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ABSTRACT

The evolution of genotypic mutation rates has been investigated in numerous theoretical and experi-
mental studies. Mutations, however, occur not only when copying DNA, but also when building the pheno-
type, especially when translating and transcribing DNA to RNA and protein. Here we study the effect of such
phenotypic mutations. We find a maximum phenotypic mutation rate, umax, that is compatible with main-
taining a certain function of the organism. This may be called a phenotypic error threshold. In particular, we
find a minimum phenotypic mutation rate, umin, with the property that there is (nearly) no selection
pressure to reduce the rate of phenotypic mutations below this value. If there is a cost for lowering the
phenotypic mutation rate, then umin is close to the optimum phenotypic mutation rate that maximizes the
fitness of the organism. In our model, there is selective pressure to decrease the rate of genotypic mutations
to zero, but to decrease the rate of phenotypic mutations only to a positive value. Despite its simplicity, our
model can explain part of the huge difference between genotypic and phenotypic mutation rates that is
observed in nature. The relevant data are summarized.

THE evolution of mutation rates by natural selection
has attracted the attention of evolutionary biol-

ogists for many decades (Sturtevant 1937), and a large
number of models have been developed to understand
various aspects of the evolution of mutation rates
(Sniegowski et al. 2000). In contrast to the 1930s, a sub-
stantial body of empirical data about mutation rates at
many levels (per base pair, per gene, or genomic) and for
many different organisms is now available (Drake et al.
1998). For instance, mutation rates per base pair per
replication in microbes with DNA chromosomes range
from�7310�7 down to�7310�11.There is a strong neg-
ative correlation with the genome size, so that the mu-
tation rates per genome differ only by about a factor
of two for the organisms cited in Drake et al.’s (1998)
Table 4. Mutation rates per base pair estimated from
specific loci in higher eukaryotes are in the range 2 3

10�10 to 5 3 10�11 (Drake et al.’s 1998 Table 5). Per locus
mutation rates also vary widely, even within an organism,
with an approximate range from 10�4 to 10�6.

In addition to these ‘‘genotypic’’ mutations, organ-
isms are also confronted with what we call ‘‘phenotypic’’
mutations. These are the errors that occur when a DNA-
coded gene is transcribed to mRNA and subsequently
translated to protein. First measurements of phenotypic
mutation rates, in particular, Escherichia coli RNA poly-
merase error rates, were obtained by Springgate and

Loeb (1975). Soon afterward, Edelmann and Gallant

(1977) measured the cysteine misincorporation rate for
the E. coli protein flagellin. These early studies indicated
that phenotypic mutation rates are by orders of magni-
tude larger than genotypic mutation rates. Later studies
of E. coli (Ellis and Gallant 1982) estimated a global
phenotypic error rate of 4.5 3 10�4 per codon and con-
firmed the difference between phenotypic and geno-
typic mutation rates. Studies in yeast yield similar results
(Shaw et al. 2002). In contrast to genotypic mutation
rates, there does not seem to be a significant difference
between eukaryotic and prokaryotic phenotypic mu-
tation rates. Several proofreading and quality control
mechanisms exist that increase the accuracy of tran-
scription and translation (Thomas et al. 1998; Ibba and
Söll 1999; Withey and Friedman 2002). But appar-
ently there is not enough evolutionary pressure to in-
crease the accuracy of the transcription and translation
apparatus to DNA replication standards.

Apart from the fact that the huge differences between
genotypic and phenotypic mutation rates are puzzling,
such high phenotypic mutation rates conceivably could
pose a problem because the production of functional
protein requires the absence of a deleterious mutation
event during transcription and translation. Therefore,
cells with a higher phenotypic mutation rate must
produce more molecules of this protein than cells with
a lower rate. If the production of protein is associated
with costs, a selective pressure to reduce the phenotypic
mutation rate might be expected. The problem may be
exacerbated when more genes have to be transcribed
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and expressed to increase the ‘‘fitness’’ of a cell, or rather
of a single-cell organism, above its current value. In
modification of Sturtevant (1937), who asked ‘‘Why
does the mutation rate not evolve to zero?’’ we ask ‘‘Why
does the phenotypic mutation rate not evolve to lower
levels, whereas the genotypic mutation rate has evolved?’’

To address this question, we develop a mathematical
model of a large population of single-cell organisms
with a DNA chromosome, in which genotypic and phe-
notypic mutations occur. All mutations are assumed
to be deleterious. For motivation, let us start by inves-
tigating the following simple case. Suppose that a cer-
tain gene can perform a phenotypic function if at least
k error-free proteins (actually, molecules of the same
protein) have been produced. The function leads to a
fitness advantage s. If the gene is not transcribed and
translated, hence the function not performed, the fit-
ness is f0. Each protein molecule that is produced causes
costs c. The probability that a protein is error free is
given by 1 � u. Thus, u is the phenotypic mutation rate.
Then, the expected fitness of an organism that produces
m copies of the protein is given by

�f ¼ ð f0 1 sÞP 1 f0ð1 � PÞ � cm ¼ f0 � cm1 sP ; ð1Þ

where

P ¼
Xm
i¼k

�m
i

�
ð1 � uÞium�i

is the probability that generation ofm proteins produces
at least k error-free proteins.

