+5 0.3 +7 0.49

+11 0.5 +8 0.50

µ/σ criterion:

• B has a higher gain than A:

E(x̃|A) = 7 < E(x̃|B) = 7.23

• A has higher risk than B

σ2(x̃|A) = 19 > σ2(x̃|B) = 7.737

• ⇒ a risk avers (k = 1 > 0) decision maker chooses B, as

Φ(x̃|A) < Φ(x̃|B).

”safety first”-criterion

Assume that the threshhold is t = 0.

• A has no risk, as x̃ can never be below the threshold.

• Semi-Variance for B:

σ2−(t = 0) = .01(−20 − 0)2 = 4
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• using the preference function Φ(x̃) = E(x̃) − σ2−(t = 0) one

obtains

Φ(x̃|A) = 7 − 1(0) = 7 and Φ(x̃|B) = 7.23 − 1(4) = 3.23

4.4 Bernoulli-Principle (expected utility principle)

Daniell Bernoulli (1738), John von Neumann & Oskar Morgenstern

(1944).

Petersburg paradoxon

How much money would you bet on the following game?

A fair coin is tossed until ”tail” appears for the first time. If

”tail” appears at the n-th time you gain 2n euros.

i = 1 i = 2 i = 3 · · · n

pi 2−1 2−2 2−3 . . . 2−n

gain(i) 2 22 23 · · · 2n

pi*gain(i) 1 1 1 · · · 1

The expected value of this game is +∞.

Decisions are based on the expected value of the utility of out-

comes rather than on the expected value of outcomes themselves.
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• assign to the outcomes eij of each alternative a utility u(eij)

by means of a utility function u. ⇒ Utility matrix

z1 z2 · · · zn

p1 p2 · · · pn

a1 u(e11) u(e12) · · · u(e1n)

... ... ... ... ...

am u(em1) u(em2) · · · u(emn)

• The expected value of the utility is then used as preference

function Φ(ai).

Φ(ai) = E(u(ai)) =
n∑

k=1
pku(eik)

Ex.

z1 z2 z3 z4

p1 = 0.4 p2 = 0.1 p3 = 0.2 p4 = 0.3

a1 80 70 100 90

a2 60 90 150 80

Utility function u(x) = log(x)

z1 z2 z3 z4 Φ(ai)

p1 = 0.4 p2 = 0.1 p3 = 0.2 p4 = 0.3

a1 4.38 4.25 4.61 4.50 4.449

a2 4.09 4.50 5.01 4.38 4.402
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Remark: unbounded utility functions do not solve the Peters-

berg Paradoxon.

i = 1 i = 2 i = 3 · · · n · · ·

pi 2−1 2−2 2−3 . . . 2−n · · ·

gain (i) x1 x2 x3 · · · xn · · ·

utility(i) u(x1) = 2 u(x2) = 22 u(x3) = 23 · · · u(xn) = 2n · · ·

pi*utility(i) 1 1 1 · · · 1 · · ·

the expected utility is ” + ∞”

4.5 Axioms of Decision Making under Risk:

• Ordinality:

– Completeness, i.e. for all outcomes (alternatives) a and

b it has to hold that: a Â b or a ∼ b or a ≺ b.

– Transitivity, i.e. a Â b and b Â c implies a Â c.

• Dominance principle (Monotony)

If there are two alternatives a = (ē, p1; e, 1 − p1) and b =

(ē, p2; e, 1 − p2) where (ē > e) then: p1 > p2 ⇒ a Â b.

• Continuity:

For all outcomes a, b, c where a Â b Â c there is a probability

p, such that b ∼ (a, p; c, 1 − p)
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• Substitution

for any outcomes (alternatives) a, b, where a Â b, and an

arbitrary third outcome c and an arbitrary probability p, the

condition (a, p; c, 1 − p) Â (b, p; c, 1 − p) holds.

Ex:

Consider the following lotteries: a = (2000, 1), b = (10000, 0.25; 0, 0.75), c =

(10000, 1/3; 0, 2/3).

