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Abstract. It has been shown theoretically that sympatric speciation can occur if intraspecific competition is strong
enough to induce disruptive selection. However, the plausibility of the involved processes is under debate, and many
questions on the conditions for speciation remain unresolved. For instance, is strong disruptive selection sufficient
for speciation? Which roles do genetic architecture and initial composition of the population play? How strong must
assortative mating be before a population can split in two? These are some of the issues we address here. We investigate
a diploid multilocus model of a quantitative trait that is under frequency-dependent selection caused by a balance of
intraspecific competition and frequency-independent stabilizing selection. This trait also acts as mating character for
assortment. It has been established previously that speciation can occur only if competition is strong enough to induce
disruptive selection. We find that speciation becomes more difficult for very strong competition, because then extremely
strong assortment is required. Thus, speciation is most likely for intermediate strengths of competition, where it
requires strong, but not extremely strong, assortment. For this range of parameters, however, it is not obvious how
assortment can evolve from low to high levels, because with moderately strong assortment less genetic variation is
maintained than under weak or strong assortment—sometimes none at all. In addition to the strength of frequency-
dependent competition and assortative mating, the roles of the number of loci, the distribution of allelic effects, the
initial conditions, costs to being choosy, the strength of stabilizing selection, and the particular choice of the fitness
function are explored. A multitude of possible evolutionary outcomes is observed, including loss of all genetic variation,
splitting in two to five species, as well as very short and extremely long stable limit cycles. On the methodological
side, we propose quantitative measures for deciding whether a given distribution reflects two (or more) reproductively
isolated clusters.
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Sympatric speciation has been and continues to be a con-
troversial topic. The disagreement concerns both empirical
evidence and theoretical plausibility. The diverse views on
the empirical issues were expressed in several recent publi-
cations. In accordance with the classical view advanced by
Mayr (1963), Coyne and Orr (2004) took allopatric speciation
as the null hypothesis in their systematic analysis of the ev-
idence on speciation and considered only three cases to be
promising for sympatric speciation. By contrast, Via (2001)
and Dieckmann et al. (2004) argued strongly for the impor-
tance and frequent occurrence of sympatric speciation. We
will be concerned here only with aspects of theoretical plau-
sibility.

Maynard Smith (1966) was apparently the first to show
that sympatric speciation is theoretically possible. Later work

substantiated this view but also showed that rather specific,
though highly diverse, conditions are required (for reviews,
see Turelli et al. 2001; Gavrilets 2003, 2004). The most com-
plex and appealing model proposed so far is that of Dieck-
mann and Doebeli (1999). It involves a polygenic trait subject
to intraspecific competition and an evolving, polygenic mat-
ing character. They demonstrated numerically, guided by an-
alytical reasoning, that if competition is sufficiently strong
to induce disruptive selection, assortative mating can evolve
to the extent that reproductively isolated clusters emerge,
which may be interpreted as speciation. They concluded that
their theoretical evidence generally suggests a prominent role
for ecologically driven speciation in sympatry. They further
strengthened and extended their plea for ‘‘adaptive specia-
tion’’ in subsequent publications (e.g., Doebeli and Dieck-
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mann 2000; Dieckmann et al. 2004). The Dieckmann-Doebeli
model, as well as the so-called adaptive-dynamics approach
in general, has received considerable attention, inspired re-
searchers to evaluate various aspects of ecologically driven
speciation (e.g., Drossel and McKane 2000; Geritz and Kisdi
2000; Matessi et al. 2001; Bolnick 2004b; Gourbiere 2004;
Kirkpatrick and Nuismer 2004; Polechová and Barton 2005;
Bürger and Schneider 2006), and caused vivid, sometimes
fierce debate (e.g., Waxman and Gavrilets 2005; the many
commentaries following in the same issue of the Journal of
Evolutionary Biology, Doebeli et al. 2005; Gavrilets 2005).

An important aspect of the disagreement between the ad-
herents of the adaptive-dynamics approach and workers root-
ed more firmly in the population-genetics tradition revolves
around the practice of adaptive dynamics to predict the evo-
lution of diversity and speciation by identifying so-called
branching points from purely ecological considerations. Their
identification clearly is essential in determining whether dis-
ruptive selection can be expected. But to what extent are
ecological considerations sufficient to predict evolutionary
diversification? In particular, what is the role of the genetic
architecture and the initial composition of the population?
How strong must assortment be to induce fission of a pop-
ulation? These are some of the issues we address here in an
attempt to shed more light on the genetic and ecological
conditions under which speciation driven by intraspecific
competition can and does occur. Despite a plethora of the-
oretical literature on this topic, these conditions are still not
well understood.

We confine our attention to models of disruptive selection
caused by intraspecific competition as the driving force. The
ecological part of the Dieckmann-Doebeli model coincides
with the model of intraspecific competition for a unimodally
distributed resource devised by Roughgarden (1972) and fur-
ther analyzed by Slatkin (1979). However, as discussed be-
low, this model has some questionable features. We instead
employ a version of a model introduced by Bulmer (1974,
1980) that is very similar to the Roughgarden model if se-
lection is weak (e.g., Bürger and Gimelfarb 2004; Bürger
2005), but behaves differently for strong selection. Whereas
the full Dieckmann-Doebeli model assumes a genetically var-
iable mating character, we consider the strength of assortative
mating as a fixed parameter and explore how strong it must
be so that reproductively isolated clusters can evolve and, if
so, at which frequency compared with other evolutionary
outcomes. A further simplification is our assumption that
assortative mating is based on the trait under natural selec-
tion. Gavrilets (2004) called this a ‘‘magic’’ trait. This makes
speciation easier than if the mating trait was genetically un-
related to the ecological trait (Dieckmann and Doebeli 1999).
Examples of such magic traits include body size in stickle-
backs (McKinnon et al. 2004) and in sea horses (Jones et al.
2003). Our trait is determined by a finite number of loci that,
in contrast to most previous studies, may have arbitrary but
additive effects. For assortative mating, we adopt a model of
Matessi et al. (2001) that includes a parameter for costs to
being choosy.

This study extends and complements Bürger and Schneider
(2006) in several ways. Here, we consider a diploid popu-
lation instead of a haploid; we include strong natural selec-

tion, that is, strong competition and strong stabilizing selec-
tion; we pay attention to edge effects that may arise if the
phenotypic range is limited, as it is the case if the trait is
determined by a given, finite set of genes (Polechová and
Barton 2005); and we study the roles of initial conditions
and the distribution of locus effects in more detail. A major
part of this study is numerical but quite systematic and com-
prehensive in determining the parameter regions where pop-
ulation splitting occurs. In particular, for every combination
of ecological and mating parameters, evolution of a large
number of genetic architectures (distribution of allelic ef-
fects) is simulated, each from 10 different initial conditions.
From a theoretical point of view, it is not always simple to
decide when a distribution of phenotypes can be interpreted
as speciation. We propose a single measure of linkage dis-
equilibrium for this purpose that does a surprisingly good
job, unless competition and assortment are so strong that
more than two species can coexist. We complement numerical
work by analytical work on the stability of monomorphic
equilibria. Convergence to a monomorphic equilibrium is, of
course, quite the opposite of speciation.

THE MODEL

We consider a sexually reproducing population of diploid
organisms with discrete generations in which both sexes have
the same genotype distribution among zygotes. Its size, N,
is density regulated but sufficiently large so that random ge-
netic drift can be ignored. Natural selection acts through dif-
ferential viabilities on an additive polygenic trait such that
individual fitness is determined by two components: fre-
quency-independent stabilizing selection on this trait and fre-
quency- and density-dependent competition among individ-
uals of similar phenotype. Assortative mating may induce
sexual selection.

Ecological Assumptions

The first fitness component is frequency independent and
reflects some sort of stabilizing selection on the trait, for
example, by differential supply of a resource whose utili-
zation efficiency is phenotype dependent. As most previous
studies, we ignore environmental variation and deal directly
with the fitnesses of genotypic values, g. Therefore, we use
the terms genotypic value and phenotype synonymously.

We model stabilizing selection by the Gaussian function

2S(g) � exp[�s(g � �) ], (1)

where s measures its strength and � is the position of the
optimum. We model competition between phenotypes g and
h by

2�(g, h) � exp[�c(g � h) ]. (2)

This implies that competition between individuals of similar
phenotype is stronger than between individuals of very dif-
ferent phenotype, as it will be the case if different phenotypes
preferentially utilize different food resources. Large c implies
a strong frequency-dependent effect of competition, whereas
frequency dependence vanishes in the limit c → 0. Let P(h)
denote the relative frequency of individuals with phenotype
h. Then the intraspecific competition function (g), which�̄
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measures the strength of competition experienced by phe-
notype g in a population with distribution P, is given by

�̄(g) � �(g, h)P(h). (3)�
h

There is no simple expression for (g). To leading order in�̄
c, it can be approximated by

2�̄(g) � 1 � c[(g � ḡ) � V ], (4)A

where ḡ and VA denote the mean and additive genetic vari-
ance, respectively, of the distribution P of genotypic values.

We include density-dependent population growth which,
in the absence of genetic variation, follows the logistic equa-
tion

N(� � N /�) 0 � N 	 ��
N
 � (5)�0 N � ��.

The carrying capacity is K � (� � 1)�. Monotone conver-
gence to K occurs for all N with 0 	 N 	 �� if 1 	 � � 2,
and oscillatory convergence (at a geometric rate) if 2 	 � 	
3. Other forms of population regulation may be used as well
(Appendix 2; Bürger 2005).

Following Bulmer (1974), we assume that the absolute
fitness of an individual with genotypic value (phenotype) g
is

W(g) � [� � �̄(g)N /�)]S(g), (6)

where the dependence of W(g) on N and P is omitted. Closely
related ecological models, with quadratic instead of Gaussian
functions in (1) and (2), were studied under different as-
sumptions and with an other focus by Bürger and Gimelfarb
(2004) and Schneider and Bürger (2006). The Gaussian
choice has the advantage that weak and strong selection can
be modeled, but is prohibitive to a general mathematical anal-
ysis. The fitness function (6) generates disruptive selection
if c is large enough and the variance of the phenotypic dis-
tribution is not too large (see Theoretical Background and
Analytical Results).

If stabilizing selection and competition are both sufficient-
ly weak, so that terms of order s2, c2, cs, and smaller can be
ignored, then all known functional forms of fitness that have
been used in modeling intraspecific competition for a uni-
modally distributed resource converge on the same simple
quadratic fitness function,

W (g)app

�1
N ��2 2� � � 1 � s(g � �) � c � 1 [(g � ḡ) � V ] .A� �� � � �� N

(7)

Here, frequency dependence enters fitness only through the
mean and the variance of the distribution, and fitness is either
convex or concave but never multimodal. At least under ran-
dom mating, the equilibrium structure resulting from selec-
tion according to equation (7) is very similar to that resulting
from equation (6) if s and c are not too large (e.g., s � 0.4
and [� � 1]c/s � 2; Bürger 2005; see also Kopp and Her-
misson 2006; Bürger and Schneider 2006).

Assortative Mating

We assume that individuals mate assortatively with respect
to the trait under natural selection. We adopt the model of
Matessi et al. (2001), which is a specification of that of Gav-
rilets and Boake (1998), and assume that females express
preferences based on the similarity of their phenotypic value
with that of their prospective mating partner. We choose the
preference function

2� (g � h) � exp[�a(g � h) ]. (8)

This is the probability that an encounter of a female g with
a male h results in mating. If a � 0, females have no pref-
erences and mate at random. The larger a, the stronger is
assortment.

Females mate only once, whereas males may participate
in multiple matings. If an encounter was not successful, in
which case a female remains unmated, she may try again
unless the total number of encounters has reached a number
M. This reflects the idea that choosiness has costs, for in-
stance, because the mating period is limited. If M � �, there
are no costs to assortative mating because every female is
sure to find a mating partner; if M � 1, these costs are very
high. The probability that an encounter of a female of type
g with a random male results in mating is (g) � 
h �(g ��̄
h) P(h), and the probability that she eventually mates with a
male of type h is given by Q(g, h) P(h), where

M�1
mQ(g, h) � [1 � �̄ (g)] � (g � h). (9)�

m�0

In general Q is not symmetric in g and h, and the first ar-
gument refers to the female.

If M � 1, then Q(g, h) � �(g � h). This leads to strong
sexual selection in both sexes. It admits a number of different
interpretations, for instance, that both sexes are choosy, and
has been used in a variety of studies. If the encounter rate
is very high, M may be chosen to be infinity, and we obtain
Q(g, h) � �(g � h)/ (g). Then, 
h Q(g, h) P(h) � 1 for all�̄
g, and assortative mating does not induce sexual selection
among females. It does, however, induce sexual selection
among males. For a more detailed discussion of this model
and its relation to other work, see Bürger and Schneider
(2006).

Genetic Assumptions and Evolutionary Dynamics

The trait value g of an individual is determined additively
by n diallelic loci. We denote the alleles at locus i by Ai and
ai, their effects by ½�i and �½�i (�i � 0), and their fre-
quencies by Pi and 1 � Pi. As noted by Turelli and Barton
(2004), this choice of effects is general if the difference of
homozygous effects (the effect of a substitution) is 2�i be-
cause constants that determine the mean phenotype can be
absorbed by �. We assume that � is within the range of pos-
sible genotypic values, that is, �� 	 � 	 �, where � �

�i and the scale is chosen such that � � ½. This excludesn
i�1
frequency-independent directional selection.