Taking genotypic mutations of rate m per gene into
account and assuming that only genes without a muta-
tion can produce functional protein (thus, all mutations
considered are detrimental), we need

�f ð1 � mÞ. f0 ð2Þ

for the gene to be maintained in the population. This is
analogous to the classical error threshold that sets an
upper limit on the evolutionary acceptable mutation
rate (Eigen and Schuster 1977; Schuster and Fontana
1999). Because P # 1, inequality (2) holds if

s. cm1
f0m

1 � m
� cm;

where the approximation assumes that m is small. We
note that s, c, m, u, k, and m are parameters that are
constant in the cell population but may depend on the
given gene. What varies among cells is the actual num-
ber of error-free protein molecules produced.

The mean number of error-free molecules produced
is m(1 � u), which needs to be $k. Therefore, we have

s.
c0

1 � u
; ð3Þ

where c0 ¼ ck is the minimum cost in terms of protein
production that is necessary for performing this phe-
notypic function. We can rewrite inequality (3) as

u, 1 � c0

s
: ð4Þ

This condition specifies a (rough estimate for the)
phenotypic error threshold. If the phenotypic mutation
rate, u, exceeds this critical value, then the gene that
performs this phenotypic function cannot be main-
tained in the population by selection alone.

In the following sections, we make this argument
more precise by elaborating on a more detailed model
that includes an arbitrary number of genes. We show in
particular that natural selection leads to phenotypic
mutation rates that are much higher than genotypic
mutation rates. Specifically, we address (and partially
solve) the following questions:

When is it beneficial to transcribe and express a new set
of genes that bring about a selective advantage, but
production of protein is costly?

What is the optimum number of protein molecules to
be produced if k and the other parameters (genotypic
and phenotypic mutation rates, fitness advantage,
and costs) are given?

Is there an evolutionary explanation for why phenotypic
mutation rates are so much higher than genotypic
mutation rates?

What are the consequences of costs associated with
higher fidelity of protein production?

THE MODEL

We consider a large population of single-cell organ-
isms (cells, for short) with DNA chromosomes. At each
locus n (1 # n # L) under consideration a number mn

of protein molecules is produced. There is no recom-
bination between loci. Errors occur both during DNA
replication (i.e., cell division) and during transcription
of DNA to RNA and subsequent translation into protein.
We call errors of the first kind genotypic mutations
and those of the second kind phenotypic mutations. If
mn and un denote the genotypic and phenotypic muta-
tion rates at locus n, respectively, then Q ¼

QL
n¼1ð1 � mnÞ

is the probability that DNA is produced without error,
and

pn;i ¼
�
mn

i

�
ð1 � unÞiumn�i

n ð5Þ

is the probability that i of the mn molecules produced by
gene n are error free.

We assume that a certain number of mutation-free
protein molecules can increase the fitness of a cell
because then a beneficial phenotypic function can be
performed, but production of protein has costs. The
costs per protein molecule produced by gene n are cn .
0. They reduce the fitness of the cell. More precisely, we
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assume that every gene, n, must produce at least kn
mutation-free copies of the protein so that the fitness of
the cell is increased by an amount s . 0. If only one of
the genes produces less mutation-free protein than
required, no such fitness increase occurs. To formalize
these assumptions, let i ¼ (i1, . . . , iL) and denote by
fi the fitness of a cell that has in error-free and mn �
in erroneous (protein) molecules produced by gene
n (n ¼ 1, . . . , L) as well as an error-free DNA (at all
loci). If we denote the total costs of protein production
by ctot ¼

PL
n¼1 cnmn and assume that the costs reduce

the fitness of a cell by an additive amount, we obtain
for the (Malthusian) fitnesses

fi ¼
f0 1 s � ctot if kn # in #mn ðn ¼ 1; . . . LÞ
f0 � ctot otherwise:

�
ð6Þ

Sometimes, it is convenient to write f0 ¼ f0 � ctot. This
kind of selection involves strong epistasis and is similar
to what is called truncation selection in population
genetics. Because mutated DNA will always produce
mutated RNA, the fitness of cells with mutated DNA is
f0. Throughout, we require that f0 $ 0. Cells that do
not express these genes, because they do not exist or are
not activated, have fitness f0.

Let xi denote the relative frequency of cells that have
error-free DNA and in denote error-free protein mole-
cules from locus n. Further, let y be the frequency of cells
whose DNA carries at least one mutation at one of the L
loci. The probability that a cell produces in error-free
molecules from each locus n is Ri ¼

QL
n¼1 pn;in . We

emphasize that the numbers i of functional molecules
produced by an offspring are independent of the
numbers j produced by its parent. Because we assume
that the population size is large enough to ignore
stochastic fluctuations, it follows that the dynamics
of cell frequencies are given by the system of n ¼QL

n¼1 mn 1 1 differential equations

_xi ¼ QRi

X
j

fjxj � fxi; ð7aÞ

_y ¼ ð1 � Q Þ
X
j

fjxj 1f0y � fy; ð7bÞ

where f ¼
P

j fjxj 1f0y is the mean fitness. We note that
the system of differential equations given by (7a) and
(7b) can be written as the replicator equation _z ¼
ðA � f Þz, where z ¼ (x, y) and x has the components xi,
and the n 3 n matrix A has entries Aij ¼ QRifj, Ain ¼ 0,
Anj ¼ (1 � Q)fj, and Ann ¼ f0.