According to the axiom of substitution: a ∼ b ⇒ (a, 0.25; c, 0.75) ∼

(b, 0.25; c, 0.75)

4.6 Elicitation of Utility functions:

Theorem:

Two utility functions, where one function is a positive linear

transformation of the other one, lead to the same preference order.

Proof: 2 utility functions: u1(x), u2(x)

positive linear transformation: u2(x) = α + βu1(x), β > 0,

Preference functions: Φ1(ai) = E(u1(ai)), Φ2(ai) = E(u2(ai)),

Φ2(ai) = E(u2(ai)) = E(α + βu1(ai)) = α + βE(u1(ai)) =

α + βΦ1(ai)

Φ2(ai) > Φ2(aj) ⇔ Φ1(ai) > Φ1(aj)

Elicitation of utility functions:
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Choose the best possible outcome ē and the worst outcome e

from the set of all outcomes.

Define: u(ē) = 1, u(e) = 0.

Probability Equivalent Method

To estimate the utilities u(eij) of all other outcomes eij the

decision maker has to choose between

• the certain outcome eij

and • the lottery (ē, p; e, 1 − p) ⇒ u(eij) = p∗.

Certainty Equivalent Method

The lottery (ē, p; e, 1 − p) is given and the decision maker has

to decide, which certain outcome e∗ is considered to be equivalent

to this lottery.

⇒ u(e∗) = p.
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4.7 Value of Information:

zk, k = 1, · · ·n · · · States of the world

p(zk) · · · probability of state k

br, r = 1, · · ·m, · · · additional information

q(br) · · · probability of information br

p(zk|br) · · · conditional probability, that state k occurs,

when information br is observed

p(zk) =
m∑

r=1
p(zk|br)q(br)

the maximized expected utility is

without information:

EU = max
i

n∑
k=1

p(zk)uik =

= max
i

n∑
k=1

m∑
r=1

p(zk|br)q(br)uik =

= max
i

m∑
r=1

n∑
k=1

p(zk|br)q(br)uik

EU = max
i

m∑
r=1

q(br)
n∑

k=1
p(zk|br)uik

with complete information

EU =
m∑

r=1
q(br)

n∑
k=1

p(zk|br) max
i

uik =
n∑

k=1
p(zk) max

i
uik

with partial information

EU =
m∑

r=1
q(br) max

i

n∑
k=1

p(zk|br)uik

24



Movie co-branding example

A company has to decide, whether to develop and launch a

new product co-branded to a movie, without knowing whether the

movie will be a success or will flop.

Profits & Costs:

Costs of developing the product 1 000 000 $

Profits, in case movie is a hit 2 500 000 $

Profits, in case movie is a flop 100 000 $

costs of focus group 4 000 $

From other comparable movies, one knows, that

Prob(movie is a hit) = 0.8 and Prob( movie is a flop) = 0.2.

Company may ask focus group, whether the movie will be a

success. From the past, one knows:

Aj Movie was

P (Bi|Aj) a success a flop

Bi Focus likes movie 0.95625 0.675

group dislikes movie 0.04375 0.325

The following events may occur:

A1 · · · movie is a success

A2 · · · movie is a flop
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B1 · · · focus group likes movie

B2 · · · focus group dislikes movie

According to Total Probability Theorem one can compute

P ( Focus group likes movie) = 0.95625 × 0.8 + 0.675 × 0.2 = 0.9

P ( Focus group dislikes movie) = 0.04375 × 0.8 + 0.325 × 0.2 = 0.1

and by Bayes Theorem:

P ( success | group likes movie) = 0.95625×0.8
0.9 = 0.85

P ( flop | group likes movie) = 0.15

P ( success | group dislikes movie) = 0.04375×0.8
0.1 = 0.35

P ( flop | group dislikes movie) = 0.65
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4.8 Initial Wealth, Certainty Equivalent, Risk Premum

Decision does not only depend on risk preferences, but also on

initial wealth.