The multilocus dynamics has to be described in terms of
diploid genotype frequencies because zygotes (offspring) are
generally not in Hardy-Weinberg proportions because of non-
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random mating. Genotypes are unordered. Let t represent an
offspring genotype and u and v parental genotypes. The cor-
responding phenotypes are denoted by gt, gu, and gv. The
frequency of genotype t (among zygotes) in consecutive gen-
erations is denoted by pt and . The frequency of t afterp
t
natural selection is � ptWt/W̄, where Wt � W(gt) and W̄p*t
� 
t Wtpt is the mean viability. After selection, mating and
recombination occur. Let R(uv → t) designate the probability
that parents with genotypes u and v produce a zygote with
genotype t. R(uv → t) is determined by the pattern of recom-
bination between loci.

The genetic dynamics is given by a system of 22n�1 � 2n�1

recursion relations that can be written as
2W̄


 * * *p � p p Q R(uv → t), (10)�t u v uvW̃ u,v

where � Q*(gu, gv) and the asterisk indicates that Q isQ*uv

calculated from the genotypic frequencies after selection and
W̃ � W̄2 
t,u,v R(uv → t). The demographic dynamicsp*p*Q*u v uv

follows the standard recursion

˜ ¯N
 � N(W /W ). (11)

Thus, for a genetically monomorphic population (VA � 0)
with g � ḡ � �, population growth follows equation (5). The
complete evolutionary dynamics is given by the coupled sys-
tem (10) and (11). We set N
 � 0 (population extinction) if
W̃/W̄ � 0.

THEORETICAL BACKGROUND AND ANALYTICAL RESULTS

Equilibrium Structure and the Maintenance of
Genetic Variability

The complexity of this model prohibits a detailed and com-
prehensive analytic treatment. However, for special or lim-
iting cases some useful results can be derived. Also the sta-
bility of monomorphic equilibria can be treated in full gen-
erality. Therefore, conditions for the maintenance of genetic
variation are available: The results in this section are valid
for a more general model than introduced above: the number
of alleles per locus and their effects may be arbitrary, and
population regulation can be more general (see Appendix 2).

Random mating and weak selection. For a randomly mat-
ing population (a � 0) and if the population size is assumed
to be at demographic equilibrium, the equilibrium and sta-
bility structure can be determined completely provided se-
lection is sufficiently weak, so that the fitness function (6)
can be approximated by the quadratic function (7), and link-
age disequilibrium can be ignored (Bürger 2005; Schneider
2006a). Because these results are important in guiding our
intuition, we briefly summarize them for the case of logistic
population growth.

Result 1: If, approximately, c(� � 1) 	 s, then at most
one locus can be polymorphic at a stable equilibrium and,
typically, multiple stable equilibria coexist. At a polymorphic
locus two alleles with neighboring effects are segregating
(i.e., there is no allele with effect in between).

Result 2: If, approximately, c(� � 1) � s, then there exists
a unique asymptotically stable equilibrium that is globally
stable. At least one locus is polymorphic at this equilibrium.
The polymorphic loci can be determined (those with large

effects are polymorphic) and the allele frequencies can be
calculated. At a polymorphic locus the two alleles with the
largest and smallest effect are segregating. If the optimum is
symmetric (� � 0), then all loci are polymorphic.

As discussed below, c(� � 1) � s implies that a population
with small variance and mean at the optimum � is under
disruptive selection. Otherwise, it experiences stabilizing se-
lection. Thus, roughly, results 1 and 2 show that high genetic
variability is maintained in a randomly mating population if
the combined strength of frequency- and density-dependent
selection is greater than that of stabilizing selection so that
overall disruptive selection is induced. Otherwise, little or
no variation is maintained. Comparison with exact results
from numerical iteration of the recursion relations for the
gamete frequencies, so that linkage disequilibrium and pop-
ulation regulation are admitted, shows that the linkage-equi-
librium approximation is very accurate if linkage is not too
tight (Bürger 2005; Schneider 2006).

Weak assortative mating and weak selection. If assortative
mating and selection are both weak, such that only terms of
order a, s, and c need to be retained, but all others, including
interaction terms such as as, can be ignored, simple and in-
tuitive conditions for the stability of monomorphic equilibria
can be derived. It can be shown (Appendix 2) that mono-
morphic equilibria sufficiently close to � are stable if (ap-
proximately)

a
s � � c(� � 1) if M � 2 or (12)

2

s � a � c(� � 1) if M � 1. (13)

Otherwise, all monomorphic equilibria are unstable. Further,
stable monomorphic equilibria exist in any genetic system
(i.e., even if no genotype is close to �) if

a
� c(� � 1) and M � 2 or if

2 (14)

a � c(� � 1) and M � 1.

The conditions for M � 2 are more accurate if M is large.
Moderately strong assortment promotes stability of mono-

morphic equilibria because, compared with random mating,
it counteracts competition by inducing local stabilizing se-
lection around monomorphic states. If a monomorphic ge-
notype is frequent, it becomes more difficult for deviating
types to find a mating partner. This effect is more pronounced
for strongly selective mating (M small).

For M � �, condition (12) is equivalent to equation (3.3)
of Kirkpatrick and Nuismer (2004) with k � ½ (their animal
model, which corresponds to our M � �); condition (13) is
equivalent to their (3.3) with k � 1 (their plant model). Their
ecological model coincides with ours if we ignore population
regulation and assume N � K � �(� � 1). Their a, c1, c2,
and m correspond to our s, 1 � (1/�), c, and a, respectively.
Kirkpatrick and Nuismer’s (3.3) quantifies when natural and
sexual selection together (their lifetime fitness) become dis-
ruptive near the optimum of stabilizing selection. As our (12–
14), it assumes weak natural selection and weak assortment.
Conditions (12–14) are also valid if individuals are haploid
(Bürger and Schneider 2006) or if there is a single locus with
multiple alleles (Schneider and Bürger 2006).
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Strong selection. With strong selection, we have to resort
to the fitness function (6), and in general we cannot ignore
linkage disequilibrium. Fitness now depends on s and c sep-
arately and not only on c/s. The above results are no longer
valid if stabilizing selection becomes very strong, not even
for random mating. On the one hand, if Gaussian stabilizing
selection is strong, then already in the absence of competition
(i.e., if c � 0), stable fully polymorphic equilibria can be
maintained (Willensdorfer and Bürger 2003). This does not
require linkage, but is facilitated by it. On the other hand,
for some genetic systems monomorphic equilibria can be
stable for arbitrarily strong competition. Indeed, from the
eigenvalues of the monomorphic equilibria, the following
sufficient condition for the stability of the monomorphic equi-
librium with genotype uu fixed can be derived

ln � ln �
	 s 	 for all t � u (15)2 2(g � �) (g � �)ut uu

(see Appendix 2; here and in Appendix 2 we use u, t, etcetera
to label gametes and uu, ut, etcetera to label genotypes).
Notably, this condition is independent of c and implies that
for strong enough stabilizing selection monomorphic equi-
libria whose phenotype is close to � become stable. If s →
�, they lose their stability (except when guu � �). Because
in our model, we have (gut � �)2 � 1, condition (15) can be
fulfilled only if s � ln �. If � � 0, s � 4 ln � is required.
For random mating, it can also be shown that if 2 � � 	 3,
� � 0, and s � 0.4, then no monomorphic equilibrium can
be stable if c(� � 1) � s.

The general case. The following simple conclusions can
be drawn. For proofs and more details, see Appendix 2. First,
increasing strength of assortment (large a) and high costs to
being choosy (small M) promote the stability of the mono-
morphic equilibria, whereas increasing frequency depen-
dence (large c) tends to reduce their stability. Second, unless
costs are absent, that is, M 	 �, all monomorphic equilibria
at which a positive population size can be maintained become
stable for sufficiently large a. Third, high recombination rates
favor the stability of monomorphic equilibria. The reason is
that recombination generates intermediate phenotypes, which
promotes stability of monomorphic equilibria with an inter-
mediate phenotype relative to equilibria representing strong
divergence. Finally, the stability properties of the mono-
morphic equilibria depend on the genetic architecture, that
is, on the distribution of allelic effects and on the recombi-
nation rates. For instance, if two genetic architectures pro-
duce the same genotypic values, for example, one with two
diallelic loci and one with a single locus with four alleles,
the stability properties of the monomorphic equilibria can be
different for the same model parameters.

Shape of the Fitness Function

Because selection is frequency dependent, the shape of the
fitness function, (6), depends strongly on the distribution of
phenotypes. If there is a monomorphic distribution located
at g � �, then W(g) displays disruptive selection in a neigh-
borhood of � if and only if c(� � 1) � s. By equation (4)
and continuity, this continues to be true for distributions with
mean � and sufficiently small variance. With increasing var-

iance, the shape of the fitness function may change dramat-
ically. This is illustrated in Figures 1a,c for dimorphic dis-
tributions with type frequencies of ½ at each of the positions
�� and �, where 0 � � � � � ½ (from here on we assume
� � 0). If � is sufficiently small, there is disruptive selection
near zero: fitness is U-shaped if stabilizing selection is weak
(s � 0.4, Fig. 1a) and bimodal if it is strong (s � 2, Fig. 1c).
As � increases beyond a critical value (0.45 in Fig. 1a and
0.20 in Fig. 1c), the fitness function develops a local maxi-
mum at g � 0 and becomes trimodal. It is very flat then, so
that this feature is invisible in the figures. As � increases
further (beyond 0.49 in Fig. 1a and beyond 0.25 in Fig. 1c)
the fitness function becomes unimodal with mode at g � 0,
and there is pure stabilizing selection. If s � 0.4 and � � 2,
as in Figure 1a, and if 0.4 � c � 1.46, then the fitness function
is U-shaped on the phenotypic range for every possible di-
morphic distribution.

The fitness function (6) has the (natural) property that for
sufficiently extreme types fitness decays to zero. (Since, as
a matter of convenience, we chose a fixed phenotypic range,
namely [�½, ½], this property can be achieved by making s
large.) By contrast, Roughgarden’s functional form of fitness
(Roughgarden 1972; Slatkin 1979),

(� � 1)N
W (g) � � � �̄(g), (16)R S(g)

which has been used in many studies of intraspecific com-
petition, may behave differently if selection becomes strong
(Fig. 1). For small �, it can have either only one local max-
imum, then selection is stabilizing, or one local minimum,
then selection is disruptive. The latter occurs if and only if
c � s. (Note that s in eq. 16 corresponds to our s/[� � 1],
provided the population size is close to carrying capacity;
Bürger 2005.) Similar to our fitness function, the Roughgar-
den fitness has the property that disruptive selection becomes
weaker as the variance of the phenotypic distribution in-
creases; however, compared with ours, a much higher vari-
ance is needed to achieve this (Figs. 1b,d). For a dimorphic
distribution, as above, the critical value for � can be calcu-
lated explicitly and is . If � � 2, s � 0.4 and�(c � s)/(2cs)
c � 2 (Fig. 1b), this gives 1; if � � 2, s � 2, and c � 10
(Fig. 1d), it gives 0.45.

The basic features of the fitness assignments (6) and (16)
discussed above and displayed in Figure 1 remain qualita-
tively the same if discrete logistic growth is replaced by the
Beverton-Holt (or some similar) functional form of popula-
tion regulation (results not shown). Of course, this is true
only if � is small enough that no cycling can occur.

METHODS

Numerical Approach

We use the approach of Bürger and Gimelfarb (2004) with
the obvious modifications required by modeling assortative
mating. Its basic idea is to evaluate the quantities of interest
for many randomly chosen genetic parameter sets and initial
conditions and then calculate various statistics. In this sense,
we obtain statistical results, although each single result is
obtained by numerical iteration of the deterministic system
of recursion relations (10) and (11).
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FIG. 1. The Bulmer and Roughgarden fitness landscapes. Panels (a) and (c) display Bulmer’s fitness (eq. 6), as function of the phenotypic
value g and the distance, �, from the optimum � � 0 of each of the two phenotypes constituting a dimorphic distribution. Panels (b)
and (d) are analogous for the Roughgarden fitness (eq. 16). Panels (a) and (b) use s � 0.4 and c � 2, (c) and (d) use s � 2 and c �
10. The other parameters are � � 0, � � 2, � � 10,000. The values of � for which fitness near g � 0 becomes stabilizing (at least
locally) are 0.45, 2.00, 0.20, and 0.45 for panels (a–d), respectively. Clearly, � � 2 can never be realized. The fitness functions are
normalized such that W̄ � 1, that is, demographic equilibrium is assumed.

For a given number n of loci we constructed more than
�(n), what we call ‘‘genetic parameter sets’’ (allelic effects
of loci and recombination rates between adjacent loci from
the given range). We have �(n) � 1000 if n � 2, 3, and
�(4)� 300 because it turned out that �(4) � 1000 was much
too time consuming. (The total CPU time on PCs with 3 GHZ
was more than 2.5 years.) For each genetic parameter set,
allelic effects were obtained by generating values �i (i � 1,
2, . . . , n) as independent random variables, uniformly dis-
tributed between 0.1 and 1.0 and transforming them into the
actual allelic effects via �i � ½�i/
k �k. By restricting the
maximum ratio of locus effects to 10, the speed of the com-
putations was increased substantially because the time to
equilibration may be extremely long if one or several loci
have a very small effect. The consequences of admitting more
variation in allelic effects are discussed below. Genotypic
values were obtained by assuming additivity of allelic effects
(no epistasis or dominance). Our scaling implies that the

range of phenotypic values is always [��, �] � [�½, ½],
and the extreme values are assumed. Recombination between
loci is free. We always have a symmetric optimum, � � 0,
as well as � � 2 and � � 10,000.