Let �f ¼
P

i fiRi. Then, the matrix A has the
eigenvalues

f̂ ¼ Q �f ; ð8Þ

f0, and 0, which has multiplicity
QL

n¼1 mn � 1. The
equilibrium solution corresponding to f̂ , the equilib-
rium mean fitness, is uniquely determined and locally

stable if and only if f̂ .f0 or, equivalently, if �f .f0=Q .
In this case, it attracts all solutions with initial value y. 0
because (7a) and (7b) are equivalent to the linear
system _z ¼ Az (Thompson and McBride 1974; Bürger
2000). The equilibrium frequencies of cell types are
readily shown to be

x̂ i ¼ Ri
Q �f � f0
�f � f0

; ŷ ¼ ð1 � Q Þ �f
�f � f0

: ð9Þ

If �f #f0, then all solutions converge to y ¼ 1. This
occurs, for instance, if s ¼ 0.

Let Pnð¼ Pnðmn; kn; unÞÞ ¼
Pmn

in¼kn
pn;in denote the

probability that in a cell at least kn molecules produced
by gene n are error free. Because these are precisely the
cells with fitness f0 1 s and

P
i$ k Ri ¼

QL
n¼1 Pn , where

i $ k means in $ kn for all n, we obtain

�f ¼ ðf0 1 sÞ
YL
n¼1

Pn 1f0 1 �
YL
n¼1

Pn

 !
¼ f0 1 s

YL
n¼1

Pn:

ð10Þ

Formula (10) for �f , hence an explicit expression for the
mean fitness f̂ , could have been derived without
resorting to the full dynamics (7). However, uniqueness
and global stability of the corresponding solution can be
inferred only from the complete evolutionary dynamics.

RESULTS

Our first aim is to determine conditions under which
a set of genes, with the properties set out above,
increases the fitness of a cell relative to one in which
this set of genes does not exist or is not transcribed.
Such a cell is assumed to have fitness f0 because no costs
from protein production occur. A population of such
cells sets the standard, f0, to which f̂ has to be compared.

For an analytical treatment we assume that all loci are
equivalent; i.e., cn [ c, mn [ m, kn [ k, un [ u, for all n.
Therefore, we have ctot ¼ cLm and f0 ¼ f0 � cLm.
Furthermore, if we denote by P[ Pn the probability that
at least k error-free protein molecules per gene are
produced, we have

P ¼
Xm
i¼k

pi ; ð11Þ

where

pi ¼
�
m
i

�
ð1 � uÞium�i : ð12Þ

It follows from (10) that

�f ¼ f0 � cLm1 sPL ; ð13Þ

which generalizes (1), and from (8) that

f̂ ¼ ð1 � mÞL ½ f0 � cLm1 sPL�: ð14Þ
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A population of single-cell organisms that transcribe
and translate the set of genes under consideration has
an increased equilibrium mean fitness relative to one
that does not produce this protein if and only if

f̂ . f0: ð15Þ

This generalizes (2). Condition (15) imposes a number
of restrictions on the parameters of our model, which we
explore next. Figures 1 and 2 show how the equilibrium
mean fitness f̂ depends on various parameters.

Figure 1 displays f̂ as a bivariate function of m and u.
More precisely, it shows maxð f̂ ; 1Þ to clearly display the
parameter combinations that confer a fitness advan-
tage to the population (in the figures, f0 ¼ 1). Most

distinctive is the steep ‘‘wall’’ surrounding the ‘‘mesa-
like mountain.’’ It signifies a threshold-like increase of f̂
as m increases above a critical value or u decreases below
a critical value. For each given u, there is a value m that
maximizes f̂ (seeThe optimum number of protein molecules).
The linear decrease of f̂ in m is caused by the costs,
which are proportional to cm. If m is too large [in this
case m $ 1996, cf. (16)], then f̂ , f0 ¼ 1. Moreover,
there is a maximum value of u, above which f̂ , 1 for
every m. Its value is �0.73; see (20).

Figure 2 displays f̂ as a function of log10u for several
different parameter combinations. The threshold-like
dependence on u is distinctive, as is the fact that f̂ is
effectively constant for values of u below the threshold.
This is investigated and explained in Selection on mutation
rates.

Error thresholds and other necessary conditions for
performing an advantageous function: From inequality
(15), simple conditions for some of the parameters can
be derived that must be satisfied so that incorporating or
maintaining a set of genes may confer a fitness advan-
tage to the population. Because we always have P # 1,
the following simple upper bound for m is easily
deduced from (15) and (14) by setting P ¼ 1:

m#
s � f0½ð1 � mÞ�L � 1�

cL
: ð16Þ

For given k, the inequality

s$ f0½ð1 � mÞ�L � 1�1 cLk � f0ðemL � 1Þ1 cLk ð17Þ

must be satisfied independently of u because m$ k. The
approximation is valid if Lm2>1. For smaller values of s,
there is no parameter combination that provides a
selective advantage to a single-cell population with these

Figure 1.—Equilibrium mean fitness, f̂ , as a bivariate func-
tion of m (400 # m # 2000) and u (0 # u # 1). The other
parameters have the following values: f0 ¼ 1, m ¼ 10�4, s ¼
0.5, k ¼ 500, c ¼ 0.000025, L ¼ 10. The large s is chosen to
obtain a distinctive display of the features of this function.

