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abstract: Ecologically driven sympatric speciation has received
much attention recently. We investigate a multilocus model of a
quantitative trait that is under frequency-dependent selection caused
by intraspecific competition and acts as mating character for as-
sortment. We identify the conditions that lead to the establishment
of reproductively isolated clusters. This may be interpreted as evo-
lutionary splitting or sympatric speciation. In our model, there are
parameters that independently determine the strength of assortment,
the costs for being choosy, and the strength of frequency-dependent
natural selection. Sufficiently strong frequency dependence leads to
disruptive selection on the phenotypes. The population consists of
(sexual) haploid individuals. If frequency dependence is strong
enough to induce disruptive selection and costs are absent or low,
the result of evolution depends in a distinctive nonlinear way on the
strength of assortment: under moderately strong assortment, less
genetic variation is maintained than under weak or strong assort-
ment, and sometimes there is none at all. Evolutionary splitting
occurs only if frequency dependence and assortment are both strong
enough and costs are low. Even then, the evolutionary outcome
depends on the genetics and the initial conditions. The roles of the
number of loci, of linkage, and of asymmetric selection are also
explored.
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The study of the mechanisms of speciation has gained
much momentum during the past decade, and the recent
publication of three books reflects these developments.
Coyne and Orr (2004) focus on empirical and comparative
evidence. The volume edited by Dieckmann et al. (2004)
is primarily dedicated to the ecological mechanisms and
the adaptive dynamics approach to speciation. Gavrilets
(2004) provides a comprehensive review of the various
theories. In particular, theories of sympatric speciation
have received much attention. Speciation in sympatry may
be driven by a variety of mechanisms. Among them are
sexual selection (van Doorn et al. 1998; Higashi et al.
1999), sexual conflict (Parker and Partridge 1998; Gavrilets
and Waxman 2002), and habitat or resource specialization
(Kawecki 1997), to cite only some of the recent work. An
important class of mechanisms derives from ecological in-
teractions that induce disruptive selection. This is the topic
we are concerned with. Previous work has demonstrated
that the joint action of disruptive selection and assortative
mating can cause sympatric speciation (Doebeli 1996;
Dieckmann and Doebeli 1999; Kondrashov and Kon-
drashov 1999; Doebeli and Dieckmann 2000; Drossel and
McKane 2000; Geritz and Kisdi 2000). But since then var-
ious limitations have been indicated (Matessi et al. 2001;
Bolnick 2004b; Gavrilets 2004; Gourbiere 2004; Kirkpat-
rick and Nuismer 2004).

One of the problems with studies of ecologically driven
sympatric speciation, as well as of (sympatric) speciation
in general, is that they are primarily based on numerical
work, and general analytical or systematic results are
largely missing (Turelli et al. 2001; Gavrilets 2003). In
particular, many of the previous studies aim at demon-
strating a phenomenon rather than exploring the condi-
tions for speciation. A notable exception is work by Gav-
rilets (2003, 2004, pp. 374–382), who derived explicit
conditions for sympatric speciation in five simple two-
locus models. A substantial part of this work is also com-
putational but much more comprehensive and systematic
than previous studies. The purpose of this work is the
identification of the conditions that lead to competitively
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driven divergence and the establishment of reproductively
isolated clusters in a population.

In our model, there is a single trait that is under fre-
quency-dependent natural selection and acts as a mating
character; that is, the probability that two individuals mate
decreases with increasing phenotypic difference. The trait
is determined by an arbitrary number of recombining dial-
lelic loci that can have arbitrary effects. The population is
sufficiently large to ignore random genetic drift, is density
regulated, and consists of sexual haploid individuals (a
concession to limited computer resources). We tackle a
simpler question than, for instance, the ambitious ap-
proach of Dieckmann and Doebeli (1999)—first, by using
a “magic trait” (sensu Gavrilets 2004, chap. 10.3), and
second, by using a parameter that tunes the strength of
assortment instead of letting it evolve. In fact, there is a
second mating parameter that specifies the costs for being
choosy.

We pursue a numerical and statistical approach, and for
each combination of ecological and mating parameters,
we investigate the evolutionary behavior for 1,000 ran-
domly chosen genetic systems, each from 10 (random)
initial conditions. Also, linkage is included. This is com-
putationally much more demanding and time-consuming
than any previous approach, but it is rewarding because
a more complete picture is obtained, one that does not
depend on assumptions such as loci of equal effects and
free recombination. We complement the numerical results
by analytical ones. We derive the eigenvalues of all mono-
morphic equilibria and give simple conditions guarantee-
ing their stability as a function of the strength of natural
selection, assortative mating, costs of assortment, and the
underlying genetics. The monomorphic equilibria play a
prominent role in models of sympatric speciation, even
though this has rarely been acknowledged. These results
generalize those of Gavrilets (2004) on one of his four
single-trait two-locus models. In addition, we characterize
the equilibrium structure under the assumptions of ran-
dom mating and linkage equilibrium. This yields an im-
portant guide to interpreting the results for assortative
mating.