For a given ecological parameter combination (� � 2, �
� 10,000, � � 0, s, c), given mating parameters (a, M), and
a given number of loci (n), the recursion relations (10) and
(11) were numerically iterated starting from 10 different, ran-
domly chosen initial genotype distributions in Hardy-Wein-
berg proportions for each of more than �(n) genetic parameter
sets. To avoid clustering of the initial distributions, the con-
stituting gamete distributions were chosen such that the Eu-
clidean distance between any two of them was no less than
a predetermined value (0.25, 0.30, and 0.35 for two, three,
and four loci, respectively). Each genetic system had different
initial distributions. An iteration was stopped after generation
t when either an equilibrium was reached (in the sense that
the distance between genotype distributions in two consec-
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TABLE 1. Critical distance for two species to exist, dcrit (eq. 19),
and critical disequilibrium, Dcrit (2) (eq. 20), and Dcrit (3), Dcrit (4)
(eq. 21), for two, three, and four locus systems, respectively, as a
function of the strength of assortative mating, a.

a dcrit Dcrit (2) Dcrit (3) Dcrit (4)

5 0.96 0.86 0.90 0.91
6 0.88 0.63 0.72 0.74
8 0.76 0.42 0.51 0.53

10 0.68 0.32 0.39 0.41
12 0.62 0.26 0.31 0.34
14 0.57 0.22 0.26 0.28
16 0.54 0.19 0.22 0.24
32 0.38 0.10 0.09 0.11

100 0.22 0.03 0.02 0.03

utive generations was less than 10�8) or t exceeded 106 gen-
erations. Equilibria were classified as different if their Eu-
clidean distance exceeded 2 � 10�3. If equilibrium was not
reached, the parameter combination was excluded from the
analysis. The proportion of excluded runs was exceedingly
small (less than 1%, most 0%) and did not induce a bias. If
convergence within the specified maximum number of gen-
erations did not occur, it was mainly because of extremely
slow convergence. Complicated dynamic behavior was de-
tected in a few runs under extremely strong competition and
assortment (see below).

For each combination of ecological and mating parameters
and given number of loci, all statistics are based on �(n)
genetic parameter sets, each with 10 initial conditions, that
led to equilibration. For each parameter set we recorded the
number of different equilibria that were reached, the genotype
frequencies and the population size at equilibrium, and the
number of trajectories converging to each equilibrium. Using
this database, we also calculated the following quantities for
each equilibrium: the proportion of trajectories converging
to an equilibrium with a given number of polymorphic loci;
the (additive) genetic variance VA; the genic variance Vgen �
2 
i Pi (1 � Pi) (the variance that would be observed under2�i

Hardy-Weinberg and linkage equilibrium); the relative var-
iance VR � VA/Vmax, where Vmax � ½ 
i is the maximum2�i

possible variance in the given genetic system under the as-
sumption of Hardy-Weinberg and linkage equilibrium (this
normalization of the additive genetic variance enables proper
comparison of genetic systems with different locus effects
or number of loci); two criteria for speciation (see below);
and the following compound measure of disequilibrium (link-
age and Hardy-Weinberg),

VDD � , (17)
VDmax

where VD � VA � Vgen, and
n12 2V � � � � (18)�Dmax i2 i�1

is the value of VD if only the two extreme genotypes, with
values �� and �, are present, each at frequency ½. Dis-
equilibrium D was calculated only if at least one locus was
polymorphic.

Important properties of D are summarized in Appendix 1;
see also Figure A1. As described below, we use D in one
criterion for determining when speciation occurs.

Quantitative Criteria for Speciation

In our model, speciation can occur only by prezygotic iso-
lation. For speciation we require that individuals of the two
putative species mate with probability less than p � 0.01.
For given strength a of assortative mating, equation (8) im-
plies that the distance between individuals constituting the
two prospective species must be at least

�ln p
d � . (19)crit � a

With p � 0.01 and because dcrit � 2� � 1, speciation cannot
occur if a � 4.6. Of course, a small mating probability be-

tween two types of individuals is not sufficient to guarantee
speciation because hybrids could increase in frequency.
Therefore, we need a more elaborate criterion. We define two
homozygous genotypes, G1 and G2, to be the crystallization
points of different species if they satisfy the following three
conditions: (i) their phenotypic distance is larger than dcrit;
(ii) their frequency is higher than 0.05 each; and (iii) inter-
mediate genotypes are at sufficiently low frequency. Specif-
ically, for G1 (G2) we calculate the next closest phenotypic
value toward G2 (G1) and call it ( ). The phenotypicG
 G
1 2
distance between and is required to be �0.9dcrit, andG
 G
1 2
the cumulative frequency of individuals between andG
1

must be less than 10% of the sum of the frequencies ofG
2
G1, , G2 and . This criterion can be applied repeatedlyG
 G
1 2
so that several species can be identified. It turned out that it
leads to nearly perfect coincidence with decision by inspec-
tion of the distributions. Therefore, we used it as our formal
criterion.

The following simpler criterion is based on calculating the
disequilibrium measure D. Sufficiently large D, especially D
� 1, corresponds to speciation, provided there is sufficiently
strong assortative mating. But what is a sufficiently large D?
If a is very high and competition sufficiently strong, then
species can be rather close together, as quantified by dcrit, for
example, and, in principle, several species can coexist. There-
fore, we calculated a critical value Dcrit by assuming that only
two types are present, each with frequency ½, and their dis-
tance being dcrit (Appendix 1). Thus, Dcrit is defined as the
value of D obtained from (A5) by assuming p1 � ½ and d
� dcrit. In a two-locus system, the resulting Dcrit is uniquely
determined and given by

2dcritD (2) � ; (20)crit 21 � 2d � 2dcrit crit

see (A7). For three or more loci, Dcrit depends on the dis-
tribution of locus effects, but good approximations can be
found (A8), namely

2.45D (3) 	 d and (21a)crit crit

2.28D (4) 	 d . (21b)crit crit

Consequently, a simple criterion for determining whether a
distribution represents speciation is

D � D .crit (22)
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TABLE 2. Equilibrium structure and frequency of speciation as a function of the strength of assortative mating. Presented are the
proportion of trajectories converging to an equilibrium with the indicated number of polymorphic loci and the averages (over 300 genetic
systems, each with 10 initial conditions) of the following quantities: number of equilibria, #(E); relative genetic variance, VR; measure
D of disequilibrium (calculated only among equilibria with at least one polymorphic locus); population size, N; proportion of trajectories
leading to speciation, sp; proportion of trajectories for which the two criteria for speciation disagree, dis. The following parameters are
fixed: � � 0, � � 2, � � 10,000, n � 4, s � 0.4, c � 2, and M � �. A number 0 (1) means that this event was never (always) observed;
0.00 (1.00) means that the frequency of this event was less (more) than 0.005 (0.995).

a

Polymorphism

0 1 2 3 4 #(E) V̄R D̄ N̄ sp dis

0.0 0 0 0 0 1 1 1.05 0.01 11,275 0 0
1.0 0 0 0 0 1 1 1.11 0.02 11,312 0 0
2.0 0 0 0 0 1 1 1.18 0.03 11,366 0 0
3.0 0 0.48 0.52 0 0 4.5 0.60 0.01 10,734 0 0
4.0 0.54 0.46 0.00 0 0 5.0 0.11 0.00 10,140 0 0
6.0 0.89 0.07 0.02 0.00 0.02 4.8 0.16 0.15 10,206 0 0
7.0 0.63 0.01 0 0 0.36 4.4 2.09 0.90 12,007 0.24 0.12
8.0 0.30 0.00 0 0 0.70 3.3 4.60 0.99 14,015 0.70 0.00

10.0 0.07 0 0 0.00 0.93 1.7 6.33 1.00 15,374 0.93 0.00
12.0 0.02 0 0 0.01 0.97 1.3 6.67 1.00 15,648 0.98 0
14.0 0.00 0 0 0.03 0.97 1.3 6.75 0.99 15,719 1.00 0
16.0 0.00 0 0 0.05 0.95 1.5 6.77 0.99 15,726 1.00 0
32.0 0 0 0.00 0.18 0.82 2.3 6.59 0.96 15,662 1 0

100.0 0 0 0.02 0.23 0.76 7.1 6.14 0.88 15,571 1 0

FIG. 2. Polymorphism and speciation as a function of c and a in
four-locus systems. The height of each column gives the proportion
of trajectories that converged to an equilibrium with at least one
polymorphic locus. The white columns represent the parameter
combinations for which no speciation occurred and linkage dis-
equilibrium is low (D 	 0.3), so that the distribution may be spread
out but is not U-shaped. The gray columns indicate that no spe-
ciation occurred but D � 0.3, so that most distributions are U-
shaped. The black columns show the proportion of trajectories con-
verging to an equilibrium distribution representing speciation. A
gray top indicates the very small proportion of trajectories that did
not give rise to speciation but converged to a U-shaped distribution.
There are no columns where a change in shading is invisible. The
fixed parameters are � � 0, � � 2, � � 10,000, s � 0.4, M � �.

This is not expected to work if more than two species can
coexist. Table 1 lists the values of dcrit and Dcrit that are used
in our numerical study. In general, both criteria agree well
as long as no more than two species can exist (see below).

NUMERICAL RESULTS

First, we explore the possibility of speciation under con-
ditions considered to be favorable, that is, we assume absence
of costs to female preferences (M � �) and weak stabilizing
selection (s � 0.4). Therefore, the phenotypic range is nar-
rower than the width of the stabilizing selection function S(g),
the fitness of the extreme phenotypes is reduced by only 10%,
and the fitness function (7) is a very accurate approximation
to the actual fitness, equation (6), if c � 1. We investigate
the roles of the strength of competition, c, and assortment,
a, of the number of loci, n, of the distribution of allelic effects,
�i, and of the initial conditions. Then we study the role of
costs (M 	 �) and strong stabilizing selection (s � 2) or,
equivalently, a wide phenotypic range. Whenever we use the
term ‘‘equilibrium,’’ we mean an equilibrium that was ap-
proached by at least one trajectory in our numerical study.
Generically, such equilibria are locally asymptotically stable.

Strength of Competition and Assortment

The equilibrium structure, the properties of the equilibrium
distributions, and the probability of speciation all depend in
a highly nonlinear way on c and a. Here, we assume that four
loci contribute to the trait. Table 2 documents how the most
important quantities depend on the strength of assortment if
c � 2. It shows that a complex reorganization of the equi-
librium structure occurs as the strength of assortment in-
creases. In particular, for intermediate values of a (a � 4, 6)
very little genetic variation is maintained.

Figure 2 visualizes how polymorphism and speciation de-
pend on both the strength of assortment and competition.
According to this figure, a � 8 seems necessary for speci-
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TABLE 3. The role of the number of loci for speciation. Shown is the proportion of trajectories that converge to an equilibrium classified
as representing speciation. The fixed parameters are: � � 0, � � 2, � � 10,000, s � 0.4, M � �. For a � 5, no speciation was observed.
For a � 32 and a � 100, often more than two species arise. If a � 32, two or three species coexist if c � 2, 5, or 15. If a � 100, two
or three species coexist if c � 0.6 or 2 (but not if c � 1), two to four species if c � 5, and up to five species if c � 15 or 40. For c �
40, populations went extinct in some cases. This is likely due to the property of discrete logistic growth that overcrowding can lead to
extinction. The frequency of extinction events are: (1) 9%; (2) 60%; (3) 6%.

c n

a

6 8 10 12 14 16 32 100

0.6 2 0.02 0.41 0.62 0.75 0.81 0.86 1 1
3 0 0.03 0.21 0.44 0.61 0.73 1.00 1
4 0 0 0.01 0.10 0.26 0.45 0.99 1

1.0 2 0.38 0.66 0.79 0.88 0.93 0.97 1 1
3 0 0.28 0.62 0.79 0.89 0.95 1 1
4 0 0.01 0.19 0.50 0.73 0.86 1 1

2.0 2 0.74 0.93 0.95 0.97 0.98 0.99 1 1
3 0 0.92 0.97 0.99 1.00 1.00 1 1
4 0 0.70 0.93 0.98 1.00 1.00 1 1

5.0 2 0 0.14 0.34 0.52 0.67 0.81 1 1
3 0 0.00 0.02 0.89 0.94 0.93 1 1
4 0 0 0 0.94 1 1 1 1

15.0 2 0 0 0 0 0 0 0.63 0.89
3 0 0 0 0 0 0 0.83 0.99
4 0 0 0 0 0 0 0.80 1

40.0 2 0 0 0 0 0 0 0 (1) 0.60 (2)
3 0 0 0 0 0 0 0 0.91 (3)
4 0 0 0 0 0 0 0 0.94

ation, but for c � 2 (and, among the values of c we used,
only for c � 2), speciation occurs already if a � 7 (Table
2). Interestingly, if c � 5, stronger assortment is required to
induce population splitting than for c � 0.6, 1, and 2 (but
for c � 0.6 or 1, speciation is rare if a � 8, 10). No speciation
at all was observed for c � 15 and c � 40 if a � 16. As
shown in Table 3, speciation may occur for c � 15 and c �
40 if assortment is extremely strong, that is, if a � 32 or
100. Then, more than two species may emerge, if a � 100,
up to five were observed. Of course, if c � s � 0.4, speciation
is infeasible because then overall selection is stabilizing, not
disruptive.