Figure 2.—Equilibrium mean
fitness, f̂ , as a function of the
(decadic) logarithm of the phe-
notypic mutation rate, log10u. (a)
L ¼ 1, k ¼ 50, m ¼ 60, c ¼ 2 3
10�4; (b) L ¼ 1, k ¼ 500, m ¼
550, c ¼ 2 3 10�5; (c) L ¼ 20,
k ¼ 50, m ¼ 60, c ¼ 2 3 10�4;
and (d) L ¼ 20, k ¼ 500, m ¼
550, c ¼ 2 3 10�5. (a and b)
The curves (from top to bottom)
are for m ¼ 10�4, m ¼ 10�3, m ¼
10�2, and m ¼ 5 3 10�2. (c and
d) The curves are for m ¼ 10�5,
m ¼ 10�4, m ¼ 10�3, and m ¼ 2 3
10�3. (a–d) f0 ¼ 1 and s ¼ 0.1.
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genes activated. A simpler, but less accurate, estimate
than (17) for the necessary selective advantage is

s$Lð f0m1 ckÞ: ð18Þ

This complements (3), which has been derived under
different assumptions. Condition (17) can be easily re-
formulated to obtain an upper bound on the tolerable
costs of producing a protein molecule.

By simple rearrangement of (14), we obtain from (15)
the following upper bound on the genotypic mutation
rate per gene:

m#mET ¼ 1 � f0
f0 � cLm1 sPL

� �1=L

: ð19Þ

This may be called a genotypic error threshold. We note
that mET # 1 � (1 1 s/f0)�1/L and the right-hand side is
attained if u ¼ 0 (hence P ¼ 1) and c ¼ 0.

No such simple and precise formula exists for the
phenotypic error threshold because P is a complicated
function of u and m (but see Selection on mutation rates).
However, an upper bound on the phenotypic mutation
rate u per gene can be derived, above which the mean
fitness of a cell population is less than f0 for every m. It is
given by

umax � 1 � cL

s � f0m
ðk1 21 2

ffiffiffiffiffiffiffiffiffiffiffi
k1 1

p
Þ ð20Þ

(see appendix a) and is more precise than the simple
estimate (4) for the phenotypic error threshold derived
in the Introduction. Obviously, a set of genes that con-
fers a higher selective advantage can be incorporated
and maintained under much higher phenotypic muta-
tion rates and costs than a set of genes conferring a
lower advantage. The approximation (20) is very accu-
rate for a single gene (L¼ 1) and is a slight overestimate,
on the order of a few percent, if L . 1 (results not
shown). We remark that our usage of the term ‘‘pheno-
typic error threshold’’ deviates from that of Schuster
and Fontana (1999).

The optimum number of protein molecules: Figure 1
shows that for a given phenotypic mutation rate u, there
is an optimum number, mopt, of molecules to be pro-
duced. Indeed, this is intuitive because in the absence of
phenotypic mutation, m ¼ k molecules should be pro-
duced to minimize the costs. With phenotypic mutation,
k or more molecules have to produced to obtain a
correctly expressed gene. We can restrict attention to
phenotypic mutation rates u , umax. Since we have f̂ ¼
Q �f by (8), and because Q is independent of m, it is
sufficient to find the m that maximizes �f .

Let us first assume uk>1. Then the binomial distri-
bution (12) can be approximated by a Poisson distribu-
tion with mean m(1 � u), and we obtain from (13)

�f ¼ f0 � cLk1 sð1 � LkuÞ1Oðk2u2Þ; if m ¼ k;
f0 � cLðk1 1Þ1 s1Oðk2u2Þ; if m ¼ k1 1:

�
ð21Þ

By comparing these two cases, it follows immediately
that �f assumes its maximum at m ¼ k if uk , c/s. [Note
that (17) implies that c=s>1 if k?1, so the assumption
uk>1 is automatically satisfied if a set of genes can be
added at all and k?1.] Thus, for very small phenotypic
mutation rates the fitness is maximized at m ¼ k.

If u is sufficiently large, the binomial distribution (12)
can be approximated by a normal distribution. [This is
accurate for all possible m if ku(1 � u) $ 5.] Then the
very accurate approximation

mopt ¼ k1
uk1

ffiffiffiffiffiffi
uk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lna

p

1 � u
ð22Þ

for the optimum m is found, where a ¼ 2ðc=sÞ=
ffiffiffiffiffiffiffiffiffi
puk

p

(appendix b). In particular, the true mopt is always .k/
(1�u). Figure 3 displays mopt/k as a function of k for
various parameter combinations. Figure 3 and (22)
demonstrate that the optimum number of protein
molecules to be produced is only slightly larger than k,
unless u is very high or k very small. In fact, we have
limk/‘mopt=k ¼ 1=ð1 � uÞ; cf. the Introduction, before
Equation 3. The convergence, however, is slow so that k
must be on the order of a few hundred that 1/(1 � u)
becomes an accurate approximation for mopt. It is also
important to note that mopt is independent of L and
depends only very weakly on c and s; larger c/s slightly
decreases mopt. The mean fitness f̂ at mopt, however,
depends strongly on L, s, and c. Even though the
derivation of (22) assumes ku(1 � u) $ 5, (22) remains
accurate if uk , 1 and correctly predicts that mopt / k
as u/ 0. Additional numerical results (not presented)
show that the relative error of the approximation (22)
rarely exceeds 5% and often is much lower. Finally, we
point out that the minimum possible m is only slightly
smaller than the optimum m given by (22); this is best
seen from Figure 1.
Selection on mutation rates: Here, we explore how