Another problem is that studies of (sympatric) specia-
tion are based on a zoo of different assumptions (Kirk-
patrick and Ravigné 2002). Recently, Bürger (2005) has
studied the maintenance of polygenic variation in an eco-
logical model that is the weak-selection limit of, to the
best of our knowledge, all models of intraspecific com-
petition for a continuous unimodal resource that have
been used in the literature. Although natural selection is
weak overall, frequency dependence can be very strong.
Here, we adopt this ecological model and include assorta-
tive mating. Therefore, our results apply to most, if not

all, such models as long as natural selection is not too
strong.

The Model

We consider a sexually reproducing population of haploid
individuals with discrete generations and equivalent sexes
that is sufficiently large to ignore random genetic drift.
Natural selection acts through differential viabilities on an
additive polygenic trait. Individual fitness is assumed to
be determined by two components: stabilizing selection
on this trait and frequency-dependent competition among
individuals of similar phenotypes.

Ecological Assumptions

The first fitness component is frequency independent and
may reflect some sort of direct selection on the trait, for
example, by differential supply of a resource whose uti-
lization efficiency is phenotype dependent. We ignore en-
vironmental variation and deal directly with the fitnesses
of genotypic values. In the absence of genotype-environ-
ment interaction, this is no restriction because in our
model, the only effect of including environmental variance
would be a deflation of the selection intensity on geno-
types. For simplicity, we use the words genotypic value
and phenotype synonymously.

Stabilizing selection is modeled by the quadratic func-
tion

2S(g) p 1 � s(g � v) , (1)

where measures the strength of stabilizing selections ≥ 0
and v is the position of the optimum. Of course, S(g) is
assumed positive on the range of possible phenotypes,
which is scaled to , where G is a positive constant.[�G, G]
Thus, we have the restriction . We ex-�20 ≤ s ≤ (G � FvF)
clude pure directional selection by assuming .�G ! v ! G

The second component of fitness is frequency depen-
dent. We assume that competition between phenotypes g
and h can be described by

2a(g, h) p 1 � c(g � h) , (2)

where . This implies that competition be-20 ≤ c ≤ 1/(4G )
tween individuals of similar phenotypes is stronger than
between individuals of very different phenotypes, as will
be the case if different phenotypes preferentially utilize
different food resources. Large c implies a strong fre-
quency-dependent effect of competition, whereas in the
limit , frequency dependence vanishes. Let P(h) de-c r 0
note the relative frequency of individuals with phenotype
h. Then the intraspecific competition function , whichā(g)
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measures the strength of competition experienced by phe-
notype g if the population distribution is P, is given by

ā(g) p a(g, h)P(h)�
h

and calculated to be

2¯ā(g) p 1 � c[(g � g) � V ]. (3)A

Here, and VA denote the mean and (additive genetic)ḡ
variance, respectively, of the distribution P of genotypic
values. In the following, it will be convenient to measure
the strength of frequency-dependent competition relative
to the strength of stabilizing selection. Therefore, we define

c
f p . (4)

s

We shall treat f and s as independent parameters.
Our model includes density-dependent population

growth, which, in the absence of genetic variation, occurs
according to

′N p NF(N). (5)

Here, N and N ′ are the population sizes in consecutive
generations and is a strictly decreasingF : [0, �) r [0, �)
function of N (on the interval of admissible values) so
that has a unique positive solution K, the car-F(N) p 1
rying capacity. The function F and the parameters that
determine it are assumed such that they ensure a simple
demographic dynamics; that is, convergence to K occurs
for all (admissible) initial conditions (see Thieme 2003,
chap. 9, for general conditions on F). We shall primarily
be concerned with discrete logistic growth, that is,

N
F(N) p r � ,

k

0 ≤ N ! rk. (6)

The carrying capacity in this model is .K p (r � 1)k
Monotone convergence to K occurs for all N with 0 !

if and oscillatory convergence (at a geo-N ! rk 1 ! r ≤ 2
metric rate) if .2 ! r ! 3

One way of defining fitness caused by natural selection
is to assume that the two fitness components are multi-
plicative, for instance, because they act in different phases
of the life cycle. This yields

¯W (g) p F(Na(g))S(g) (7)∗

(Bulmer 1974, 1980; Bürger 2002; Bürger and Gimelfarb

2004). Assuming that stabilizing selection is weak, that is,
ignoring terms of order , we can approximate by2s W (g)∗

2 2¯W(g) p F(N){1 � s(g � v) � sh(N)[(g � g) � V ]},A

(8)

where the dependence of W(g) on N and P is omitted and

′�NF (N)
h(N) p f. (9)

F(N)

For discrete logistic growth, we obtain

�1

rk
h(N) p f � 1 . (10)( )N

We interpret h(N) as a compound measure of the strength
of frequency and density dependence relative to stabilizing
selection. We note that f can assume any value ≥0; thus
frequency dependence may be arbitrarily strong.