The initial wealth can be taken into account:

w0 · · · initial wealth, (not random)

w̃f · · · final wealth, random variable.

w̃f = w0+x̃, or w̃f = w0(1+x̃), or w̃f = (w0−a)(1+i)+a(1+x̃)

Decisions are based on the expected utility of final wealth E(U(w̃f)).

The final wealth depends on initial wealth, the states of nature(i.e.

the outcome of the lottery x̃), and the chosen alternative a.

Def: The certainty equivalent w∗ of a lottery x̃ is the final

wealth, which gives the same utility to the decision maker as the

initial wealth plus the uncertain lottery.

i.e. U(w∗) = E(U(w0 + x̃)).

Def: The asking price pa of a lottery x̃ is the price at which

the decision maker is indifferent between keeping the lottery and

selling it; i.e.

U(w0 + pa) = E(U(w0 + x̃)) ⇒ pa = w∗ − w0.

• p < pa ⇒ the decision maker has a higher utility, if he keeps

the lottery
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• p > pa ⇒ the decision maker has a higher utility if he sells

the lottery.

Ex.

w0 = 20

z1 z2 z3 z4

p1 = 0.4 p2 = 0.1 p3 = 0.2 p4 = 0.3

x 60 50 80 70

wf 80 70 100 90

u(wf) = log(wf) 4.38 4.25 4.61 4.50 4.449

log(w∗) = 4.449 ⇒ w∗ = exp(4.449) = 85.5414 ⇒ pa =

65.5414.

The asking price may also be negative:

U(wf) =
√

wf , initial wealth w0 = 100

x p(x)

-50 0.5

50 0.5

the expected utility is

E(U(w̃f)) = 0.5
√

50 + 0.5
√

150 = 9.659 = U(w∗) =
√

w∗

⇒ w∗ = 93.296 ⇒ pa = −6.699
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⇒ the decision maker is willing to pay 6.699, go get rid of the

lottery!!

On the other hand, a decision maker may prefer to buy a risky

asset.

Def: The bid price pb of a lottery x̃ is the price at which the

decision maker is indifferent between buying the lottery and not

buying it;

pb is implicitly given by the equation

U(w0) = E[U(w0 − pb + x)] =
∫ ∞
−∞ U(w0 + x − pb)f (x)dx

Theorem:

In case of a linear utility function, the asking price for a additive

lottery is equal to the expected value of the lottery.

Proof:

U linear ⇒ U(wf) = g + dwf , with d > 0

This implies:

U(w∗) = E[U(w̃f)] = E[g + d(w0 + x̃)]

g + dw∗ = g + dw0 + dE(x̃)

w∗ = w0 + E(x̃)

⇒ pa = w∗ − w0 = E(x̃)
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⇒ decision maker with a linear utility function values the lottery

only by its expected value

⇒ utility function is linear ⇒ decision maker is risk neutral

⇒ if the utility function is linear and the decision maker has two

lotteries, which have the same expected value, the decision maker

will ask the same price, even if the lotteries differ considerably with

respect to other moments, e.g. the variance.

The Risk-Premium π is defined as the difference between

expected value of the lotterie and the asking price i.e. π = E(x̃)−pa

π = 0 the decision maker is risk neutral. The asking price is equal

to the expected value of the lottery.

π > 0 The decision maker is risk avers. π > 0 ⇒ pa < E(x̃), i.e.

the asking price der is less than the asking price in case of risk

neutrality.

π < 0 the decision maker is risk seeking. π < 0 ⇒ pa > E(x̃)

Ex.

w0 = 20
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z1 z2 z3 z4

p1 = 0.4 p2 = 0.1 p3 = 0.2 p4 = 0.3

x 60 50 80 70

wf 80 70 100 90

u(wf) = log(wf) 4.38 4.25 4.61 4.50 4.449

log(w∗) = 4.449 ⇒ w∗ = exp(4.449) = 85.5414 ⇒ pa =

65.5414.

E(x̃) = 66,⇒ π = 0.4586.