the equilibrium mean fitness f̂ depends on the genotypic

Figure 3.—Ratio of optimum number to minimum re-
quired number of protein molecules, mopt/k (22), as a func-
tion of k. Dashed curves, c/s ¼ 0.0005; solid curves, c/s ¼
0.005. The three pairs of lines are (from top to bottom) for
the following phenotypic mutation rates: u¼ 0.3, 0.1, and 0.01.
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and phenotypic mutation rates. The dependence of f̂
on the genotypic mutation rate is very simple because it
is proportional to (1 � m)L. Therefore, the larger the
number of genes involved, the more advantageous is a
low genotypic mutation rate. Even for a single gene,
there is significant selection for reducing the genotypic
mutation rate well below 10�2 in any cell population of
size 103 or higher because selection dominates random
genetic drift if population size times selective advantage
exceeds �10. With L ¼ 20 genes, we have (1 � m)20 #

0.99 if m $ 5 3 10�4. Thus, in cell populations of size as
small as 103 there is already significant selection pres-
sure for reducing the mutation rate below 5 3 10�4.

In contrast, for the phenotypic mutation rate, there is
hardly any selection pressure to reduce it to such low
levels (even in extremely large populations). Indeed,
Figure 2 shows that the equilibrium mean fitness be-
comes nearly independent of u as u gets smaller than
�10�1. There are two reasons for this. First, a reduction
in genotypic mutation rate affects fitness in a structur-
ally different way than a reduction in phenotypic mu-
tation rate. In general, the fitness increase caused by
a reduction in m is only weakly dependent on s be-
cause it is proportional to the (typically) much larger
term f0. However, fitness changes induced by u are
always proportional to s because they enter f̂ through
changes in P, the probability that at least k error-free
proteins are produced; see Equation 14. The second
reason is that PL has a sigmoid, often nearly threshold-
like, shape. The cumulative binomial density P is
extremely close to its maximum value 1 if the mean
number of correctly produced molecules, m(1 � u),
exceeds k by only a few standard deviations. Hence, if m
is sufficiently large so that the binomial distribution can
be approximated by a Gaussian, then f̂ approaches its
maximum value as u / 0 approximately as fast as e�x2

approaches zero as x / ‘.
A simple explicit, but approximate, expression for

the minimal mutation rate below which f̂ is nearly
independent of u can be obtained by approximating the
binomial cumulative probability P by a Gaussian. To this
aim, let q be a small positive number and let d denote
the (1 � q)1/L quantile of the standard normal distribu-
tion. Then, we have 1 � q # PL # 1 if mð1 � uÞ$
k1 d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
muð1 � uÞ

p
. Solving for u yields

umin ¼ d2 1 2ðm � kÞ � d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 1 4kð1 � k=mÞ

p
2ðd2 1mÞ : ð23Þ

We call this the minimum phenotypic mutation rate,
because selection will be unable to reduce u below umin,
unless the population size is much larger than (sq)�1.
Notably, umin is independent of s and c, except indirectly
if the choice of q is made conditional on s. [The reader
should not be worried by the fact that the derivation of
(23) does not assume f̂ . f0. If f̂ , f0 for all u, for in-
stance, because s is too small or c too large, then there

will be no selection pressure at all to reduce u because
activating the set of genes automatically leads to a fitness
disadvantage.]

Figure 4 displays umin for a single gene as a function of
k for several parameter combinations. It shows that umin

is very small only if either k is very small or m is only
slightly larger than k. The latter a priori requires small
phenotypic mutation rates. It is also of interest to note
that if we assume that m is a fixed multiple of k, i.e., m ¼
ak, and let k tend to infinity, then limk/‘umin ¼ 1 � 1=a
and umin # 1 � 1/a. Thus, if many more proteins are
produced than required (a large), then umin will be
close to 1 if k is large. If, on the other hand, m is not
much larger than k [as suggested by expression (22) for
the optimal m], then umin will be relatively small. For
example, if a¼ 1.2 as in some of the graphs in Figures 4
and 5, then 1 � 1=a ¼ 1

6. These considerations strongly
suggest that, on the basis of our model, smaller pheno-
typic mutation rates are not likely to evolve. It is also
notable, although obvious from the derivation, how
weakly umin depends on q and how much larger than sq
it is under most conditions. The latter is important
because for a single gene the corresponding mmin would
be sq. Hence, mmin > umin. For L genes, mmin would be
correspondingly lower, i.e., mmin ¼ 1 � (1 � sq)1/L.

The above argument, that the selective pressure to
reduce the phenotypic mutation rate below umin is less
than sq, depends on the assumption that m is given and
constant. It does not, however, involve any costs for re-
ducing the mutation rate. Such costs are investigated
below. Theoretically, the phenotypic mutation rate could
evolve to zero, or at least to much lower levels than given
by umin, if m and u could be optimized simultaneously.
This can be seen from Figure 1 and would correspond to
evolution along the top of the (curved) ridge. Substantial
bivariate optimization, and evolution to very low values of
u, does not appear to be a very likely scenario because it
would require extreme fine tuning ofm andu. If, for given
u, m is only slightly larger than mopt ¼ mopt(u) (�2% is
sufficient), then the selective advantage to reduce u is

Figure 4.—Minimum phenotypic mutation rate, umin, as a
function of k for a single locus (L ¼ 1). Solid lines, q ¼ 10�3;
dashed lines, q ¼ 10�6. The three pairs of lines differ in m; i.e.,
from top to bottom, m¼ 2k, m¼ 1.5k, and m¼ 1.2k. The three
short lines on the right-hand side indicate limk/‘umin.
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already vanishingly small (the population is on the gentle
slope, which is completely flat in the direction of in-
creasing u). If, in contrast, only a few protein molecules
less than mopt are produced, then the fitness decrease
is substantial (the population ‘‘drops off the steep wall’’).
It seems questionable if mechanisms for the required
simultaneous fine tuning of both m and u exist, in par-
ticular, because mopt is a population property, not a prop-
erty of the cell. It would require that a cell knows exactly
quite how many error-free molecules it produces.