Because W(g) is quadratic in g, selection is disruptive
if W(g) is convex and the minimum is within the range
of phenotypic values . For a given population dis-(�G, G)
tribution P, and VA are constants and W(g) is twiceḡ
differentiable. By straightforward calculation, we obtain
that W(g) is convex if and only if , and the min-h(N) 1 1
imum lies in the interior of the phenotypic range if and
only if

¯h(N)(G � g) 1 G � v,

¯h(N)(G � g) 1 G � v. (11)

If both conditions are satisfied, holds. Therefore,h(N) 1 1
the conditions (inequalities [11]) are necessary and suf-
ficient for selection to be disruptive for every population
distribution with mean . Hence, if , selection isḡ h(N) 1 1
disruptive if is sufficiently close to v; otherwise it isḡ
directional. If , then is necessary and suf-ḡ p v h(N) 1 1
ficient for selection to be disruptive.

Bürger (2005) showed that W(g) is the weak-selection
approximation of fitness (i.e., to first order in s) in most
models of intraspecific competition for a continuum of
resources, for example, in those of Bulmer (1974, 1980),
Slatkin (1979), Christiansen and Loeschcke (1980),
Loeschcke and Christiansen (1984), Dieckmann and Doe-
beli (1999), Bürger (2002), Bürger and Gimelfarb (2004),
Gourbiere (2004), Kirkpatrick and Nuismer (2004),
Schneider (2005), and Schneider and Bürger (2005). If,
instead of discrete logistic population growth, the Hassell
or the Beverton-Holt model is assumed, then for the cor-
responding F, equation (8) yields the weak-selection ap-
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proximation to the models of Doebeli (1996), Bolnick and
Doebeli (2003), and Bolnick (2004b), respectively. There-
fore, our results are representative for a large class of mod-
els as long as selection is not too strong.

Assortative Mating

We assume that individuals mate assortatively with respect
to the character under natural selection. We adopt the
model of Matessi et al. (2001), which is a specification of
that of Gavrilets and Boake (1998), and assume that fe-
males express preferences based on the similarity of their
phenotypic value to that of their prospective mating part-
ner. To be explicit, we choose this preference function as

2p(g � h) p exp [�a(g � h) ]. (12)

This is the probability that an encounter of a female with
a male results in mating. If , then females have noa p 0
preferences and mating is random. The larger a is, the
stronger is assortative mating.

Females mate only once, whereas males may participate
in multiple matings. If an encounter was not successful,
in which case she remains unmated, she may try again
until the total number of encounters has reached a max-
imum number M. This reflects the idea that choosiness
has costs, for instance, because of a limited mating period.
If M is infinity, there are no costs because every female is
sure to find a mating partner; if , the costs for beingM p 1
choosy are very high. The probability that an encounter
of a female of type g with a random male results in mating
is

p̄(g) p p(g � h)P(h), (13)�
h

and the probability that she eventually mates with a male
of type h is , whereQ(g, h)P(h)

M�1

m¯Q(g, h) p [1 � p(g)] p(g � h). (14)�
mp0

Matessi et al. (2001) call Q the mating rate. They observed
that if , whenceM p 1

Q(g, h) p p(g � h), (15)

this model can be conceived as a model of fertility selection
(Bodmer 1965; Hadeler and Liberman 1975) or as a model
of parental selection (Gavrilets 1998). The case canM p 1
also be interpreted as both sexes being choosy because
then the probability of a mating between a g female and
an h male is . This corresponds to the “plantp(g � h)

model” of Kirkpatrick and Nuismer (2004). Also, Drossel
and McKane (2000) and Gourbiere (2004) consider mod-
els of selective assortative mating that are equivalent to
the case .M p 1

If the encounter rate is very high, M may be chosen to
be infinity, and we obtain

p(g � h)
Q(g, h) p . (16)

p̄(g)

Then, for all g, and assortative mating� Q(g, h)P(h) p 1h

does not induce sexual selection among females. It does,
however, induce sexual selection among males.

Genetic Assumptions and Evolutionary Dynamics

The trait value g of an individual is determined additively
by n diallelic loci. We denote the alleles at locus i by Ai

and ai, their effects by gi and �gi ( ), and their fre-g 1 0i

quencies by Pi and . As noted by Turelli and Barton1 � Pi

(2004), this choice of effects is general if the difference of
effects (the effect of a substitution) is 2gi because constants
that determine the mean phenotype can be absorbed by
v. We assume that v is within the range of possible ge-
notypic values (i.e., ) and call the opti-

n
FvF ! G p � giip1

mum symmetric if .v p 0
The multilocus dynamics is described in terms of gamete

frequencies. In accordance with some population genetic
models of haploid populations (Feldman 1971; Rutschman
1994; but see Kirzhner and Lyubich 1997), the frequencies
of gametes are measured among adults after selection and
before mating. Gametes are denoted by r, u, and andv
their phenotypic values by gr, gu, and , respectively. Theg v

frequencies of gamete r in consecutive generations are de-
noted by pr and . We designate by the prob-′p R(uv r r)r

ability that haploid parents with genotypes u and producev
an offspring with genotype r. The function R is determined
by the pattern of recombination between loci, for which
we shall consider several scenarios.