The reason why very strong competition (e.g., c � 15, 40)
requires extremely strong assortment to induce population
splitting is that with a � 16 and two clusters at a distance
� dcrit, individuals in the middle do not suffer a fitness re-
duction from competition, that is, large c opens up one (or
even more) new niche(s) in the middle. If assortment is too
weak to prevent mating between individuals in the (or a)
middle niche with the extreme types, three species cannot be
maintained and a complicated U-shaped or multimodal dis-
tribution may result (e.g., see Fig. 3c).

The question arises whether the strong assortment needed
for speciation in this model is biologically realistic. Already
a � 16 represents very strong assortative mating: the prob-
ability that two individuals with extreme and opposite phe-
notype mate is about 10�7, the probability for individuals that
are half the phenotypic range apart is 0.018. With a � 100,
individuals that are only 20% of the total phenotypic range
apart mate with probability 0.018. Individuals differing by

	 0.29, one standard deviation of the uniform distri-�1/12
bution on [�½, ½], mate with probability 2.4 � 10�4. (Note
that any unimodal distribution has a smaller variance than
the uniform distribution.) If the strength of assortment is
compared with the strength of competition, then a � 32 can

also be regarded as extremely strong compared with c � 5
because an individual’s niche width (1/ ) is then more�2c
than 2.5 times as large as its mating width (1/ ).�2a

In summary, speciation clearly occurs, but strong assort-
ment is necessary and an intermediate strength of competition
is most favorable. The purely ecological condition c(� � 1)
� s, or one of its equivalents for other forms of population
regulation (Bürger 2005), is by no means sufficient.

Another interesting feature, already noted earlier in simpler
models (Bürger and Schneider 2006; Schneider and Bürger
2006), is the depletion of genetic variation by moderately
strong assortment, as shown by Figure 2 if c � 2 (see also
Table 2; Figs. 4, 5a). This is predicted on theoretical grounds
(see Theoretical Background and Analytical Results) and rel-
atively easy to understand intuitively. For random mating (a
� 0), polymorphism is maintained whenever c(� � 1) � s
and stabilizing selection is not extremely strong. In com-
parison with random mating, weak assortment counteracts
competition because it induces local stabilizing selection
around monomorphic states because for deviating types it is
more difficult to find a mating partner. This is more pro-
nounced if mating is strongly selective (M is small), and it
is reflected by equations (12), (13), and (14). Thus, to main-
tain polymorphism with certainty, competition must be stron-
ger than stabilizing selection and assortment together. If as-
sortment becomes very strong, then two clusters that are suf-
ficiently far apart (so that individuals of different type do not
mate) can coexist because no intermediate types are produced
(cf. Bürger and Schneider 2006). Without showing all the
results, we note that equations (12–14) predict the onset of
the loss of variation very well if c � 2 and s � 0.4 (e.g.,
Table 2).

For c � 5, equations (12–14) are no longer applicable.
Then, independently of a, all equilibria have at least two
polymorphic loci and the relative genetic variance is increas-
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FIG. 3. Equilibrium distributions and fitness landscapes in four-locus systems. Each panel displays an equilibrium distribution and the
corresponding fitness landscape for the varied parameters as indicated. In all cases we have � � 0, � � 2, � � 10,000, s � 0.4, M �
�. For the panels with eff � 1, the locus effects are (sorted by size, as is admissible for free recombination) 0.058, 0.121, 0.146, 0.176;
if eff � 2, the effects are 0.052, 0.076, 0.173, 0.198; if eff � 3, they are 0.055, 0.066, 0.098, 0.280. In panels (a) and (b) there are two
species, in (c) and (f) there is one, in (d) there are four species, and in (e) there are three. In (a–f ), the measure D of disequilibrium
assumes the values 1.00, 0.55, 0.35, 0.44, 0.41, 0.35, respectively.

ing as a function of a (though this is due mainly to an increase
in linkage disequilibrium). The proportion of fully poly-
morphic equilibria is �0.98 if c � 5 and 0 � a � 8, if c
�15 and 0 � a � 32, or if c � 40 and 0 � a � 100. Still,
the proportion of highly polymorphic equilibria is reduced
if a is sufficiently large. (Note that the height of the bars in
Fig. 2 gives the proportion of trajectories that do not converge
to a monomorphism.) For instance, if c � 5 and 10 � a �
16, the proportion of fully polymorphic equilibria is down
to about 0.35; for larger a, it increases again. If c � 15 and
a � 100, this proportion is still very high, namely 0.96. Thus,
although very strong competition is not beneficial for spe-

ciation, it is a potent force in maintaining high levels of
genetic variation.

If a � 16 and speciation occurs, the shape of the corre-
sponding distribution is in general very simple. It typically
consists of two spikes, representing homozygous genotypes
that are situated at or close to the boundary of the phenotypic
range. In the vast majority of cases, each of them has a
frequency of � 0.4, often close to 0.5. Examples are displayed
in Figure 3. The average distance between these spikes is
often much larger than predicted by dcrit (Table 1). For in-
stance, if a � 16, their average distance is 0.85, 0.95, 0.99,
and 0.81 for c � 0.6, 1.0, 2.0, and 5.0, respectively (recall
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FIG. 4. Influence of the number of loci on polymorphism as a
function of a. The average normalized polymorphism is shown, that
is, the number of polymorphic loci at equilibrium as fraction of the
number of loci. The fixed parameters are � � 0, � � 2, � � 10,000,
s � 0.4, M � �, and c � 2. Note the different scale for a � 16.

FIG. 5. Influence of the costs on polymorphism (a) and speciation (b) in three-locus systems as a function of a. Other parameters are
the same as in Figure 4. Note the different scale for a � 16.

that speciation does not occur if c � 15 or 40, and a � 16).
If a � 16, the shape of the distributions, whether speciation
occurs or not, is usually complex and often more than two
species coexist (Table 3; Fig. 3). The distinctive fitness max-
ima occurring in Figures 3b,d, and e indicate open niches.
They are not filled up because assortment is too weak to
prevent mating between individuals from such a niche with
those from neighboring niches, and hybrid individuals would
lead to increased competition.

Number of Loci

The number of loci contributing to the trait has a significant
effect on the amount and pattern of variation if c � 5. Figure

4 is representative for c � 2, but for smaller c the attenuating
effect of moderately strong assortment on genetic variation
is stronger. If c � 5, all stable equilibria have at least one
polymorphic locus. Nevertheless, the degree of polymor-
phism is reduced if assortment exceeds a certain strength,
and more so if the number of loci is higher. If n � 4, the
proportion of fully polymorphic equilibria is much lower at
intermediate a than if n � 2 or 3 (cf. Bürger and Schneider
2006).

The number of loci also affects the likelihood of speciation
(Table 3). Independently of c, in two-locus systems the first
speciation events occur at smaller values of a than in three-
or four-locus systems. If c � 0.6 or c � 1, the likelihood of
speciation decreases with increasing number of loci. If c �
2 or 5, this is so only below a certain value of a; above this
value, the likelihood of speciation is independent of n or even
increases with n. An intuitive explanation is given in the
Discussion.

Allelic Effects and Initial Conditions

Empirical data suggest a highly skewed distribution of lo-
cus effects (e.g., Bürger 2000; Barton and Keightley 2002).
By contrast, most previous studies of sympatric speciation
that admit multiple loci assumed equal effects among loci
(e.g., Dieckmann and Doebeli 1999; Bolnick 2004b; Gavri-
lets 2004, ch. 10.3; Gourbiere 2004; Kirkpatrick and Nuismer
2004). Therefore, we explored the role of allelic effects and
initial conditions by comparing the following seven scenarios
which all assume n � 4. The first is our standard scenario
in which 300 sets of allelic effects, each with 10 random
initial conditions, are chosen randomly as described in Nu-
merical Approach. In scenarios 2, 3, and 4, the allelic effects
at the four loci are in proportion 1:2:4:8, and either 10 initial
conditions are chosen randomly; or one initial condition is
chosen in linkage equilibrium with allele frequencies 0.491,
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TABLE 4. Influence of allelic effects and initial conditions. The
parameters are n � 4, s � 0.4, a � 12, M � �. Allelic effects (AE)
can be random (RD), in proportion 1:2:4:8 (1248), or equal (EQ).
Initial conditions (IC) can be random (RD), all alleles at nearly the
same frequency and close to linkage equilibrium (LE), or have
variation only due to rare alleles (RA). MP indicates the proportion
of trajectories converging to a multilocus polymorphism (i.e., two
or more loci are polymorphic); P̄ is the average normalized poly-
morphism, that is, the number of polymorphic loci at equilibrium
divided by the number of loci of the system. Other quantities are
as in Table 2.

c AE IC MP P̄ V̄R D̄ sp

1.0 RD RD 0.50 0.48 3.08 0.93 0.73
1248 RD 0.90 0.88 4.50 0.94 0.80
1248 LE 1 1 5.29 1.00 1
1248 RA 0.25 0.19 1.15 0.84 0.25
EQ RD 0.20 0.20 1.60 1.00 0.20
EQ LE 1 1 8.00 1.00 1
EQ RA 0 0 0 — 0

2.0 RD RD 0.98 0.98 6.67 1.00 0.98
1248 RD 1 1 5.29 1.00 1
1248 LE 1 1 5.29 1.00 1
1248 RA 0.50 0.38 2.14 0.77 0.50
EQ RD 1 1 8.00 1.00 1
EQ LE 1 1 8.00 1.00 1
EQ RA 0.13 0.13 1.00 1.00 0.13

5.0 RD RD 1 0.76 4.33 0.58 0.94
1248 RD 1 0.50 3.36 0.56 1
1248 LE 1 0.50 3.36 0.56 1
1248 RA 1 0.50 3.36 0.56 1
EQ RD 1 1 5.66 0.67 0
EQ LE 1 1 5.66 0.67 0
EQ RA 0.63 0.50 2.86 0.54 0.50

40.0 RD RD 1 1 2.90 0.34 0
1248 RD 1 1 2.17 0.28 0
EQ RD 1 1 3.39 0.36 0

0.495, 0.504, 0.508; or eight initial conditions are chosen
such that at each locus there is one allele at frequency 0.05,
the other at 0.95, and there is linkage equilibrium. Scenario
3 is a small perturbation of the completely symmetric initial
condition in order to avoid extreme symmetry and, possibly,
nongeneric behavior. In scenarios 5 to 7, the initial conditions
are analogous, but all loci have equal effects. It is interesting
to note that, for a constrained phenotypic range and a freely
evolving genetic architecture, Kopp and Hermisson (2006)
showed numerically that locus effects evolve (approximately)
to the proportions 1:2:4: . . . if competition is strong enough
to provide sufficiently many niches (to be filled with ho-
mozygous genotypes and their relatives).

The most relevant results are summarized in Table 4. It is
evident that the choice of allelic effects and initial conditions
may have a marked influence on the evolutionary outcome.
If initially one allele at each locus is rare and the other com-
mon, then much less polymorphism and genetic variance is
maintained at equilibrium than if initially both alleles are at
intermediate frequency. The reason is that the initial fre-
quencies lie with higher probability in the region of attraction
of a monomorphic equilibrium. Interestingly, the same is
mostly, but not always, true for the probability of speciation
(see the exceptional case of equal effects if c � 5). Without
showing the results, we note that the influence of initial con-
ditions becomes weaker as a declines. This is expected be-
cause if a � 0, c(� � 1) � s, and loci are only loosely linked

so that linkage equilibrium can be assumed, then there exists
a uniquely determined, globally stable equilibrium (Bürger
2005; Schneider 2006); thus initial conditions are irrelevant.
This remains true for sufficiently small a, but what is suf-
ficiently small depends on c: the larger c, the larger is suf-
ficiently small. For instance, if c � 1, initial conditions do
not influence the evolutionary outcome if a � 0.8 and very
weakly so if a � 6.0. If c � 40, with the exception of a
single trajectory, no influence at all was observed for a �
16.

There is no clear tendency by which the equilibrium struc-
ture for loci with equal effects departs from the average. For
small to moderate a (approximately a � 6), they are usually
very similar. For intermediate values of a, often less variation
is maintained with loci of equal effect (results not shown).
For large values of a (a � 12) the probability of speciation
can be higher or lower than on average, depending on c and
a (Table 4).

We studied the role of locus effects also in a different way
by choosing the allelic effects �i from the interval
[0.01, 1] instead of [0.1, 1]. For numerical reasons (runs with
one or more loci of very small effect converge extremely
slowly), this was done only for two- and three-locus systems.
For two loci, admission of loci of very small effect slightly
increases the proportion of polymorphic equilibria and the
frequency of speciation. For three loci, and the same must
be true for four, inclusion of loci of very small effect changes
the data by shifting them slightly in the direction of the two-
locus case. This is so because if in a four-locus system one
or two loci have very small effects compared to the others,
then it behaves similar to a three- or two-locus system, re-
spectively. From a practical point of view, the exclusion of
loci of very small effect does not seem to be a substantial
restriction because QTLs with very small effects are hardly
detectable by current methods, and their influence on genetic
variation and the evolutionary dynamics is minor.