The critical mutation rate: We have already derived
an approximation for the phenotypic error threshold,
i.e., the maximum mutation rate umax above which the
set of genes cannot be maintained. Here we take a closer
look at the distinctive threshold-like dependence of f̂ on
u (Figure 2) and investigate how it depends on m and
the other parameters. This threshold-like dependence
is a characteristic feature of our model and has a simple
explanation. Let us approximate P by the Gaussian
cumulative distribution function with mean m(1 � u)
and variance mu(1 � u). Then, P switches from a value
close to 0 to a value close to 1 near the mean m(1 � u).
This transition occurs within about two standard devia-
tions of the mean. For a single gene, this implies that the
transition occurs if m(1 � u) � k, whence u � 1 � k/m
follows. For the parameter values of Figure 2, a and b,
this yields u� 0.17, or log10u��0.78, a reasonably good
approximation to the critical value ucrit defined as the
solution of f̂ ¼ f0. If there is more than one gene, then
the transition occurs near P � 1

2

� �1=L
and becomes

sharper as L increases. Approximating P by the corre-
sponding Gaussian cumulative distribution, i.e., P �
FG ðmð1 � uÞ � kÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2muð1 � uÞ

p� �
, where FGðxÞ ¼

1
2ðerfðxÞ1 1Þ, we obtain the critical value ucrit by solving

erf
mð1 � uÞ � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2muð1 � uÞ
p
 !

¼ 2
1

2

	 
1=L

�1: ð24Þ

For the parameters of Figure 2c, this yields log10u ¼
�0.94; for Figure 2d, it yields log10u ¼ �1.01. Appar-

ently, both values are a reasonably good approximations
for the true ucrit.

Figure 5 displays the critical phenotypic mutation rate
ucrit (solid lines), calculated numerically by solving
f̂ ¼ f0, for four selective coefficients as a function of k,
and compares it with the minimum phenotypic muta-
tion rate umin (dashed lines), calculated for two choices
of q. For the two smaller values of s, the curves for ucrit

end when f̂ , f0 ¼ 1, i.e., when expression of the set of
genes causes a fitness reduction for all u.
The role of costs for reducing the phenotypic mu-

tation rate: So far, all arguments have assumed that no
costs are associated with lower mutation rates. Here, we
briefly explore the consequences of such costs. To illus-
trate the (quite obvious) effects, let us assume that the
cost of producing a single protein molecule is c(11 g/u),
where g $ 0.

Figure 6 displays the mean equilibrium fitness f̂ as
function of log10u and m with g ¼ 0.01. Thus, the costs

Figure 5.—Critical pheno-
typic mutation rate, ucrit (solid
lines), and minimum pheno-
typic mutation rate, umin

(dashed lines), as a function of
k. (a) L¼ 1; (b) L¼ 10. The pa-
rameters m ¼ 10�4, L ¼ 1, c ¼
10�4, and m¼ 1.2k are the same
for all curves. For ucrit (from top
to bottom), s ¼ 0.5, s ¼ 0.1, s ¼
0.02, and s ¼ 0.01. umin is inde-
pendent of s, m, and c. Top
dashed line, q ¼ 10�3; bottom
dashed line, q¼ 10�5. Note that
for the corresponding parame-
ter combinations, ucrit becomes
negative where the lines end.

Figure 6.—Equilibrium mean fitness, f̂ , as a bivariate func-
tion of m (500 # m # 2000) and log10u (�2.5 # log10u # 0)
for costly small phenotypic mutation rates. The costs are c ¼
0.000025(1 � 0.01/u) per molecule. The other parameters
are as in Figure 1.
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are slowly increasing with decreasing u. With g¼ 0 there
are no costs for reducing the phenotypic mutation rate
and Figure 1 would be obtained (except for the dif-
ferent scaling of the u-axis). The fitness optimum is near
(m, u) ¼ (571, 0.0805) with f̂ ¼ 1:338 (log100.0805 ¼
�1.094). We note that 0.0805 is close to umin(m ¼ 571,
k ¼ 500, q ¼ 10�4) ¼ 0.0817.

If the costs increase is even slower, for instance
logarithmic, then the optimal u is somewhat smaller
(results not shown). In the presence of costs, most of the
quantities derived above are much more difficult to
compute, and we have not developed an analytical
theory that takes into account costs for fidelity.

DISCUSSION

In this work we argue that there is very little selective
pressure to reduce the phenotypic mutation rate u
below a minimum mutation rate umin. Usually, transcrip-
tional and translational error rates are measured in
number of amino acid substitutions per synthesized
amino acid and were estimated to be 4.5 3 10�4 (Ellis
and Gallant 1982). For this theory, however, we want to
know the number of nonfunctional proteins per syn-
thesized protein. This is our unit for the phenotypic
mutation rate u. For a proper unit conversion we need
to know how many amino acid substitutions per protein
occur and how many of these substitutions lead to non-
functional proteins.