Therefore, the genetic dynamics is given by the system
of 2n recursion relations:

∗Wr′p p p p Q R(uv r r), (17)�r u uv vW u, v

where and the asterisk indicates that∗ ∗W p W (g )r r

fitness is calculated from gamete frequencies after recom-
bination. Moreover, andQ p Q(g , g ) W pu uv v

. The demographic dynamics∗� W � p p Q R(uv r r)r u uv vr u, v

follows the standard recursion relation

′N p NW. (18)
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Thus, for a monomorphic population ( ) withV p 0A

, population growth follows equation (5). The¯g p g p v

complete evolutionary dynamics is given by the coupled
system in equations (17) and (18).

Analytical Results

The complexity of this model prohibits a detailed and
comprehensive analytic treatment. However, for a ran-
domly mating population, the equilibrium and stability
structure can be determined if linkage disequilibrium is
ignored and the population size is assumed to be constant
and at demographic equilibrium. For logistic population
growth (eq. [6]), the following results are obtained (see
appendix in the online edition of the American Naturalist
for detailed and more general versions, valid for any pop-
ulation regulation obeying eq. [5]). (1) If, approximately,

, then at most one locus can be polymorphicf(r � 1) ! 1
at a stable equilibrium, and, typically, multiple stable equi-
libria coexist. (2) If, approximately, , thenf(r � 1) 1 1
there exists a unique asymptotically stable equilibrium
that, therefore, is globally stable. At least one locus is poly-
morphic at this equilibrium. If the optimum is symmetric
( ), then all loci are polymorphic. For an arbitraryv p 0
optimum, the polymorphic loci can be determined (those
with large effects are polymorphic) and the allele fre-
quencies can be calculated.

The condition is (approximately) equiva-f(r � 1) 1 1
lent to the exact and general condition , whereˆh(N) 1 1

is defined in equation (9) and is the populationˆ ˆh(N) N
size at the stable (polymorphic) equilibrium. As shown by
inequalities (11), selection is disruptive if andḡ p v

. Thus, roughly, results 1 and 2 show that highh(N) 1 1
genetic variability is maintained in a randomly mating
population if frequency- and density-dependent selection
together are stronger than stabilizing selection and overall
disruptive selection is induced. Otherwise, little or no var-
iation is maintained. Comparison with exact results from
numerical iteration of the recursion relations of the full
model show that the linkage equilibrium approximation
is very accurate if linkage is not too tight (see table A1 in
the online appendix).

For the general model with population regulation, link-
age disequilibrium, and assortative mating, the stability
conditions for the monomorphic equilibria can be derived.
For logistic population growth and , the mostf(r � 1) 1 1
interesting parameter range, the following conclusions can
be drawn (proofs are given in “Stability of Monomorphic
Equilibria under Assortative Mating” in the online ap-
pendix). (a) If (random mating), no genetic systema p 0
can have a stable monomorphic equilibrium. This com-
plements result 2, which assumes linkage equilibrium and
constant size. (b) For given costs of choosiness, M, in-

creasingly strong assortment promotes stability of mono-
morphic equilibria. For given , increasing costs (de-a 1 0
creasing M) promote stability of monomorphic equilibria.
If , then all monomorphic equilibria with (seeˆM ! � N 1 0
eq. [A13] in the online appendix) become stable for suf-
ficiently strong assortment. (c) If and if, in additionM ≥ 2
to s (and c), a is assumed to be small enough that terms
of order a2 and as can be neglected, then monomorphic
equilibria close to v become stable if (approximately)

a
s � 1 c(r � 1). (19)

2

Stable monomorphic equilibria exist in any genetic system
(i.e., even if no genotype is close to v) if

a
1 c(r � 1). (20)

2

These approximate conditions are more accurate for large
M than for small M. If , then in the above inequal-M p 1
ities a/2 has to be replaced by a.

The proportion of trajectories converging to a mono-
morphic equilibrium, which can be used as a measure for
the size of their basin of attraction, will be determined
numerically. Convergence to such an equilibrium clearly
prevents divergence and speciation.

Statistical and Numerical Approach

We use the approach of Bürger and Gimelfarb (2004), with
the obvious modifications required by modeling assorta-
tive mating and assuming a haploid population. Its basic
idea is to evaluate the quantities of interest for many ran-
domly chosen genetic parameter sets and initial conditions
and then calculate averages, standard deviations, and other
statistics. In this sense, we obtain statistical results, al-
though each single result is obtained by iterating numer-
ically the deterministic system of recursion relations (17)
and (18). All numerical results are based on logistic pop-
ulation growth (model [6]). All results presented use

, , and . The choice of k has nor p 2 k p 10,000 s p 0.4
effect on the dynamics because it enters fitness only by
the ratio N/k; see equations (8) and (10). Therefore, k

affects the population size multiplicatively. The computer
program was developed by A. Gimelfarb.