Complex Dynamics

For very strong competition (c � 15) and assortment (a
� 16) complex evolutionary dynamics occurred for some
parameter combinations and in some genetic systems. For
instance, if n � 3, s � 0.4, c � 15, a � 16, in six of 1000
genetic systems stable limit cycles of very long period oc-
curred (several thousands or tens of thousands of genera-
tions). Stable limit cycles continue to exist if the parameters
c, a, and the locus effects are slightly varied. Their existence
is very sensitive to variation in the locus effects, however.
If n � 4, s � 0.4, c � 40, and a � 100, in two of 300 runs
stable limit cycles of period two were observed. They con-
tinue to exist (again with period two) if parameters are slight-
ly varied. We do not know if these cycles are caused by the
genetic dynamics, the demographic dynamics, or a combi-
nation of both. Because the period of the very long cycles
seems to change in a quasi-continuous way, it appears un-
likely that they are generated by the demographic dynamics.

Costs to Being Choosy

The role of costs to female preferences were investigated
mainly for three-locus systems. Figure 5 shows that, not sur-
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TABLE 5. Equilibrium structure and frequency of speciation for strong selection. Presented are the same quantities as in Table 2, but
for different values of s, c, and a. The following parameters are fixed: � � 0, � � 2, � � 10,000, n � 4, s � 2, and M � �. The numbers
0, 1, 0.00, and 1.00 have the same meaning as in Table 2.

c a

Polymorphism

0 1 2 3 4 #(E) V̄R D̄ N̄ sp dis

5 12.0 0.75 0.25 0 0 0 4.8 0.10 0.02 10,221 0 0
16.0 0.77 0.21 0 0 0 5.1 0.16 0.05 10,347 0.01 0.01
32.0 0.18 0.42 0.36 0.04 0.00 7.7 1.02 0.13 12,014 0.64 0.23

100.0 0 0.20 0.46 0.21 0.04 8.4 1.39 0.15 12,809 1 0.01
10 12.0 0 0.67 0.33 0 0 5.2 0.66 0.03 13,377 0 0

16.0 0.00 0.77 0.23 0 0 5.5 0.78 0.05 13,807 0.02 0.02
32.0 0 0.30 0.68 0.03 0.00 6.4 1.45 0.15 15,546 0.72 0.35

100.0 0 0.04 0.34 0.48 0.14 8.3 1.73 0.19 16,415 1 0.00
20 12.0 0 0.13 0.67 0.19 0.01 5.5 1.14 0.09 19,268 0 0

16.0 0 0.19 0.67 0.14 0.01 6.0 1.19 0.10 19,384 0 0
32.0 0 0.14 0.60 0.24 0.02 6.4 1.44 0.15 19,629 0.32 0.60

100.0 0 0 0.16 0.45 0.40 8.0 1.96 0.21 21,553 1.00 0.00
200 16.0 0 0 0 0.04 0.96 4.3 1.80 0.18 62,503 0 0

32.0 0 0 0.00 0.11 0.89 4.5 2.03 0.22 63,509 0 1.00
100.0 0 0 0 0.06 0.94 4.3 2.12 0.23 62,524 0.15 0.86

prisingly, highly selective mating (M � 1) prohibits speci-
ation. However, for M � 5, which still represents relatively
high costs, speciation occurs at appreciable frequency, and
with M � 10 it is only slightly reduced, unless a � 100. As
expected, costs become more important for stronger assort-
ment. With four loci, c � 2 and a � 16, the probabilities of
speciation in our model are 1.00, 0.95, and 0.20 for M � �,
10, and 5, respectively. Comparison with Figure 5a indicates
that costs may become more important as the number of loci
increases.

Quite unexpectedly, we found that for very strong com-
petition (c � 15) and extremely strong assortment (a � 32),
intermediate values of M (M � 5, 10) can lead to a consid-
erably higher frequency of speciation events than M � �.
The average number of polymorphic loci at equilibrium, how-
ever, is always substantially reduced with higher costs. The
reason appears to be that with smaller (but not too small) M,
some intermediate types are lost because females are less
likely to mate with males of nonsimilar phenotype. Because
for such strong competition several niches coexist, however,
a highly polymorphic population can disaggregate into two
or more subpopulations through loss of intermediate types.

Strong Stabilizing Selection

By making stabilizing selection sufficiently strong or,
equivalently, the range of phenotypic effects sufficiently
large, we can test if the evolution of reproductively isolated
clusters occurs only if extreme phenotypes are selectively
favored. To this aim we chose s � 2 (instead of s � 0.4 as
above). For computational reasons, numerical calculations
were performed primarily for strong assortment. The most
relevant results are summarized in Table 5, where absence
of costs and four loci are assumed. It shows that speciation
can still occur if stabilizing selection is so strong that the
extreme phenotypes are not maintained in the population or
only at very low frequency. The conditions for speciation,
however, are very restrictive. For instance, with c(� � 1)/s
as in Table 3, no speciation events were observed for a �
12. Without showing the results, we mention that equation

(12) still predicts the loss of variation by increasingly strong
assortment accurately if s � 2 and c � 5. It is not surprising
that extremely strong assortment is needed if s � 2 to induce
population splitting because the two species cannot be es-
tablished near the boundaries of the phenotypic range. As it
was the case with smaller s, very large c/s is again prohibitive
of speciation, that is, extremely large a is needed. Additional
numerical results for two specific genetic systems, four loci
of equal effects and four loci with effects in proportion 1:2:
4:8, show that for weak assortment, high amounts of poly-
morphism are maintained if c � 3 and that for intermediate
values of a, polymorphism is reduced. Thus, the overall pat-
tern of polygenic variation as a function of a is qualitatively
similar to the case of weak stabilizing selection. For random
or weak assortative mating and for the same values of c(� �
1)/s, the amount of variation maintained tends to be somewhat
lower with large s than with small s (results not shown).

Roughgarden’s Versus Bulmer’s Fitness Function

As shown above, our functional form of fitness (6), intro-
duced by Bulmer (1974), is very similar to that of Rough-
garden if stabilizing selection is weak but differs if it is
strong. In that case, fitness of extreme phenotypes declines
in our model, whereas it levels off to its maximum value in
the Roughgarden model. The latter seems unrealistic and
might favor speciation unduly (Polechová and Barton 2005).

We compared evolution under our fitness assignment (6)
with evolution under Roughgarden’s fitness (16). As expected
from the considerations above, as well as from general the-
oretical results (Bürger 2005), the evolutionary outcome for
the two choices, for example, structure, frequency of spe-
ciation, or population size, is very similar if stabilizing se-
lection is weak (s � 0.4), even if c is large (results not shown).
There is a tendency that with Roughgarden’s fitness slightly
more variation is maintained and, in some cases, speciation
is a little bit more frequent.

With strong stabilizing selection (s � 2), there is always
considerably more variation maintained under Roughgar-
den’s fitness (Table 6). Especially, equilibria with a high level
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TABLE 6. Comparison of equilibrium structure and frequency of speciation under Roughgarden’s (eq. 16) and our fitness function (eq.
6), for strong selection. Presented are the same quantities as in Table 2, but for different values of n, s, c, and a. The following parameters
are fixed: � � 0, � � 2, � � 10,000, n � 3, s � 2, and M � �. The numbers 0, 1, 0.00, and 1.00 have the same meaning as in Table
2. The results in this table are based on only 300 runs for each parameter combination.

c a

Polymorphism

0 1 2 3 #(E) P̄ V̄R D̄ N̄ sp

Roughgarden’s fitness
3 0 0 0.00 0.00 0.99 1.0 1.00 1.01 0.00 11,574 0

12 0.66 0.32 0.01 0.01 3.2 0.12 0.29 0.10 10,408 0.12
16 0.44 0.41 0.15 0.01 4.4 0.24 0.68 0.16 10,884 0.42

100 0 0.06 0.40 0.54 5.9 0.83 1.64 0.23 12,180 1
10 0 0 0 0 1 1 1 1.13 0.03 16,674 0

16 0 0.16 0.40 0.44 3.6 0.76 1.91 0.26 18,472 0.13
32 0 0.05 0.33 0.62 4.2 0.86 2.24 0.33 18,993 0.98

20 32 0 0 0.17 0.83 3.5 0.94 2.22 0.32 24,764 0.47
100 0 0 0.07 0.93 4.5 0.98 2.30 0.34 25,325 0.99

Bulmer’s (our) fitness
3 0 0 0.46 0.54 0.01 3.1 0.52 0.55 0.00 10,847 0

12 0.88 0.11 0.01 0.01 2.8 0.05 0.08 0.05 10,008 0.00
16 0.82 0.12 0.05 0.01 3.2 0.08 0.15 0.08 10,116 0.07

100 0.07 0.69 0.17 0.06 5.1 0.41 0.58 0.05 10,832 0.90
10 0 0 0 0.07 0.93 1.1 0.98 1.03 0.01 15,432 0

16 0.00 0.80 0.16 0.04 3.9 0.41 0.85 0.09 14,405 0.09
32 0 0.47 0.39 0.14 4.0 0.56 1.21 0.14 15,486 0.93

20 32 0 0.12 0.52 0.37 3.5 0.84 1.46 0.18 20,234 0.55
100 0 0.01 0.26 0.73 4.5 0.91 1.60 0.19 21,249 0.98

of polymorphism are more frequent. The reason is that, in
contrast to Roughgarden’s fitness, in our model fitness de-
creases rapidly near the boundaries of the phenotypic range
(Fig. 1). Also linkage disequilibrium is considerably higher
with Roughgarden’s fitness, and the fitness landscape tends
to be much flatter than for the fitness function in our model.
Interestingly, however, the frequency of speciation is not
greatly changed in Roughgarden’s model. For small c it is
higher, because niches can be established near the boundary
of the phenotypic range, but for large c it may even be lower.
Why speciation is not always enhanced under Roughgarden’s
fitness is not clear.

Beverton-Holt Population Regulation

We also performed some numerical work for Beverton-
Holt population regulation (eq. A10). The results obtained
are qualitatively similar. If the growth rate � equals two, then
much more variation is lost for intermediate a than for logistic
growth and � � 2. Also the range of such values a is larger
because in equation (12) c(� � 1) has to be replaced by c(1
� ��1) (eq. A39). If � � 100, then much less variation than
for logistic growth with � � 2 is lost. For both values of �,
speciation occurs approximately in the same range of param-
eters as for logistic growth with � � 2. If � � 2, the likelihood
of speciation is reduced, if � � 100 it is slightly enhanced.

Comparison of the Formal Criteria for Speciation

In general, the two criteria we used coincide very well
(e.g., Table 2). Differences occurred for the lowest values of
a at which speciation occurs and for c � 15. In both cases,
the criterion based on disequilibrium, equation (22), indicates
speciation when the more elaborate one does not. For low
values of a, the discrepancy occurs because both methods

yield values close to the critical values used for identifying
speciation, one lower, the other higher. For c � 15, the cri-
terion based on D yields speciation for values of a that are
too low because it was designed to predict speciation into
two species properly, but not when the utilization widths of
phenotypes (1/ ) is so small that more than two niches�2c
are provided.

DISCUSSION

The purpose of this study was to elucidate the conditions
for population splitting, or sympatric speciation, under dis-
ruptive selection caused by intraspecific competition for re-
sources. With the possible exception of habitat choice, this
is arguably the most promising mechanism for sympatric spe-
ciation (Turelli et al. 2001; Via 2001; Dieckmann et al. 2004;
Gavriltes 2004; Kawecki 2004; Kirkpatrick and Nuismer
2004). However, there are numerous possible determinants
of this process. These include the nature of the resources
(discrete or continuous, unimodal or multimodal), the precise
choice of the functional form for fitness, the strength of fre-
quency dependence caused by competition (inversely related
to the individual’s niche width), the strength of stabilizing
selection if the resource is unimodal, the kind of population
regulation and the associated parameters, assumptions on as-
sortative mating and its strength and costs, whether natural
selection acts directly on the assortment trait or on another,
asexual or sexual reproduction, all kinds of assumptions on
the underlying genetics (haploid or diploid, number of loci,
number of alleles per locus, distribution of allelic effects,
additivity of effects versus epistasis or dominance, recom-
bination rates, a fixed genetic architecture or one that can
evolve, e.g., because new mutants are admitted), and as-
sumptions on the initial population distribution. Dieckmann
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and Doebeli (1999) argued that with a continuous unimodal
resource, Roughgarden’s version of the Lotka-Voltera model
of competition, and direct natural selection on the mating
trait, strong assortative mating will evolve, thus leading to
sympatric speciation, if the frequency-dependent effect of
competition is stronger than stabilizing selection (c � s in
our terminology). Thus, roughly, sympatric speciation is con-
sidered to be predictable primarily from ecological condi-
tions, with genetic or other factors playing a minor role (see
also Doebeli and Dieckmann 2000).

The bottom line of our results is that population splitting
and the evolution of reproductively isolated clusters may oc-
cur under disruptive selection, but even strong disruptive
selection and strong assortative mating are not sufficient to
guarantee it. In particular, whether speciation is a likely event
or occurs only for particular genetic architectures and special
initial conditions depends on a relatively delicate interplay
of our main parameters, c, �, s, and a. If the optimum � of
stabilizing selection is near the center of the phenotypic
range, then c(� � 1) � s is a sufficient condition for the
emergence of disruptive selection near that center. In eco-
logical terms, this condition can be interpreted as the width
of the individual’s utilization function being narrower than
that of the resource distribution. Speciation, however, re-
quires more. If disruptive selection is weak, that is, c(� � 1)
is not much larger than s, then increasing c promotes spe-
ciation because with increasingly large c, the strength of as-
sortment needed for population splitting decreases. Interest-
ingly, very large c hinders speciation; that is, beyond a certain
(not very large) value of c, any further increase in c leads to
a much larger minimal strength of assortment necessary for
speciation (to the extent that only individuals can mate that
are a small fraction of a phenotypic standard deviation apart).
For typical examples where no speciation occurs despite large
c, see Figures 3c,f. Thus, all other parameters fixed, there is
an intermediate strength of frequency-dependent competition
that maximizes the likelihood for speciation (Fig. 2; Tables
3–5).