The average protein lengths for E. coli, Saccharomyces
cerevisiae, and Homo sapiens are 317, 496, and 499 amino
acids, respectively. Let us be conservative and use 500 for
the average protein length. For a 500-amino-acid long
protein and a phenotypic mutation rate of 4.5 3 10�4

mistranslations per amino acid, we will have �0.23 in-
correctly synthesized proteins per synthesized protein.
However, only a fraction of these 23% will carry amino
acid substitutions that render them nonfunctional.

Exhaustive amino acid substitution assays on HIV-1
protease (Loeb et al. 1989), T4 lysozyme (Rennell et al.
1991), and Lac repressors (Markiewicz et al. 1994)
showed that 59, 12, and 34% of the examined amino
acid substitutions were deleterious (summarized in
Saunders and Baker’s 2002 Table 1). If we choose
35%, the average of these three values, as the fraction of
amino acid substitutions that are deleterious, we have a
phenotypic mutation rate of 0.08 deleterious mutations
per synthesized protein.

Because a substantial fraction, if not the vast majority,
of genotypic mutations are detrimental (Keightley
and Eyre-Walker 1999; Keightley and Lynch 2003),
deleterious per-locus mutation rates can be expected to
be between 10�4 and 10�7 (see Introduction), where the
upper bound is likely to be an overestimate. In any case,
deleterious genotypic mutation rates are several orders
of magnitude smaller than phenotypic ones.

In addition to the (deleterious) phenotypic mutation
rate we also have to consider the number of protein
molecules produced per cell. Early studies showed that
only a few hundred proteins account for most of the
protein content of a cell and that most of the proteins
are present in low copy numbers (O’Farrell 1975).
Low copy numbers range from a few proteins per cell
to several hundred. For instance, the Lac repressor, a
regulatory protein, is thought to be ‘‘occurring in about
ten copies per gene’’ (Gilbert and Muller-Hill 1966).
E. coli DNA photolyase, a DNA repair enzyme, has a copy
number of �10–20 molecules per protein (Harm et al.
1968). High copy number proteins can have abundances
of many thousand molecules per cell (Gygi et al. 1999).
A recent study shows that the costs associated with the
production of protein may be substantial, and that they
increase faster than linear with the amount of protein
produced (Dekel and Alon 2005).

Our main results are, first, that there is basically no
selective pressure to reduce the phenotypic mutation
rate per gene below a minimum value, umin, which is
rarely ,0.05, and often near 0.1. This compares sur-
prisingly well with the 8% deleterious mutations per
synthesized protein calculated above.

In contrast, and despite the simplicity of the model,
there is selective pressure to reduce the genotypic mu-
tation rate to much lower levels, one order of magnitude
at least. If several genes have to be expressed to increase
fitness, the difference becomes larger. Second, for given
parameters, there is a critical phenotypic mutation rate,
ucrit, above which the fitness of the population is actually
reduced if the set of genes is expressed. Unless the
potential fitness increase, s, is very high relative to the
costs, c, and k very small, umin is not much smaller than
ucrit, in particular, if several genes are involved. Both
umin and ucrit depend only very weakly on c and s. No
simple formulas for ucrit and umin are available. Their
(approximate) calculation involves computation of quan-
tiles of the normal distribution. However, and this is the
third result, there is a simple formula for the maximum
phenotypic mutation rate, umax, above which there is
a fitness disadvantage for expressing the genes under
consideration for any number m of actually produced
protein molecules. This can be interpreted as a pheno-
typic error threshold. Unless kc/s is very small orm is only
slightly larger than k, umax differs from umin by less than a
factor of 10. Fourth, we show that for all other parameters
given there exists an optimum number of protein mole-
cules to be produced, mopt, in the sense that the mean
fitness of the population is maximized. We derive a simple
and very accurate approximation for mopt. Unless the
phenotypic mutation rate is very high or k is small, mopt is
not much larger than k and nearly independent of the
selective advantage and the costs. It is independent of the
number of loci and of the genotypic mutation rate.

The formal reason for the absence of a selective
pressure to reduce the phenotypic mutation rate to such
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low levels as that of the genotypic mutation rate is that
the two types of mutation rates enter mean fitness, f̂ in
(14), in qualitatively different ways; this is discussed in
Selection on mutation rates. A more intuitive reason is that
as soon as only a few more than the optimum number,
mopt, of protein molecules are produced, the selective
pressure to reduce the phenotypic mutation rate van-
ishes because the function can be fulfilled anyway. In
such a situation, there is, however, weak selective pres-
sure to reduce the number of actually produced mole-
cules m to mopt. In principle, simultaneous evolution of
m and u could lead to much lower phenotypic mutation
rates. However, as argued in Selection on mutation rates
this would require extreme fine tuning of these pro-
cesses (in particular, m has to be adjusted extremely
closely to mopt) and, thus, seems unlikely. This, together
with the role of genetic drift, will be the topic of future
investigation.