For a given number of loci n and a given range of re-
combination rates, we constructed more than 1,000 of what
we call “genetic” parameter sets (allelic effects of loci and
recombination rates between adjacent loci from the given
range). For each genetic parameter set, allelic effects were
obtained by generating values b� ( ) as in-� p 1, 2, … , n
dependent random variables, uniformly distributed between
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0 and 1, and transforming them into the actual allelic effects,
. The additivity assumptiong p (1/2)b / � b � (1/2)� � kk

yields the genotypic values. Therefore, the range of phe-
notypic values is always , with the ex-[�G, G] p [�1/2, 1/2]
treme values actually assumed. Recombination rates be-
tween adjacent loci, ( ), are assumedr � p 1, … , n � 1�, ��1

to be either all 1/2 or obtained as independent random
variables, uniformly distributed between 0.01 and 0.1 or
between 0 and 0.01. We assumed absence of interference
and refer to these three scenarios as free recombination,
tight linkage, and very tight linkage, respectively.

For a given ecological parameter combination (r, k, v,
s, f), given mating parameters (a, M), number of loci (n),
and recombination scenario, the recursion relations (17)
and (18) were numerically iterated starting from 10 dif-
ferent, randomly chosen initial gamete distributions for
each of more than 1,000 genetic parameter sets. To make
the initial distributions more evenly distributed in the
gamete state space, they were chosen such that the (eu-
clidean) distance between any two of them was no less
than a predetermined value (0.25, 0.30, 0.35, and 0.35 for
2, 3, 4, and 5 loci, respectively). Each genetic system has
different initial distributions. An iteration was stopped af-
ter generation t when either an equilibrium was reached
(in the sense that the euclidean distance between gamete
distributions in two consecutive generations was !10�10),
or t exceeded 106 generations (for some parameter sets,
even 107). Equilibria were classified as different if their
euclidean distance exceeded . If equilibrium was�45 # 10
not reached, the parameter combination was excluded
from the analysis. The proportion of excluded runs was
small enough not to introduce a bias. If convergence
within the specified maximum number of generations did
not occur, it was because of extremely slow convergence
of allele frequencies. The main reason for this is the pres-
ence of alleles of extremely small effect. No instance of
complicated dynamic behavior (such as limit cycles or
chaos) was detected.

For each combination of ecological and mating param-
eters, number of loci, and recombination scenario, all sta-
tistics are based on 1,000 genetic parameter sets, each with
10 initial conditions, that led to equilibration. For each
parameter set, we recorded the number of different equi-
libria, the gamete frequencies, and the population size at
each equilibrium, as well as the number of trajectories
(initial distributions) converging to each equilibrium. Us-
ing this database, we calculated the following quantities
for each equilibrium: the normalized polymorphism P (the
number of polymorphic loci divided by the number of
loci of the genetic system); the (additive) genetic variance
VA; the genic variance VLE (the variance that would be
observed under linkage equilibrium); the relative variance

, where is the maximum pos-2V p V /V V p � gR A max max ii

sible variance in the given genetic system under the as-
sumption of linkage equilibrium (this normalization of
the additive genetic variance enables proper comparison
of genetic systems with different locus effects or number
of loci); two measures of (overall) linkage disequilibrium,

andV p (V � V )/VD A LE LE

VDD p , (21)
VDmax

where

2(� g)ii

V p � 1; (22)Dmax 2� gii

and the population size N. Whereas VD is an obvious mea-
sure for linkage disequilibrium, the definition of D needs
explanation. It is the ratio of VD and the maximum possible
value of VD, VDmax. Therefore, it is a normalized and di-
mension-free measure with values between �1 and 1. For
a given genetic system, VD and D are both maximized if
and only if the two gametes that generate the two extreme
phenotypes, �G and G, are each at frequency 1/2. A simple
calculation involving equation (A1) in the online appendix
yields equation (22). The relation between distributions
of genotypic values and D is illustrated in “The Measure
D of Linkage Disequilibrium” in the online appendix. A
high value of D ( or 0.9) indicates that the pop-D 1 0.8
ulation consists of two clusters around the extreme
phenotypes.