Now assume a different utility function: u(w) = w2.

z1 z2 z3 z4

p1 = 0.4 p2 = 0.1 p3 = 0.2 p4 = 0.3

x 60 50 80 70

wf 80 70 100 90

u(wf) = w2
f 6400 4900 10 000 8100 7480

(w∗)2 = 7480 ⇒ w∗ =
√

7480 = 86.487 ⇒ pa = 66.487.

π = −0.487.
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5 Critiques and Alternativ Decision Rules

Ellsberg paradox: people are ambiguity-averse and prefer decisions

under risk (i.e. with given or estimated probabilities ) to decisions

under abiguity.

Kahneman and Tversky, ”Prospect Theory: An Analysis of De-

cision under Risk”, Econometrica 47, 1979.

Tversky and Kahneman, ”Advances in Prospect Theory: Cumu-

lative Representation of Uncertainty”, J. of Risk and Uncertainty

5, 1992.

Certainty effect:

expected utility theory: utilities are weighted by their probabil-

ities

Problem: outcomes being considered as certain are overweigthed

relative to outcomes which are merely probable. (Alais Paradox)

probability/possibility vs. gain

Compare lotteries:

A : (6000, 0.45; 0., 0.55) with B : (3000, 0.90; 0, 0.10)

as well as

C : (6000, 0.001; 0, 0.999) with D : (3000, 0.002; 0, 0.998)

prospects with high probability ⇒ choose prospect, where prob-

ability is higher
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prospects possible, but probability low ⇒ choose higher gain

Isolation effect

Consider the following two stage game:

Stage 1: games end with probability 0.75 (without winning any-

thing), or proceed to stage 2 with probability 0.25.

Stage 2: either lottery A : (4000, 0.80, 0, 0.20) or B : (3000, 1.; 0, 0.).

The choice between A and B has to be made before the game

starts.

This two stage game is equivalent to lotteries

C : (4000, 0.20; 0, 0.80) and D : (3000, 0.25; 0, 0.75).

Usually C Â D but B Â A. People consider the stage 2 decision

independently from stage 1.

Reflection effect:

You are given 1000 $ and then you have to choose between

A : (1000, 0.50; 0, 0.50) and B : (500, 1.00)

Now consider the situation, that you get 2000 $ and then you

have to choose between

C : (−1000, 0.50; 0, 0.50) and D : (−500, 1.00).

Most people prefer B in the first case but C in the second case.

⇒risk aversion for positive prospects, risk seeking for negative

prospects.
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5.1 Prospect Theory:

5.1.1 Phase 1: editing phase

Coding: people perceive outcomes as gaines or losses (relative to

a reference point), rather than final state of wealth. Choice of the

reference point (i.e. formulate the prospect as gain or loss) may

have an influence on the decision.

Combination: Simplify prospects by combining probabilities

associated with identical outcomes.

Segregation: separate certain component from uncertain com-

ponents, i.e.

(300, 0.80; 200, 0.20) ⇒ 200 + (100, 0.80; 0, 0.20)

Cancellation:

Discard components that are shared by the prospects under con-

sideration, i.e.

The choice between (200, 0.20; 100, 0.50;−50, 0.30) and

(200, 0.20; 150, 0.50;−100, 0.30) is reduced to a choice between (100, 0.50;−50, 0.30)

and

(150, 0.50;−100, 0.30).

Simpification and detection of dominance

Outcomes and probabilities are rounded, extremely unprobable

events are discarded, dominated prospects are eliminated.
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5.1.2 Phase 2: evaluation phase

Consider in the following only simple prospects of the form (x, p; y, q),

with at most two non-zero outcomes; i.e. receive x with probability

p, receive y with probability q or nothing with probability 1−p−q.

A prospect is called strictly positive, iff outcomes are strictly

positive, (i.e. x, y > 0, p + q = 1), strictly negative, iff all

outcomes are strictly negative (i.e. x, y < 0, p+q = 1), or regular

otherwise.