Similar observations were made by Gourbiere (2004),
Kirkpatrick and Nuismer (2004), and Schneider and Bürger
(2006) for somewhat different models. The reason for this
nonlinearity is that with very large c, individuals use only a
small range of the resource spectrum. Hence, large c opens
up intermediate niches. Unless assortment is sufficiently
strong to prevent mating between niches, intermediate het-
erozygotes counteract separation of clusters. More than two
species can coexist if assortment is correspondingly high (see
also Bolnick 2006; Kopp and Hermisson 2006). For an asex-
ual population with a continuum of possible types, the niche
structure can be determined numerically in a straightforward
way (Appendix 3; Kopp and Hermisson 2006). If s � 0.4,
then two niches close to or at the boundary of the phenotypic
range exist if 0.4 	 c 	 1.6. If c 	 1.6, a third niche in the
middle (at g � 0) opens up. This splits into two if c 	 6.9.
A fifth niche (again at g � 0) emerges if c 	 14.1. If 33.3
� c � 45.0, there are seven niches (M. Kopp and J. Her-
misson, pers. comm.). To fill all these niches with reproduc-
tively isolated populations, extremely strong assortment is
needed. For instance, if a � 100, the strongest assortment
we considered, at most five clusters were observed if c � 40.

It has been noted previously (Drossel and McKane 2000;
Gavrilets 2004; Gourbiere 2004; Kirkpatrick and Nuismer
2004; Doebeli 2005) that costs to assortative mating will
reduce the likelihood of speciation. Unless competition is
very strong, this is confirmed by our study. Nevertheless, if
assortment is not extremely strong (a � 16), a substantial
reduction was found only if M � 5, in which case mating is
already highly selective. If M � 10, the probability of spe-
ciation is reduced only by several percent relative to M �
�. For much stronger assortment (e.g., a � 100), as used in
some previous studies (e.g., Gourbiere 2004), a substantial
reduction of the likelihood of speciation occurs already if M
� 10. These findings are in accordance with Schneider and
Bürger (2006), who studied a single-locus model with many
alleles. By contrast, Bolnick (2004b) reported that the waiting
time to speciation is much more sensitive to costs. His model,
however, differs not only in several genetic aspects from ours
but, in particular, allows the strength of assortment to evolve.
Somewhat surprisingly, we found that intermediate costs
(e.g., M � 5,10) can enhance the frequency of speciation if
competition is very strong (c � 15) and assortative mating
is extremely strong (a � 32).

Most studies have ignored the role of the choice of allelic
effects and of initial conditions on the evolutionary outcome.
They assumed that all loci have the same effects and that
initially both alleles at each locus occur at (nearly) equal
frequency. Notable exceptions, in part for different models
of speciation, are Geritz and Kisdi (2000), Kirkpatrick and
Ravigné (2002), Gavrilets (2004, pp. 380–382), Kirkpatrick
and Nuismer (2004), and Bürger and Schneider (2006). Our
results show that, unless assortment is absent or weak, for
each genetic system typically several stable equilibria, often
with different number of polymorphic loci, coexist (their av-
erage number is given by the entries #(E) in Tables 2, 4, 5).
Thus, the initial population distribution may be of paramount
importance for the eventual outcome: for a given genetic
system and given ecological and mating parameters, evolu-
tion may result in loss of all variation (because we ignore
mutation) as well as in speciation with varying degree of
differentiation. Convergence to a monomorphic state is par-
ticularly likely if the initial distribution has low variance and
is located close to the optimum of stabilizing selection.

Similarly, the genetic architecture (number of loci, distri-
bution of locus effects, recombination) may greatly effect the
evolutionary outcome. As shown for weak stabilizing selec-
tion (s � 0.4), the likelihood of speciation depends in a non-
straightforward way on the number of loci. If disruptive se-
lection is relatively weak (c � 0.6, 1), the likelihood of spe-
ciation decreases with increasing number of loci. A similar
result was found by Gourbiere (2004). For stronger disruptive
selection (c � 2), this is so only for values of a below a
certain threshold. Above it, and unless speciation is already
certain for two loci, speciation is more frequent if more loci
contribute to the trait (Table 3). We offer the following in-
tuitive explanation. If c (and also a) is relatively small, fission
of the distribution requires that the clusters are located near
the boundary of the phenotypic range because dcrit is large
(Table 1). For two loci, this can be achieved with weaker
assortative mating than for three of four loci, because the
average distance among phenotypes is larger, thus mating
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probabilities are lower. If c is large (and also a), then clusters
do not occur near the boundary of the phenotypic range,
because individuals situated in the middle would experience
little competition. Therefore, there appears to be an optimal
distance between the two prospective species that depends
on c. To position the clusters (species) in the right distance,
better fine tuning is an advantage, and this occurs more read-
ily with more loci. The same is true if competition and as-
sortment are so strong that more than two species can coexist.
Mostly, speciation involves differentiation at two or more
loci. If, however, more than two species coexist or if stabi-
lizing selection is very strong, neighboring species may differ
only at a single locus.

Especially for strong assortment, the evolutionary outcome
may depend heavily on the particular choice of allelic effects,
as exemplified in Table 4. Unless assortment is weak, there
are always genetic systems (sets of allelic effects) that depart
substantially from the average, but no clear pattern could be
detected. In addition, the pattern of recombination may have
a marked influence (for numerical results in the case of hap-
loid genetics and weak natural selection, see Bürger and
Schneider 2006; see Appendix 2 for analytical results).

Compared with the haploid case investigated in Bürger and
Schneider (2006), speciation in diploids requires stronger as-
sortment, in part much stronger. The reason is simply that
with diploid genetics many more different phenotypes exist,
thus discrimination must be more efficient to allow splitting.

The widely used Roughgarden fitness function (16) has
some unrealistic features. It has the nongeneric property that,
if reproduction is asexual, a continuous equilibrium distri-
bution exists (Gyllenberg and Meszéna 2005). This is not the
case for our fitness function (6) (Appendix 3; see also Kopp
and Hermisson 2006). For a Gaussian, and even for a di-
morphic distribution, the Roughgarden fitness is always U-
shaped and achieves its maximum at the boundaries of the
phenotypic range provided competition is strong enough to
induce disruptive selection. Otherwise, fitness is stabilizing
with a unique mode (Fig. 1). Polechová and Barton (2005)
criticized the conclusion of Dieckmann and Doebeli (1999)
that sympatric speciation is driven by disruptive selection on
the following grounds. The character range in the Dieck-
mann-Doebeli model is limited and, with their parameters,
no population can evolve the large variance required to re-
alize the Gaussian equilibrium distribution predicted for the
asexual Roughgarden model (Slatkin 1979). Polechová and
Barton argued that because of this limitation, the lack of
competitors outside the phenotypic range gives an advantage
to extreme phenotypes. Hence, strong disruptive selection is
perpetuated, and strong assortment can evolve. Thus, effec-
tively, speciation is caused by edge effects.

We showed that this argument is not necessarily valid.
With our fitness function, extreme phenotypes always have
reduced fitness if stabilizing selection is strong enough (fit-
ness is bimodal). In this case, speciation can still occur, with
up to four species coexisting for our parameters, but it be-
comes more difficult to achieve, that is, extremely strong
assortment is needed (Table 5). This is not surprising because
the two species cannot be established near the boundaries of
the phenotypic range but have to be closer together. As for
weaker stabilizing selection, extremely strong competition is

not favorable for speciation. For the Roughgarden fitness, the
evolutionary outcome is very similar if stabilizing selection
is weak. For strong stabilizing selection, much more variation
is maintained by the Roughgarden fitness, but the frequency
of speciation is still quite similar to that for our choice of
fitness, though mostly somewhat higher (Table 6). The fitness
function at equilibrium is usually multimodal then and rather
complex (results not shown).

As already noted previously for related models (Bürger
and Schneider 2006; Schneider and Bürger 2006), an obstacle
for the evolution of assortative mating in small steps is posed
by the fact that moderately strong assortment depletes (al-
most) all genetic variation, unless competition is very strong
(c(� � 1) � 10s). Thus, as assortment evolves from very
weak to moderate, the population will lose genetic variation
(if initially it was variable). Populations with little genetic
variation, however, have an elevated likelihood to remain in
a state of depauperate variation under strong assortment in-
stead of evolving toward speciation. For a single locus under
frequency-dependent disruptive selection and a modifier lo-
cus that increases the strength of assortment by a small
amount, Matessi et al. (2001) showed that at an intermediate
level of assortment a polymorphic evolutionarily stable strat-
egy ceases to exist. Taken together, these observations sug-
gest that the evolution of strong assortment in small steps
may face difficulties in this parameter region.

Developing formal criteria to decide whether a given dis-
tribution reflects two (or more) species is a difficult task,
especially because biologists will often disagree on the extent
of the required reproductive isolation. Nevertheless, we used
a formal procedure to decide objectively if speciation has
occurred; and if yes, into how many species (see Methods).
Ideally, one would like to have a simple measure describing
the degree of speciation. Traditionally, in two-locus models
linkage disequilibrium has been used as such a measure (e.g.,
Kirkpatrick and Ravigné 2002; Gavrilets 2004). In multilocus
models, linkage disequilibrium cannot be quantified by a sin-
gle measure. Nevertheless, we proposed a relatively simple
compound measure of linkage disequilibrium (eq. 17) that
provides a useful guide to deciding whether speciation has
occurred (eq. 22). It is based on comparing the excess of the
total genetic variance over the variance expected under Har-
dy-Weinberg and linkage equilibrium with the corresponding
quantity calculated under the assumption of maximum pos-
sible divergence (two spikes at the boundaries of the phe-
notypic range). It is very reliable unless c is so large that
more than two species can be maintained for sufficiently
strong assortment. Whether a U-shaped distribution without
a gap in the middle (thus not termed as speciation by our
criterion) can be interpreted as incipient speciation may be
a matter of taste and depends on the potential of assortment
to evolve to higher levels.

There is one simple and rather general conclusion from
this and related investigations (Bürger and Gimelfarb 2004;
Bürger 2005; Bürger and Schneider 2006; Schneider 2006).
Frequency-dependent disruptive selection caused by intra-
specific competition is a potent force in maintaining genetic
variation at multiple loci. This occurs almost whenever c(�
� 1) � s, with the possible exception of moderately strong
assortment or very asymmetric selection (the optimum of
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stabilizing selection close to one of the boundaries of the
phenotypic range). For other fitness functions and assump-
tions on population regulation, analogous conditions exist
(Bürger 2005).

Our results, namely that typically several stable equilibria
coexist, most of which are asymmetric, show that the use of
the hypergeometric model (e.g., Doebeli 1996; Kondrashov
and Kondrashov 1999; Gourbiere 2004), which forces all
allele frequencies to be the same, can be misleading and
should be avoided in this context (see also Barton and Shpak
2000).

We ignored mutation in this study. Including sufficiently
weak forward and backward mutation (�/s 	 0.01 is most
likely to be sufficient from what is known about mutation-
selection balance) will not change our results qualitatively
but only perturb the equilibrium distributions slightly. Dif-
ferent results might be obtained if mutation to new alleles is
allowed, so that the genetic architecture can evolve. Such
work is in progress.

Populations may respond to frequency-dependent disrup-
tive selection in several ways. One is evolution of assortment
leading to speciation, others include the evolution of high
genetic variation, sexual dimorphism (Bolnick and Doebeli
2003), or genetic architecture. For instance, dominance re-
lations can rapidly evolve if heterozygotes are at a selective
disadvantage (Bürger 1983; Wilson and Turelli 1989; Otto
and Bourguet 1999; Van Dooren 1999), or the distribution
of allelic effects can evolve (van Doorn and Dieckmann 2004;
Kopp and Hermisson 2006; K. A. Schneider, unpubl. ms.).
Results in Bürger and Schneider (2006) suggest that another
possibility to achieve optimal resource usage might be the
evolution of tight linkage. It would be of interest to study
competition between such mechanisms, such as simultaneous
evolution of genetic architecture and assortment, to find out
which is more likely.

In summary, speciation is a feasible evolutionary outcome,
and in certain regions of the parameter space it is also very
likely. The strength of assortment needed to induce popu-
lation fission depends in a nonlinear way on the strength of
frequency-dependent competition, population growth rate,
and the strength of stabilizing selection. The conditions for
the evolution of assortment definitely need to be studied in
more detail. Even if all these parameters are in the appropriate
range, genetic architecture and initial conditions can prevent
a particular population from speciating. Among the main
achievements of adaptive dynamics are that it has drawn the
interest of evolutionary biologists to frequency-dependent se-
lection and provided a relatively simple theoretical frame-
work for determining branching points. For sexual popula-
tions, this does not necessarily imply population splitting.
However, evolution to such a branching point apparently al-
ways leads to some kind of genetic or ecological diversifi-
cation.

The present study raises questions about the strength of
assortative mating in natural populations and about the mech-
anisms that could achieve the strength required for speciation.
If assortative mating occurs through preferences, as assumed
here, then individuals must be able to evaluate their potential
mates with high accuracy, and they must have (precise) in-
formation about their own phenotype. Under very strong

competition, speciation can evolve only if mating is restricted
to occur between individuals that differ by considerably less
than a phenotypic standard deviation. It may depend on the
specific mechanism by which assortment is mediated if suf-
ficiently intense assortment is possible at all. Studies of the
strength and costs of assortment in natural populations are
rare (Jones et al. 2003). Jones et al. obtained (in our notation)
the estimates M � 36 and M � 50 in sea horses. Their es-
timates of the strength of assortment are difficult to translate
precisely to our model but correspond to a � 2.