The values P, VA, VR, and N were averaged over all
equilibria resulting from the 10 initial conditions of all of
the 1,000 genetic parameter sets that led to equilibration,
and standard deviations were calculated. The linkage dis-
equilibrium measure D was averaged only over the tra-
jectories that reached an equilibrium with at least two
polymorphic loci. This yielded our quantities of interest
for each set of ecological and mating parameters, number
of loci, and recombination scenario. The data presented
in the figures and tables are such averages. We denote the
averages of VA, VR, P, N, and D by , , , , and ,V V P N DA R

respectively. Similarly, the average proportion of equilibria
with k ( ) polymorphic loci was calculated.k p 0, … , n

We note that for a given number of loci, the relative
genetic variance and the (average) genetic varianceVR

behave very similarly. Multiplying by E[Vmax], whichV VA R

can be computed explicitly (Bürger and Gimelfarb 2004),
yields an estimate of that typically is within about 10%VA

of the true value (results not shown).
For a given number of loci and a given recombination

scenario, the genetic parameter sets as well as the initial
conditions are the same for all ecological parameter sets.
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Table 1: Equilibrium structure for increasingly strong assortative mating

a

Polymorphism

#(E) P VR D N0 1 2 3 4

0 0 0 0 0 1 1 1 1.06 .03 10,849
.25 0 0 0 0 1 1 1 1.07 .04 10,861
.50 0 0 0 0 1 1 1 1.09 .04 10,872
.60 .01 .02 0 0 .98 1.2 .98 1.07 .05 10,861
.75 .33 .53 0 0 .14 4.1 .28 .22 .07 10,218
.90 .62 .36 0 0 .03 3.7 .12 .07 .08 10,064

1.00 .75 .24 0 0 .01 3.6 .07 .04 .07 10,027
1.25 .98 .01 0 0 .00 3.3 .01 .01 .06 9,991
1.50 1.00 .00 0 0 0 3.5 .00 .00 … 9,984
2.00 1.00 .00 0 0 0 4.0 .00 .00 … 9,980
3.00 .98 .00 .01 0 .01 4.7 .01 .02 .41 10,004
4.00 .90 .00 .00 .00 .09 5.4 .10 .19 .65 10,221
5.00 .70 .00 .00 .00 .29 5.7 .29 .76 .92 10,948
6.00 .53 .00 .01 .00 .46 5.2 .47 1.33 .97 11,615
8.00 .31 .00 .01 .04 .63 4.3 .67 2.02 .96 12,356

12.00 .10 .00 .02 .14 .74 3.4 .86 2.57 .92 12,918
16.00 .02 .00 .04 .17 .76 3.2 .91 2.76 .90 13,087

Note: Presented are the proportion of trajectories converging to an equilibrium with the in-

dicated number of polymorphic loci, the average number of equilibria, , and the (average)#(E)

normalized polymorphism, relative variance, linkage disequilibrium (averaged only over multilocus

polymorphisms), and population size. The parameters are , , , ,r p 2 k p 10,000 n p 4 s p 0.4

( ), and , and there is free recombination. A 0 (1) means that thisf p 1.5625 c p 0.625 M p �

event never (always) occurred, and a .00 means that it occurred but with frequency !0.005.

Therefore, variation among quantities of interest comes
almost exclusively from variation in the ecological and
mating parameters. Only the exclusion of slow runs leads
to some variation among the genetic parameter sets used
for different ecological parameter combinations. When-
ever we use the term equilibrium without qualification,
we mean a locally asymptotically stable equilibrium.

Numerical Results

We explore the effects of the interplay of frequency-
dependent selection and assortative mating on the pop-
ulation genetic structure, as well as the role of the other
parameters (e.g., number of loci, recombination rates, and
position of the optimum). We are especially interested in
the conditions under which two reproductively isolated
clusters, corresponding to evolutionary splitting, emerge.
For this purpose, we study the equilibrium structure, the
genetic variance maintained, and the amount of linkage
disequilibrium. Equilibria with a high amount of linkage
disequilibrium D (approximately ) represent strongD 1 0.8
competitive divergence because the distribution of phe-
notypes is concentrated near the ends of the phenotypic
range (see “The Measure D of Linkage Disequilibrium” in
the online appendix). If, in addition, a is large ( ),a 1 4.6
we speak of two reproductively isolated clusters because

then the probability of mating between the extreme phe-
notypes is low (!1%).

Our analytical results show that in a randomly mating
population at linkage equilibrium, multilocus polymor-
phisms, that is, equilibria with at least two polymorphic
loci, are maintained only if (approximately) .f(r � 1) 1 1
Only in this case, frequency dependence is sufficiently
strong to induce disruptive selection near equilibrium. Be-
cause our numerical computations use logistic population
growth with , we focus on parameter values suchr p 2
that .f 1 1

No Costs

We start by presenting the results for the case when there
are no costs associated with assortative mating ( ).M p �
This is the scenario that has been most frequently studied
in the context of sympatric speciation (see introductory
text).