V · · · overall value of an edited prospect

π = π(p) · · · decision weight associated with each probability

v = v(x) · · · subjective value of outcome x

with properties: v(0) = 0, π(0) = 0, π(1) = 1.

Value of regular prospects:

V (x, p; y, q) = π(p)v(x) + π(q)v(y)

Vaue of strictly positive prospects:

in the editimg phase, such prospects are devided into two com-

ponents: a riskless component and a risky component, i.e. the

additional gain or loss.

Consider (x, p; y, q) with p + q = 1 and x > y > 0.

V (x, p; y, q) = v(y) + π(p)[v(x) − v(y)].

Example: V (400, 0.25; 100, 0.75) = v(100)+π(0.25)[v(400)−
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v(100)].

5.1.3 Properties of the Value Function

According to Kahneman & Tversky:

v(200) − v(100) > v(1200) − v(1100), i.e. the difference in

value between a gain of 200 and a gain of 100 is greater than the

difference between a gain of 1200 and 1100, ⇒ the value function

v(.) is concave for gains.

Similarily, v(−100) − v(−200) > v(−1100) − v(1200), i.e. the

difference between an loss of 100 and 200 is greater than the dif-

ference between a loss of 1100 and 1200, ⇒ the value function is

convex for losses.

Most people consider the disutility resulting from losses being

greater than the utility from winning the same amount of money;

symmetric bets of the form (x, 0.50;−x, 0.50) are unattractive.

Moreover,

(y, 0.50;−y, 0.50) Â (x, 0.50;−x, 0.50), for 0 ≤ y < x

⇒ v(y)+v(−y) > v(x)+v(−x) and v(−y)−v(−x) > v(x)−v(y)

⇒ v(x) < −v(−x) and
v(−y) − v(−x)

−y − (−x)
>

v(x) − v(y)

x − y
⇒ v′(−x) > v′(x)

i.e. the value function is steeper for losses than for gains.
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5.1.4 Properties of the Weighting Function

1. If the expectation principle holds, then π(p) = p (expected

utility theory).

2. In general: π(p) is monotonically increasing, π(0) = 0, π(1) =

1.

3. For small probabilities, π(p) is sub-additive, i.e. π(rp) >

rπ(p) for 0 < r < 1, e.g.

(6000, 0.001; 0, 0.999) Â (3000, 0.002; 0, 0.998)

⇒ π(0.001)v(6000) > π(0.002)v(3000)

⇒ π(0.001)

π(0002
>

v(3000)

v(6000)
>

1

2

where the last inequality follows from concavity of v(.).

4. Rare events are overweighted, i.e. π(p) > p for small p; e.g.

(5000, .001; 0, 0.999) Â (5, 1.) and (−5, 1.) Â (−5000, .001; 0, .999).

This implies π(0.001)v(5000) > v(5) hence π(0.001) > v(5)/v(5000) >

0.001. (The last inequality follows from concavity.)

5. Allais Paradoxon: (2400, 1.) Â (2400, 0.66; 2500, 0.33) implies

v(2400) > π(0.66)v(2400) + π(0.33)v(2500)
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and (2500, 0.33; 0, 0.67) Â (2400, 0.34; 0, 0.66) implies π(0.33)v(2500) >

π(0.34)v(2400).

This leads to

(1 − π(0.66))v(2400) > π(0.33)v(2500) > π(0.34)v(2400)

⇒ 1 − π(0.66) > π(0.34)

i.e. Allais paradoxon can be explained by prospect theory, if

one assumes subcertainty, i.e. π(p) + π(1 − p) < 1, for

0 < p < 1.

6. sub-proportionality, i.e.

π(pq)

π(p)
≤ π(pqr)

π(pr)
, 0 < p, q, r < 1

which means that for a fixed ratio of probabilities the ratio

of corresponding decision weights is closer to unity when the

probabilities are low, than when they are high.
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Multiobjective Decisions

1. one discrete choice variable, n ”Consequences” or ”Goals”.