The above results do not involve any costs for re-
ducing the phenotypic or genotypic mutation rate. If
there are costs for reducing the phenotypic mutation
rate, the parameter range in which a fitness advantage
can be realized by incorporating the set of genes is
substantially reduced (or even annihilated if the costs
are too high), and fitness is maximized at an interme-
diate phenotypic mutation rate. Unless the costs are
high, this maximum is close to umin, as given by (23).

Our model, hence the conclusions, rests on a number
of assumptions. We assumed that, if there is more than
one locus, all loci are completely equivalent. In reality,
this will not be the case because loci can differ in any of
the parameters. It appears to be of most interest to study
cases in which the number of required error-free protein
molecules, k, and the actually produced number, m, vary
among loci. We have not yet studied such a scenario.

Our most critical assumption concerns the depen-
dence of fitness on the number of protein molecules
produced. Many fitness functions other than our step-
like function (6) are conceivable. For instance, fitness
could increase smoothly as the number of error-free
proteins increases. We have not studied such a scenario.
However, it appears quite reasonable to assume that the
performance of a, at least moderately complex, function
requires many genes to interact in an appropriate man-
ner. There may be many possibilities of modeling such
gene interaction, but none has been studied in the pres-
ent context.

The following example shows that there are fitness
functions that can induce strong selection toward low
phenotypic mutation rates. Assume that k error-free
proteins are needed to increase fitness by s, but that cells
that produce one or more erroneous molecules do not
have this fitness advantage. Also assume, as in our
model, costs c for producing a protein molecule. Then
using the previous notation, we have

�f ¼ ð f0 1 sÞð1 � uÞk 1 f0½1 � ð1 � uÞk � � ck; ð25Þ

and a (mean) fitness advantage results if �f . f0. It is
trivial to show that this yields the condition

u, 1 � ck

s

	 
1=k

� 1

k
ln

s

ck
; ð26Þ

where the approximation requires sufficiently large k.
Obviously, this is very different from umax; cf. (20) and
(4). If, with this type of fitness function, there are costs
associated with the reduction of the phenotypic muta-
tion rate, the incorporation or maintenance of a set of
genes that confers a fitness advantage becomes very
difficult because the admissible parameter range shrinks
dramatically. We do not argue that such a fitness func-
tion is realistic in any sense; by contrast, fitness functions
like this would make any functional improvement dif-
ficult or impossible. Of course, there are many other
reasonable fitness functions that could and should be
studied; for instance, fitness could be reduced steadily
if too many erroneous proteins are produced. Such
studies have to be postponed to the future.

The Program of Evolutionary Dynamics is supported by Jeffrey
Epstein.
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APPENDIX A

Here, we derive an upper bound on the phenotypic
mutation rate above which (15) cannot be satisfied. Let
us assume L ¼ 1. Then a simple calculation reveals that
(15) is equivalent to

P .
f0m1 ð1 � mÞcm

sð1 � mÞ : ðA1Þ

No general explicit approximation for P is available.
However, P can be approximated by the cumulative
density function of the normal distribution with mean
m(1 � u) and variancemu(1 � u). Therefore, P¼ P(m, k,
u) is close to 1 ($0.97) if mð1 � uÞ$ k1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
muð1 � uÞ

p
and starts to decline rapidly as m becomes smaller. The
inequality mð1 � uÞ$ k1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
muð1 � uÞ

p
is satisfied if

and only if

m$m* ¼ k1 2u1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðk1uÞ

p
1 � u

: ðA2Þ

If we approximate the left-hand side of (A1) by P ¼ 1
and the right-hand side by (cm* 1 f0m)/s [which is

accurate to order O(m)], we obtain the desired (approx-
imate) upper bound by solving

1 ¼ cm* 1 f0m

s
ðA3Þ

for u. This yields

umax � s � f0m� cðk � 2Þ � 2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 1 � ck2=ðs � f0mÞ

p
s � f0m1 4c

:

ðA4Þ
Numerical evaluation of the true upper bound shows
that this provides an excellent approximation if k$ 10.
By ignoring terms of order c2 and higher, we obtain (20).
In general, (20) is nearly as good as (A4), but slightly
smaller. A similar procedure yields (20) if L . 1.

APPENDIX B

Here, we derive the approximation (22) for the
optimum number m of protein molecules to be pro-
duced. If u is sufficiently large, i.e., ifmu(1� u)$ 5, then
the binomial distribution (12) can be accurately ap-
proximated by a normal distribution. By partial differ-
entiation of �f (13) with respect to m we obtain that the
fitness is maximized at the largest solution m of

k1mð1 � uÞ
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2muð1 � uÞ

p expð�A2Þ½1 � erfðAÞ�L�1 ¼ 2Lc
ffiffiffiffi
p

p

s
;

ðB1Þ

where

A ¼ k � mð1 � uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2muð1 � uÞ

p : ðB2Þ

If A # �2, which is satisfied if (approximately) m$

ðk1 2
ffiffiffiffiffi
ku

p
Þ=ð1 � uÞ, we have erf(A) # �0.995, and the

terms [1 � erf(A)]L�1 and 2L�1 cancel.
Because of the rapid decline of exp(�A2) for m . k,

we can approximate k1mð1 � uÞð Þ=m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2muð1 � uÞ

p
by

(ku)�1/2 and obtain an excellent approximation for the
solution of (B1) by solving exp(�A2) ¼ a for m, where
a ¼ 2c

ffiffiffiffiffiffiffiffiffi
puk

p
=s. Ignoring terms of order u/k and

smaller, we arrive at (22).
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