Free Recombination and a Symmetric Optimum. Let us first
assume free recombination between all loci and a sym-
metric optimum ( ). Table 1 shows the effect of in-v p 0
creasingly strong assortment on the equilibrium distri-
bution for strong, but not very strong, frequency
dependence ( ). If , increasingly strong as-f p 1.56 a ≥ 0.5
sortment decreases genetic variation. Linkage disequilib-
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Figure 1: Multilocus polymorphism and linkage disequilibrium in four-locus genetic systems as a function of the strength of assortment, a, and
the strength of frequency dependence, f. The four values of f are 0, 0.833, 1.5625, and 2.5 (resulting from and , 1/3, , ands p 0.4 c p 0 5/8 p 0.625
1). In addition, we have , , , , and free recombination. The “waterfall” plots show the fraction of trajectories convergingr p 2 k p 10,000 v p 0 M p �
to an equilibrium with two or more polymorphic loci. The shades in gray signify the amount of linkage disequilibrium, . The solid lines in theD
plains, visible for and , indicate the (absolute) fraction of fully polymorphic equilibria. In the two other cases, they are invisiblef p 0.833 f p 1.5625
because 199% of multilocus polymorphisms are fully polymorphic.

rium is positive but very small. For intermediate values
of a ( ), almost no genetic variation is main-a p 1.5, 2
tained, and 99.7% of the trajectories converge to a mono-
morphic equilibrium. Equations (19) and (20) predict the
values a at which the first and last genetic systems develop
stable monomorphisms well (according to our theory, they
are and ). If the strength of assortmenta p 0.45 a p 1.25
is increased further, genetic variation is built up again. For
strong assortment, in most genetic systems several types
of stable equilibria coexist, among them monomorphic
equilibria, and high linkage disequilibrium prevails at
equilibria with multilocus polymorphism. If , thesea 1 4.6
are the equilibria representing two reproductively isolated
clusters.

For very large values of a, only a small fraction of tra-
jectories converge to a monomorphic equilibrium, but a
larger proportion of genetic systems has a stable mono-
morphic state (e.g., if , convergence to a mono-a p 16
morphic equilibrium occurs in about 22% of genetic sys-
tems). This shows that for very strong assortment, the

basin of attraction of monomorphic equilibria becomes
small. The number of simultaneously stable equilibria is
high, higher than the reported , which is an under-#(E)
estimate because it is calculated from only 10 initial con-
ditions. We further mention (data not shown) that if

, all genetic systems have a stable fully polymorphica ≥ 8
equilibrium (with all gene and large D).frequencies p 1/2
Thus, depending on the initial conditions, the evolution
of reproductively isolated clusters can occur in every ge-
netic system. Interestingly, if , in some genetica p 12, 16
systems two stable, fully polymorphic equilibria coexist,
one with and the other with (about 0.1% ifD 1 0 D ! 0

and 1.5% if ). Therefore, even if compe-a p 12 a p 16
tition and assortment are both strong, the presence of
much initial variation is not sufficient to guarantee di-
vergence because means that intermediate pheno-D ! 0
types are overrepresented. For , a genetic systema p 16
was found in which stable equilibria of all kinds of poly-
morphism (i.e., 0–4 polymorphic loci) coexist.

Figure 1 demonstrates the combined influence of the
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strength of competition and of assortment on the equi-
librium structure. For the two smaller values of f (f p

), multilocus polymorphism is maintained0, 5/6 p 0.833
only if assortment is sufficiently strong. Then, however,

except for and , when fewer thanD ! 0.8 f p 0 a p 12, 14
2% of the trajectories converge to fully polymorphic equi-
libria, which have . If , then no genetic var-D 1 0.9 f p 0
iation at all is maintained if . In the absence of anya ! 12
natural selection ( ), no variation is maintaineds p c p 0
if , whereas the fraction of multilocus polymorphisma ≤ 10
reaches 0.40 if . If , some variation isa p 16 f p 0.833
maintained by single-locus polymorphisms if , buta ≤ 0.5
none if . The plot for corresponds to1 ≤ a ≤ 4 f p 1.56
table 1 (but is based on more data points). Also, if com-
petition is much stronger than stabilizing selection ( f p

), the amount of polymorphism is reduced for inter-2.5
mediate values of a. If , then and stronga ≥ 3.5 D ≥ 0.9
competitive divergence occurs with a high probability. If

, according to our definition, the clusters becomea 1 4.6
reproductively isolated. However, even under such favor-
able conditions for divergence, trajectories starting close
enough to a monomorphic equilibrium may converge to
it. For strong assortment, the amount of linkage disequi-
librium is higher at fully polymorphic equilibria than at
other multilocus polymorphisms because they lack at least
one of the extreme phenotypes.

We note that implies extremely strong assortment.a ≥ 8
With and 16, the probability that an encounter ofa p 8
the two extreme phenotypes (�1/2 and 1/2) leads to mat-
ing is and , respectively. The prob-�4 �73.35 # 10 1.13 # 10
ability that an extreme phenotype mates with a phenotype
in the middle of the phenotypic range is 0.135 if a p 8
and 0.018 if .a p 16

Although figures 1–4 and tables 1 and 2 report only the
properties of an “average genetic system,” the particular
evolutionary path depends both on the allelic effects and
on the initial conditions, and substantial deviations from
the average behavior occur in some genetic systems. The
standard deviations of the average amount of polymor-
phism and of the (relative) genetic variance are large, on
the order of the mean. Hence, the proportion of initial
conditions that lead to strong divergence or to the evo-
lution of reproductively isolated clusters varies substan-
tially among genetic systems. Conditional on convergence
to a multilocus polymorphism, strong divergence occurs
for most such trajectories in most genetic systems if a is
large because the standard deviation of D is quite small
(!30% of the mean, often on the order of 10%).