Ex.: buy a car

Price fuel consumption horse power

VW 16 200 7.2 l/100 km 66

Opel 14 900 7.0 l/100 km 62

Ford 14 000 7.2 l /100 km 55

Toyota 15 200 8.2 l/100 km 71

↓ ↓ ↓

min min max

2. several decision variables (discrete and continuous), including

constraints

Ex: reservoir for hydro power plant

decision variables: number of workers and time schedule for

construction, size of the reservoir, Design of the dam

criteria: capacity (max.), costs of construction (min.), evapo-

ration (min.)

constraints: minimal thickness of the dam

3. Ex: 1 continuous decision variable, 2 functions

min
x≥0

(f1(x), f2(x)), where f1(x) =
√

x + 1, f2(x) = (x−2)2+1
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The general model

A = {a1, a2, · · ·} · · · Set of alternatives

n consequences C1, · · ·Cn (”goals”, ”criteria”)

a 7→ (C1(a), C2(a), · · · , Cn(a))

R = {(C1(a), C2(a), · · · , Cn(a))|a ∈ A} · · · ”Range-set”

How can the ”best” alternative be chosen?

1. ordinal decision rules: lexicographic order, Borda’s method,

2. by preference function (value function, utility function)

v : C1×· · ·×Cn 7→ IR, (C1(a), · · · , Cn(a)) → v(C1(a), · · · , Cn(a))

which induces a preference order of the set of consequences

and thus also a preference order on the set of alternatives A.

Def: The relation between two goals may be

• indifferent (or neutral) , if the realization of one goal has no

influence on the degree of realization of the other goal

• complementary if a higher realization of the first goal also

leads to a higher realization of the other goal

• competitive, if a higher realization of one goal reduces the

degree of realization of the other goal

Def.:
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• An alternative a∗ ∈ A, which is optimal with respect to any

of the criteria Ci, i = 1, · · ·n is called a perfect solution.

(but in most cases one is confronted with a conflict of goals.

• a solution â ∈ A dominates a solution ã ∈ A, if â is at least

as good as ã regarding any goal Ci(a), and better with respect

to at least one goal.

e.g. for maximization: Ck(â) ≥ Ck(ã) ∀k = 1, · · ·n and

Ci(â) > Ci(ã) for at least one i.

• each admissable solution which is not dominated by another

admissable solution is called efficient solution (or pareto-

optimal solution).

• The complete solution is the set of all efficient solutions.

Example

A company has short-listed 9 applicants for a position. The

personnel manager decides to consider 5 criteria:

C1: time spent in higher studies (in years)

C2: Professional experience (in years)

C3: Age (in years)

C4: evaluation from the interview (on a scale 0 - 10)
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C5: psychometric test (on a scale 0 - 10)

Alternatives C1 C2 C3 C4 C5

Max Max Min Max Max

1. Albert 6 5 28 5 5

2. Blanche 4 2 25 10 9

3. Charles 7 7 38 5 10

4. Donald 5 7 35 9 6

5. Emily 6 1 27 6 7

6. Frank 5 7 31 7 8

7. Georgia 6 8 30 7 9

8. Helen 5 6 26 4 8

9. Irving 3 8 34 8 7

There is No perfect solution as no applicant dominates all oth-

ers.

Frank is dominated by Georgia, therefore Frank would certainly

not be chosen.

The complete solution consists of all applicants except Frank.

pre-analysis of satisfaction

Define a level of satisfaction for each criterion (minimum require-

ment)

42



eliminate alternatives, for which one (or more) of these minimum

requirements do not hold

In above example the applicant must have at least 4 years of

higher education and has to be younger than 35 years.

This requirements would exclude:

Charles, as he is 38 years old, and

Irving, as he only has 3 years of higher education.

Special decision rules:

ordinal multicriterion methods

Lexicografic Order:

• order the goals with respect to their importance

• optimize with respect to the most important goal

• in case alternatives are equally good with respect to the most

important goal, they are ordered with respect to the second

goal

• ...