Somewhat more, but still not enough, is known about the
ratio c/s. A close analog of is WIC/TNW, the ratio of�s/c
within-individual niche width to the total niche width. The
values that have been measured are larger than 1/3, corre-
sponding roughly to c/s � 9 (Bolnick et al. 2003; Bolnick
2006). This is sufficient to induce strong disruptive selection.
However, only a few studies have shown that intraspecific
competition indeed induces disruptive selection (Swanson et
al. 2003; Bolnick 2004a). Even frequency-dependent selec-
tion has been established rarely in the context of resource
competition (Schluter 2003). Although disruptive selection
may occur more frequently in nature than previously thought
(Endler 1986; Kingsolver et al. 2001), the mechanisms by
which it is generated have not been explored. In addition,
only the curvatures have been reported, which is not sufficient
to conclude disruptive selection, and many of the measure-
ments are statistically not significantly different from zero.
The same, however, applies to the reported estimates of sta-
bilizing selection (Johnson and Barton 2005). Thus, much
more empirical information on these issues is needed before
the biological relevance of frequency-dependent disruptive
selection and its possible evolutionary consequences can be
taken for granted.
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Polechová, J., and N. H. Barton. 2005. Speciation through com-
petition: a critical review. Evolution 59:1194–1210.

Ricker, W. E. 1954. Stock and recruitment. J. Fisheries. Res. Board
Can. 11:559–623.

Roughgarden, J. 1972. Evolution of niche width. Am. Nat. 106:
683–718.

Schluter, D. 2003. Frequency-dependent natural selection during char-
acter displacement in sticklebacks. Evolution 57:1142–1150.

Schneider, K. A. 2006. A multilocus-multiallele analysis of fre-
quency-dependent selection induced by intraspecific competi-
tion. J. Math. Biol. 52:483–523.

Schneider, K. A., and R. Bürger. 2006. Does competitive divergence
occur if assortative mating is costly? J. Evol. Biol. 19:570–588.

Slatkin, M. 1979. Frequency- and density-dependent selection on
a quantitative character. Genetics 93:755–771.

Swanson, B. O., A. C. Gibb, J. C. Marks, and D. A. Hendrickson.
2003. Trophic polymorphism and behavioral differences de-
crease intraspecific competition in a cichlid, Herichthys minck-
leyi. Ecology 84:1441–1446.

Turelli, M., and N. H. Barton. 2004. Polygenic variation maintained
by balancing selection: pleiotropy, sex-dependent allelic effects
and G � E interactions. Genetics 166:1053–1079.

Turelli, M., N. H. Barton, and J. A. Coyne. 2001. Theory and spe-
ciation. Trends Ecol. Evol. 16:330–343.

Van Dooren, T. J. M. 1999. The evolutionary ecology of dominance-
recessivity. J. Theor. Biol. 198:519–532.

van Doorn, G. S., and U. Dieckmann. 2004. The long-term evolution
of multi-locus traits under frequency-dependent disruptive se-
lection. In G. S. van Doorn. Sexual selection and sympatric
speciation. Ph. D. diss., University of Groningen.

Via, S. 2001. Sympatric speciation in animals: the ugly duckling
grows up. Trends Ecol. Evol. 16:381–390.

Waxman, D., and S. Gavrilets. 2005. Twenty questions on adaptive
dynamics. J. Evol. Biol. 18:1139–1154.

Willensdorfer, M., and R. Bürger. 2003. The two-locus model of
Gaussian stabilizing selection. Theor. Popul. Biol. 64:101–117.

Wilson, D. S., and M. Turelli. 1986. Stable underdominance and
the evolutionary invasion of empty niches. Am. Nat. 127:
835–850.

Corresponding Editor: S. Otto



2203CONDITIONS FOR SYMPATRIC SPECIATION

FIG. A1. Relation between d, the distance of two types in a pop-
ulation, each with frequency ½, and the measure D of disequilibrium
defined in equation (17). The datapoints (in gray) represent pairs
(d, D) from 10,000 randomly chosen genetic systems with four loci
(the �i are chosen as described in The Numerical Approach). The
solid line is given by d2.28 and is the best fit of the form d� to the
data (several other functions of different structure yielded a poorer
fit). The dashed line gives the exact relation between d and D for
the two-locus case (see Appendix 1). If the locus effects are drawn
from [0, 1] instead of [0.1, 1], the gray area extends to slightly
below the dashed line (such as for low values of d).

APPENDIX 1. PROPERTIES OF THE MEASURE D OF DISEQUILIBRIUM

First, in the case of two loci we relate our measure D of dis-
equilibrium to well known measures of linkage and Hardy-Wein-
berg disequilibrium. Deviating from the notation in the main text,
let the alleles at the first locus be denoted by A and a and at the
second by B and b. Let the allelic effects be ½�i and �½�i (i � 1,
2), and let pAb denote the frequency of gamete Ab, pAa the frequency
of the ordered one-locus genotype Aa (thus, pAA � 2pAa � paa �
1), and pAB/ab of the ordered two-locus genotype AB/ab. Further, let
Dg � pABpab � pAbpaB denote the ordinary measure of linkage (ga-
metic) disequilibrium, let H1 � pAApaa � and H2 � pBBpbb �2pAa

be the measures of Hardy-Weinberg disequilibrium at loci 12pBb
and 2, and define the Hardy-Weinberg disequilibrium between gam-
etes AB and ab by HAB,ab � pAB/ab � pABpab and, similarly, HAb,aB
� pAb/aB � pAbpaB. Then, it is straightforward to check with Math-
ematica (after homogenizing the resulting polynomial) that

8
D � 2 2� � 4� � � �1 1 2 2

� 2� � D � � � (p � p )1 2 g 1 2 Ab /aB AB/ab[
1 2 2� (� H � � H ) and (A1)1 1 2 2 ]2

8
� 2 2� � � � � �1 1 2 2

� � � D � � � (H � H )1 2 g 1 2 Ab,aB AB,ab[
1 2 2� (� H � � H ) . (A2)1 1 2 2 ]2

In Hardy-Weinberg equilibrium and for equivalent loci, this sim-
plifies to D � (4/3)Dg. If only locus 1 is polymorphic, we obtain

24�1 2D � (p p � p ). (A3)AA aa Aa2 2� � 4� � � �1 1 2 2

Next, we derive a simple expression for D if there is an arbitrary
number of loci (n � 2), but only two genotypes are present in the
population. This will be useful in quantifying when we can speak
of speciation. Let g1 and g2 denote the two types, and p1 and p2 �
1 � p1 their frequencies. Let L denote the set of all loci and let J
be the subset of L in which these two types differ. Because we are
interested in deriving a measure for speciation, we can assume that
if these two types differ at a locus, then one is homozygous for the
� allele and the other homozygous for the � allele. Therefore,
defining their distance by d � 2 
i∈J �i, we can write

g � �d /2 � C, and (A4a)1

g � d /2 � C, (A4b)2

where C is a constant depending on the effects of the fixed loci.
Then we obtain for the mean, the additive genetic variance, and
the genic variance ḡ � d(½ � p1) � C, VA � d2p1(1 � p1), and
Vgen � 2 
i∈J p1(1 � p1), respectively. Combining this with equa-2�i
tion (18), we obtain

2 2d � 2 �� i
i∈JD � 4p (1 � p ) , (A5)1 1 21 � 2 �� i

i∈L

where we have used � � ½. If all loci have equal effects, that is,
�i � 1/(2n), and the two types differ in j loci, then (A5) simplifies
to

2 22j � j d � d /(2n)
D � 4p (1 � p ) � . (A6)1 1 22n � n 1 � 1/(2n)

If n � 4 and j � 1, 2, 3, we obtain D � 0.036, 0.143, 0.536,
respectively, provided p1 � ½.

If, in a two-locus system, only locus 1 is polymorphic, hence
only the two homozygous types AB/AB and aB/aB are present (or,
equivalently, Ab/Ab and ab/ab), and if we assume that each occurs
with frequency ½, then D becomes

2d
D � . (A7)21 � 2d � 2d

Thus, in the two-locus case a simple relationship between D and
the distance of two types exists. For three or more loci, this is more
complicated because D is no longer a function of d alone. It turns
out that by fitting a power function d� to D, excellent approximations
can be obtained, with R2 values above 0.995. For three and four
loci we obtain

2.45d if n � 3
D 	 (A8)

2.28�d if n � 4.

For an illustration, see Figure A1.

APPENDIX 2. STABILITY OF MONOMORPHIC EQUILIBRIA

We assume an assortatively mating diploid population under fre-
quency-dependent selection as described in The Model. However,
we include two generalizations: at each locus there may be an ar-
bitrary number of alleles, and population regulation may be more
general. Here, density-dependent population growth occurs, in the
absence of genetic variation, according to

N
 � NF(N), (A9)

where N and N
 are the population sizes in consecutive generations
and F : [0, �) → [0, �) is a strictly decreasing, twice differentiable
function in N (on the interval of admissible values, i.e., all N such
that F(N) � 0) so that F(N) � 1 has a unique positive solution K,
the carrying capacity. The function F (and the parameters that de-
termine it) are assumed such that they ensure simple demographic
dynamics, that is, convergence to K occurs for all (admissible) initial
conditions (for general conditions on F see Thieme 2003, ch.9).
Typical examples include (discrete) logistic growth (5), a model
generalizing those of Hassell (1975) and Maynard Smith (1974),
given by
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�
F(N ) � , (A10)

� �(1 � bN )

and the Ricker (1954) model

F(N) � exp(r � N/K ). (A11)

Here, �, �, �, r, and K are positive constants. In the latter two
models convergence to the carrying capacity is guaranteed if �� �
2 or r � 2, respectively. The model (A10) reduces to the one of
Hassell (1975) if � � 1, to one suggested by Maynard Smith (1974)
if � � 1, and to the Beverton-Holt model if � � � � 1 (see Bürger
2005).

Following Bürger (2005), the absolute fitness of an individual
with genotypic value (phenotype) g is assumed to be

W(g) � F(N�̄(g))S(g). (A12)

We shall use the following notation (Nagylaki et al. 1999). On locus
k (1 � k � n) the mk alleles can occur (ik � 1, . . . , mk). The(k)Aik
multi-index i � (i1, . . . , in) is used as an abbreviation for the gamete

· · · . We order the multi-indices i � (i1, . . . , in) and j(1) (2) (n)A A Ai i i1 2 n
� (j1, . . . , jn) such that i � j if and only if ik 	 jk for the largest
integer k with ik � jk. We have i � j if and only if ik � jk for
all k.

We assume no position effect. The frequency of the unordered
genotype that carries allele at locus k on the first chromosome(k)Aik
and allele at locus k on the second is denoted by pij. We posit(k)Ajk
the convention i � j. During an individual’s lifetime, viability se-
lection acts. We denote the fitness of genotype ij by Wij, its ge-
notypic value by gij. The genotype frequencies after viability se-
lection are given by

p Wi j i j*p � , (A13)i j W̄

where

¯ p Wi j i jW � (A14)�
�i j

is the mean fitness and 
i� j indicates summation over all pairs
(i, j) such that i � j. Moreover, R(ij, kl → uv) denotes the probability
that an ij individual and a kl individual produce a uv individual.
Mating occurs as described in The Model. Therefore, the frequency
of st individuals in the next generation is

2¯ *W W st:
 * * *p � p p Q R(ij, kl → st) � , (A15)� �st i j kl i j,kl˜ ˜W W� �i j k l

where
2˜ ¯ * * *W � W p p Q R(ij, kl → st). (A16)� � � i j kl i j,kl

� � �s t i j k l

Here,
M*1 � (1 � �̄ )i j*Q � � (A17)i j,kl i j,kl*�̄ i j

with �ij,kl � �(gij � gkl) as in equation (8) and

* *�̄ � � p . (A18)�i j i j,kl kl
�k l

The population size evolves according to
˜ ¯N
 � NW /W. (A19)

The population size at (demographic) equilibrium is denoted by N̂.