Ex:
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fuel consumption Price horse power

Opel 7.0 l/100 km 14 900 62

Ford 7.2 l/100 km 14 000 55

VW 7.2 l/100 km 16 200 66

Toyota 8.2 l/100 km 15 200 71

Interchange ”Price” and ”power” ⇒ order of Ford and VW

changes.

Drawback: an alternative A is prefered to B if A is marginally

better than B with respect to a more important goal, even if A is

much worse than B in a less important goal.

Borda’s method

Chevalier Jean-Charles de Borda (1733-1799), physicist, math-

ematician, sailor, well known for discoveries in ballistics, fluid me-

chanics; member of Academie des Sciences.

Suppose we have m alternatives and n criteria.

• choose m integers k1 > k2 > · · · > km ≥ 0, the Borda

coefficients.

• rank the alternatives for each criterion j, j = 1, · · · , n.

• assign the k1 to the best alternative (with respect to the indi-

vidual criterion)
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• in case of ties (indifferences) take the arithmetic mean.

• for each alternative sum its rankings over all criteria

• rank the alternative according to this sum

Alternatives C1 C2 C3 C4 C5 sum

Max Max Min Max Max

1. Albert 6 5 5 3 28 3 5 2 5 1 14

2. Blanche 4 1 2 2 25 6 10 6 9 5.5 20.5

4. Donald 5 2.5 7 5 35 1 9 5 6 2 15.5

5. Emily 6 5 1 1 27 4 6 3 7 3 16

7. Georgia 6 5 8 6 30 2 7 4 9 5.5 22.5

8. Helen 5 2.5 6 4 26 5 4 1 8 4 16.5

Condorcet method

Marquis Caritat de Condorcet (1743-1794)

C1 C2 C3

A 15 16 03

B 11 13 17

C 08 04 12

D 02 10 09
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Condorcet aggregation procedure (or simple majority

vote):

compare, e.g., A and B: how many criteria ”vote” for A com-

pared to B?

2 criteria prefer A over B, and only 1 prefers B over A: ⇒ A Â

B.

Condorcet’s paradox:

This method can lead to a non-transitiv relation between the

alternatives.

main goals and subordinate goals:

• Define one goal as main goal, which should be maximized/minimized

ert/minimiert. The remaining goals are the subordinate goals.

• define bounds for the subordinate goals.

in case the subordinate goal should be minimized ⇒ upper

bound

in case the subordinate goal should be maximized ⇒ lower

bound

Ex: Reservoir for hydro power plant:

Main goal: minimize cost of construction

subordinate goals: evaporation ≤ Vmax, capacity ≥ Kmin
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Outranking Methods

Basic Idea:

an alternativ ai outranks an alternativ ak (ai S ak) if

• ai is at least as good as alternative ak for the majority of

criteria

• there is no criterion, such that ai is substantially less good as

ak

Ex. 4 alternatives, 3 criteria, which are equally important:

C1 C2 C3

a 90 10 100

b 100 0 100

c 90 100 90

d 50 50 100

• a S b, b S a, c S a,

• b and d may be incomparable

• relation is not transitive, c S a, a S b but c does not outrank b

Basic Concepts:

For each criterion Cj, j = 1, · · · , n define an indifference threshold

qj and a preference threshold pj, such that pj > qj.
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Define preference relation Âj with respect to criterion Cj

a Âj b ↔ Uj(a) > Uj(b) + pj

and the indifference relation

a ∼j b ↔ |Uj(a) − Uj(b)| ≤ qj

Define the following sets:

Concordance set: set of criteria, such that a is not strictly worse

than b

C(a, b) = {Cj|Uj(a) ≥ Uj(b) − qj}

Discordance set: set of criteria, such that b is strictly preferred

to a

D(b, a) = {Cj|Uj(a) ≤ Uj(b) − pj}

Obviously, there is a third set of criteria, where b is weakly

preferred to a

Cw(b, a) = {Cj|Uj(b) − pj ≤ Uj(a) < Uj(b) − qj}

The three sets C(a, b), Cw(b, a), D(b, a) form a partition of the

set of criteria

fC(a, b), fCw(b, a), fD(a, b) · · · ”importance” associated with the

above sets.
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Then define the

concordance coefficient ca,b = fC(a, b) + fCw(b, a)

discordance coefficient da,b = fD(b, a)

and form the Concordance matrix C = (c(ai, ak)) and Discor-

dance matrix D = (d(ai, ak)). Outranking methods are based on

these matrices

ELECTRE

ELimination Et Choix Traduisant la REalité

ELECTRE 1:

the thresholds pj = qj = 0.