Derivation of the Eigenvalues

We want to derive the stability properties of the monomorphic
equilibria. Choosing one of them arbitrarily and relabeling the al-
leles accordingly, we can assume without loss of generality that
the corresponding genotype is 11, where 1 � (1, . . . , 1). Clearly,
we have � � � 1 and � 0 if st �¯ ˜W 
 W 
 W 
 W*
p p 1l p st p11�1 11�1 11�1 11�1

11 (we assume N � N̂ when evaluating at p11 � 1). We express
the dynamics by the genotype frequencies pij for ij � 11, that is,
we eliminate the (redundant) variable p11 � 1 � 
i�j, ij�11 pij. In the

following we always assume uv � 11 and, unless otherwise men-
tioned, st � 11. Then, the entries of the Jacobian are

˜*�W �Wst˜ *W � W st
�p �p �pst uv uv� 2˜ ���p Wuv p �111
p �111

*�W st� , (A20a)��puv p �111

˜*�W �Wst˜ *W � W st
�p �N �Nst � 2˜ ���N Wp �111
p �111

*�W st� , (A20b)��N p �111

˜ ¯�N
 N �W �W¯ ˜� W � W2¯ � �� ��p W �p �puv uv uvp �1 p �111 11

˜ ¯�W �W
� N � , and (A20c)� ���p �puv uv p �111

˜ ˜ ¯�N
 W N �W �W¯ ˜� � W � W2¯ ¯ � �� ��N W W �N �Np �1 p �111 11

˜ ¯�W �W
� 1 � N � . (A20d)� ���N �N p �111

First we derive an explicit formula for (A20a). For this purpose
we need the following derivatives:

¯�p �W �Wi j i j ¯W � p W � p Wi j i j i j i j� ��p �p �puv uv uv*�pi j � . (A21)2¯ ���p Wuv p �111
p �111

Thus, for ij � 11 we have

*�pi j � � W 
 , (A22)i j,uv i j p �111��puv p �111

which implies � 0 if ij � uv. Moreover, because(�p*/�p )
ij uv p11�1
� 1 � 
i� j, ij�11 , we havep* p*11 ij

* *�p �p11 uv� � � �W 
 . (A23)uv p �111� ��p �puv uvp �1 p �111 11

We obtain from (A15) by using (A22), (A23), and the fact that
R(11, 11 → st) � 0,

*�W st��puv p �111

* *�p �pi j kl2¯ * * *� W p � p Q R(ij, kl → st)� � kl i j i j,kl� � ��p �p� �i j k l uv uv p �111

2¯* *�Q W �Wi j,kl st2¯ * *� W p p R(ij, kl → st) �� � i j kl 2¯ ��p W �p� �i j k l uv uv p �111

*� � Q R(11, kl → st)�� kl,uvW 11,kl p �1kl 11
�k l

kl�11

*� � W Q R(ij,11 → st) . (A24)�� i j,uv i j i j,11 p �111
�i j

i j�11
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Therefore, (A20a) can be written as


 *�p �Wst st�� ��p �puv uvp �1 p �111 11

* *� W (Q � Q )R(11, uv → st) p . (A25)�uv 11,uv uv,11 11�1

To calculate the right side of (A20b), we first observe
¯*�p p �W �Wst st st ¯� W � W � 0. (A26)st2¯ � �� ��N W �N �Np �1 p �111 11

In the following we have to include the case st � 11. Because
genotype frequencies after selection sum to one, we also have

� 0. We obtain, by using R(11, 11 → st) � �11,st,�p*/�N 
ij p11�1

*�W st��N p �111

* *�p �pi j kl2¯ * * *� W p � p Q R(ij, kl → st)�� kl i j i j,kl� � ��N �N� �i j k l p �111

2¯* *�Q W �Wi j,kl st2¯ * *� W p p R(ij, kl → st) ��� i j kl 2¯� ��N W �N� �i j k l p �1 p �111 11

*�pi j * *� (Q � Q )R(ij, 11 → st)� i j,11 11,i j ��N�i j p �111

2¯* *�Q W �W11,11 st� R(11, 11 → st) ��p �1 211 ¯ ��N W �N p �111

¯*�Q �W11,11� � � 2 . (A27)11,st� �� ��N �Np �1 p �111 11

Thus, if st � 11, equation (A20b) simplifies to


�pst � 0. (A28)��N p �111

Finally, we investigate (A20d). (Because of (A28), we will not
need (A20c).) We have

¯�W �W �Wi j 11� p �� i j� � ��N �N �N�i jp �1 p �1 p �111 11 11

�F (N�̄(g ))S(g )11 11� ��N p �111

��̄(g )11� S(g )F
(N�̄(g )) �̄(g ) � N11 11 11[ ]��N p �111

ˆ� S(g )F
(N ), (A29)11

where N̂ is the population size at this equilibrium, and

˜�W��N p �111

¯* *�W �Q �Wi j 11,11� � � 2� � � ��N �N �N�i j p �1 p �1 p �111 11 11

M ¯*� 1 � (1 � �̄ ) �W11� � 2[ ]� �*�N �̄ �N11 p �1 p �111 11

M�1 M* * * *�̄ M(1 � �̄ ) � 1 � (1 � �̄ ) ��̄11 11 11 11� 2[ ] �*�̄ �N11 p �111

¯�W
� 2 ��N p �111

¯ ¯*��̄ �W �W11� � � 2 � 2 . (A30)� � ��N �N �Np �1 p �1 p �111 11 11

Therefore, equation (A20d) is equivalent to

�N
 ˆ ˆ� 1 � NF
( N )S(g ). (A31)11��N p �111

Now we have enough information to argue that the eigenvalues
of the Jacobian are its diagonal elements. This is best seen in the
following way. We order the genotypes ij and kl so that ij �
 kl if
and only if i � k, or j � l and i � k. We have ij � kl if and only
if i � k and j � l. We order the Jacobian in this way, and place
the partial derivatives with respect to N in the last column, and the
derivatives of the population size in the last row. Clearly, (A28)
informs us that all entries of the last column of the Jacobian are
zero except the last one, �N
/�N, which consequently must be an
eigenvalue. By developing the Jacobian with respect to the last
column, it is obvious that the remaining matrix contains only the
derivatives /�puv (A25). This matrix is indeed an upper triangular�p
st
matrix because for uv �
 st we have R(11, uv → st) � 0, because
the genotypes 11 and uv cannot produce an st-individual. Therefore,
the eigenvalues are the diagonal elements of the Jacobian, that is,
�N � 1 � N̂F
(N̂)S(g11), and


�pst� �st ��pst p �111

* *� W (Q � Q )R(11, st → st) if s t. (A32)� �st 11,st st,11 p �111

Clearly all eigenvalues are nonnegative. Furthermore, if 1 � s, then
�st � 0, whereas if 1 � s, then �st � 0.

To obtain the eigenvalues at an equilibrium puv � 1, we just have
to replace 1 by u in the above equations. The equilibrium population
size is then given by

2�1 �1 �1 s(g ��)ˆ uuN � F (S (g )) � F (e ). (A33)uu

Admissibility of this monomorphic equilibrium requires N̂ � 0, a
condition that is independent of the strength of frequency depen-
dence and of the mating pattern.

Hence, we obtain
2s(g ��)uu⎧�[� � e ] for discrete logistic growth,

2 1/��s(g ��) 1/�uu[�e ] � 1⎪ˆ for the Hassell and Maynard Smith model,N � � �⎨ b

s 2⎪K 1 � (g � �) for the Ricker model. (A34)uu[ ]r⎩

Therefore, the equilibrium puu � 1 is admissible if and only if

ln �2(g � �) 	 , (A35)uu s

where � � �, �, or er for the discrete logistic, the generalized Hassell
and Maynard Smith, and the Ricker model, respectively. For our
choice of Q, W, S, �, and �, the nonzero eigenvalues are given by
(A31), with N̂ as in (A34), and by

2�s(g ��)ˆ ut� � F(N� )eut uu,ut

� �(a, M, g � g )R(uu, ut → ut), t � u, (A36)u t

which is nonnegative and where �(a, M, x) � 1 � � (1 �
2�axe

)M. For the three cases in (A34), we have2�axe
ˆF(N� )uu,ut

2 2s(g ��)�c(g �g ) uuu t⎧� � e [� � e ],⎪
2�1/� �s(g 2/� �1/� ����c(g �g ) uuu t� {� � e [e ��) � � ]} , (A37)⎨

⎪ 22 �c(g �g )u texp{r � [s(g � �) � r]e },⎩ uu

and (A31) becomes
2�s(g ��)uu⎧2 � �e ,⎪

2�s(g ��) �1/�uu� � 1 � ��{1 � [�e ] }, (A38)⎨N ⎪
21 � r � s(g � �) .⎩ uu
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We note that �1 	 �N 	 1 if 1 	 � 	 3, �� � 2, or r � 2, for
the respective choices of population growth models, provided N̂ �
0. Hence, demographic stability is guaranteed if the equilibrium is
admissible, that is, if (A35) holds, and if convergence to the carrying
capacity occurs. Because the eigenvalues �ut are always nonnega-
tive, local asymptotic stability can be inferred if �ut 	 1 for all t
� u.

Conclusions
We can now draw a few simple but important conclusions from

(A36) and (A38).
(i) The eigenvalues are decreasing in modulus as a function of

a, because � is decreasing in a. Thus, large a promotes stability of
monomorphic equilibria, and sufficient conditions for their stability
can be obtained by setting a � 0, so that �(0, M, x) � 2.

(ii) If M 	 �, then lima→� �(a, M, x) � 0. Hence, all admissible
monomorphic equilibria become stable if a is sufficiently large.
This is in general not the case if M � � because then
lima→� �(a, �, x) � 1.

(iii) Because � is increasing in M, high costs (small M) favor
stability of monomorphic equilibria.

(iv) We always have R(uu, ut → ut) � ½ and R(uu, ut → ut) �
½ if there is no recombination or if u and t differ in only one locus.
Therefore, simpler (sufficient) conditions for stability of mono-
morphic equilibria can be obtained by setting R(uu, ut → ut) � ½.
High recombination promotes the stability of monomorphic equi-
libria because R(uu, ut → ut) decreases with increasing recombi-
nation if u and t differ by more than one locus.

(v) By developing the eigenvalues (A36) into a Taylor series and
retaining only terms of order s, c, and a (and no interaction terms),
it follows as in Bürger and Schneider (2006, online appendix, p.
4) that for M � 2 monomorphic equilibria sufficiently close to �
become stable if (approximately)

a
s � � c�, (A39)

2

where � � � � 1 for discrete logistic growth, � � ��(1 � ��1/�)
for the Hassell and Maynard Smith model, and � � r for the Ricker
model. In the first case, this gives equation (12). The estimates in
(13) and (14) can be generalized analogously. We further note that
the (approximate) condition c(� � 1) � s for disruptive selection
can be generalized to c� � s (Bürger 2005, appendix C).

(vi) The monomorphic state puu � 1 is an admissible equilibrium
if N̂ � 0 and (A35) holds. Therefore, the eigenvalues at an (ad-
missible) monomorphic equilibrium are increasing as a function of
c. By letting c → � in (A36), we infer

2�s(g ��)ut� � �e �(a, M, g � g )R(uu, ut → ut). (A40)ut u t

Hence,

ln[��(a, M, g � g )R(uu, ut → ut)]u ts � for all t � u (A41)2(g � �)ut

is a sufficient condition for asymptotic stability of puu � 1. We
note that large a, in particular if M 	 �, and high recombination
rates (small R) facilitate validity of (A41). By (iv) and because
�(a, M, gu � gt) � 2, we obtain (15) as a simple sufficient condition
for stability of this monomorphic equilibrium, valid for every c;
the left estimate in (15) comes from (A35).

(vii) Simple rearrangement of �ut � 1 (A36) shows that puu �
1 is locally stable if

�
c 	 (A42)2(g � g )u t

for all t � u, where

2s(g ��)⎧ ute2s(g ��)uuln[� � e ] � ln � � ,[ ]�(a, M, g � g )R(uu, ut→ ut)u t
1 2�s(g ��) 1/�uu(ln{[�e ] � 1}
� 2⎪ �s(g ��) 1/�ut� ln{[�e �(a, M, g � g )R(uu, ut → ut)] � 1}),u t⎨� �

2ln[r � s(g � �) ]uu
2� ln{r � s(g � �) � ln[�(a, M, g � g )R(uu, ut → ut)]}.ut u t⎪

(A43)⎩

For an admissible equilibrium, the argument of the first logarithm is
always positive. If that of the second is � 0, which is the case if and
only if (A41) is satisfied, the equilibrium is stable, as may be seen
directly from (A36). In this case, we set the right side to infinity. For
large a, � may be very small if M 	 �; hence, the right side of (A42)
will often be infinity, and stable monomorphic equilibria will exist
for arbitrarily large c.

(viii) In the absence of stabilizing selection (s � 0) no monomor-
phic equilibrium is stable for sufficiently large M and c provided �
� 2.

APPENDIX 3. NICHE STRUCTURE FOR OUR FITNESS FUNCTION

For an asexually reproducing population that evolves subject to
Roughgarden’s fitness function (16), a continuous equilibrium den-
sity exists which is Gaussian if, as usual, S(g) and �(g) are assumed
Gaussian (Slatkin 1979). As shown by Gyllenberg and Meszéna
(2005), this property is structurally unstable; if either S or � are
perturbed by an arbitrarily small amount, no equilibrium density
exists. This property also contrasts the common principle of com-
petitive exclusion and limiting similarity (Meszéna et al. 2006). We
show that for our fitness function (6), no continuous equilibrium
density exists. Thus, it exhibits generic behavior.

Let P(g) denote the population density of an asexual population.
Here, we do not assume that � or S are Gaussian. It is sufficient
that they are nonnegative, bounded, and vanish at infinity (and, of
course, are measurable). Equilibrium requires that W(g) � 1 for all
g ∈ (��, �). Observing that � �∗ P(g), where ∗ denotes con-�̄(g)
volution, the equilibrium condition can be written as

�
�1� ∗ P(g) � [� � S(g) ], (A44)

N̂

where N̂ is determined from the condition W̄ � 1. The left side is
a convolution of two nonnegative functions, one is a density (P),
the other is bounded and vanishes at infinity. Therefore, it is also
nonnegative, bounded, and vanishes at infinity. The right side, how-
ever, tends to �� if 
g
 → � because S(g) → 0 in that case. Hence,
an equilibrium density cannot exist. Kopp and Hermisson (2006)
described how discrete equilibrium distributions can be calculated
and how their stability can be checked. This is based on analyzing
a discrete version of (A44), that is, a system of linear equations.