C(a, b) = {Cj|a Âj b or a =j b}

and

D(b, a) = {Cj|b Âj a}

Assign normalized weights wj to the criteria (0 ≤ wj ≤ 1,
∑

j wj =

1).

Then

c(a, b) =
∑

j∈C(a,b)
wj

d(a, b) =
maxj∈D(b,a)(Uj(b) − Uj(a))

δ
with δ = max

j
max
e,f

(Uj(e)−Uj(f ))

Now define two thresholds tc and td, 0 < tc, td < 1
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alternative a outranks b iff c(a, b) ≥ tc and d(a, b) ≤ td.

Ex.

Alternatives C1 C2 C3 C4 C5

Max Max Min Max Max

weights 0.25 0.25 0.10 0.20 0.20

1. Albert 6 5 28 5 5

2. Blanche 4 2 25 10 9

3. Charles 7 7 38 5 10

4. Donald 5 7 35 9 6

5. Emily 6 1 27 6 7

6. Frank 5 7 31 7 8

7. Georgia 6 8 30 7 9

8. Helen 5 6 26 4 8

9. Irving 3 8 34 8 7

Eliminate Frank (is dominated by Georgia) and Charles and

Irving, as they are non satisficing (in the example C1 should be at

least 4 and C3 should be below 35).

Now normalize the criteria by dividing by the sum, i.e. ai/
∑

j aj.

By criterion C3 we take first the reciprocals, and then normilize.

This yields
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Alternatives C1 C2 C3 C4 C5

Max Max Max Max Max

weights 0.25 0.25 0.10 0.20 0.20

1. Albert 0.188 0.172 0.168 0.122 0.114

2. Blanche 0.125 0.069 0.188 0.244 0.205

4. Donald 0.156 0.241 0.134 0.220 0.136

5. Emily 0.188 0.034 0.174 0.146 0.159

7. Georgia 0.188 0.276 0.156 0.171 0.205

8. Helen 0.156 0.207 0.180 0.098 0.182

Compute the concordance matrix

C =

Al Bl Do Em Ge He

1. Albert 0.50 0.35 0.50 0.35 0.45

2. Blanche 0.50 0.50 0.75 0.50 0.50

4. Donald 0.65 0.50 0.45 0.20 0.70

5. Emily 0.75 0.25 0.55 0.35 0.45

7. Georgia 0.90 0.70 0.80 0.90 0.90

8. Helen 0.55 0.50 0.55 0.55 0.10

and the discordance matrix
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D =

Al Bl Do Em Ge He

1. Albert 0.51 0.40 0.19 0.43 0.28

2. Blanche 0.43 0.71 0.26 0.86 0.57

4. Donald 0.14 0.28 0.16 0.28 0.19

5. Emily 0.57 0.40 0.86 1.00 0.71

7. Georgia 0.05 0.30 0.20 0.07 0.10

8. Helen 0.13 0.61 0.51 0.20 0.30

Set the thresholds e.g. tc = 0.6, td = 0.4 then we get the matrix

S=

Al Bl Do Em Ge He

1. Albert 0 0 0 0 0

2. Blanche 0 0 1 0 0

4. Donald 1 0 0 0 1

5. Emily 0 0 0 0 0

7. Georgia 1 1 1 1 1

8. Helen 0 0 0 0 0

e.g., Ge S Do, as cGe,Do = 0.80 > tc, dGe,Do = 0.20 < td.
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