An intuitive explanation for the reduction of variation
by intermediately strong assortment is the following. In
comparison to random mating, weak assortment coun-
teracts competition because it induces local stabilizing se-
lection around monomorphic states because for deviating

types it is harder to find a mating partner. This is more
pronounced if mating is strongly selective (M small), and
it is reflected by equations (19) and (A17) in the online
appendix. Thus, competition must be stronger than sta-
bilizing selection and assortment together to maintain
polymorphism with certainty. If assortment is extremely
strong, then two monomorphisms that are sufficiently far
apart, so that individuals of different type do not mate,
can coexist because no intermediate types (which have
lower fitness) are produced.

Number of Loci. Figure 2 displays the influence of the
number of loci on multilocus polymorphism and linkage
disequilibrium. The pattern that intermediately strong as-
sortment always decreases genetic variation, and hence
impedes divergence, is clearly visible. With two loci, the
effect is much weaker than with three or more loci; four-
and five-locus systems behave similarly. However, the
range of values a for which no multilocus polymorphism
(and in fact, no variation at all) is maintained is wider
with five loci than with four. For strong assortment (a 1

) and four or five loci, high positive linkage disequilib-7
rium ( ) is maintained among multilocus poly-D 1 0.9
morphisms, and reproductively isolated clusters evolve
frequently.

The data suggest that for very strong assortment, a larger
number of loci determining the trait is favorable for the
evolution of two reproductively isolated clusters. By con-
trast, weak or moderately strong assortment is more ef-
ficient in attenuating genetic variation of traits determined
by many loci. This remains true for very strong compe-
tition. If , then the (average) fraction of multilocusf p 2.5
polymorphisms in a five-locus system is minimized near

, its value being 0.58, whereas in two-, three-, anda p 3
four-locus systems, the minima are assumed near ,a p 4
4, and 3 with values 0.93, 0.92, and 0.90, respectively. (For
these values of a, all polymorphic equilibria found nu-
merically are fully polymorphic.)

With increasing number of polymorphic loci, the num-
ber of phenotypes in the population increases rapidly.
Therefore, it is easier to find a mating partner than when
only few types exist in the population (most of them quite
different). Thus, monomorphic states can attract a larger
proportion of the state space, and assortment is more ef-
fective in counteracting competition. Therefore, the gap
becomes deeper with more loci. It also becomes slightly
wider because with more loci it is more likely to have a
phenotype near the optimum; hence condition (19) applies
to more genetic systems.

Linkage. Figure 3 displays the effects of linkage on the
equilibrium properties of a population under very strong
competition ( ). Relative to random mating, mod-f p 2.5
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Figure 2: Multilocus polymorphism and linkage disequilibrium for strong, but not very strong, frequency dependence ( ) as a functionf p 1.5625
of a and the number of loci n. We have , , , , , and free recombination. The “waterfall” plots give the fractionr p 2 k p 10,000 s p 0.4 v p 0 M p �
of trajectories converging to an equilibrium with two or more polymorphic loci. The shades in gray signify the amount of linkage disequilibrium

. The solid lines in the plains signify the (absolute) fraction of fully polymorphic equilibria.D

erately strong assortment leads to a much higher loss of
multilocus polymorphism if loci are linked than if they
are freely recombining. Also, with linked loci, the genetic
variance is minimized for intermediate values of a, whereas
for freely recombining loci, it is increasing (with weaker
competition, , it has a square-root-sign-like shape;f p 1.56
results not shown). Linkage disequilibrium is extremely
high for linked loci if assortment is absent or moderate
(hence the high variance) and, interestingly, may be lower
if assortment is strong or very strong. The reason linkage
disequilibrium decreases as assortment becomes strong is
that an increasing fraction of the stable multilocus equi-
libria is not fully polymorphic. Thus, for moderate or
strong assortment, increasingly strong linkage reduces the
likelihood of convergence to a multilocus polymorphism,
and it reduces the amount of linkage disequilibrium and
hence of bimodality and strong competitive divergence
(recall that is calculated only from trajectories thatD
reached a multilocus polymorphic equilibrium). For
weaker competition ( ), the effects of linkage aref p 1.56
even more pronounced (results not shown). Thus, with
random mating, very tight linkage induces the evolution-
ary emergence of two isolated clusters with higher prob-
ability than with strong assortative mating. Still, there is

a difference: with tight linkage and random mating, there
is no reproductive isolation; only the offspring are (largely)
of one or the other type.

Free Recombination and an Asymmetric Optimum. We also
investigated a model with asymmetrical selection, where
the optimum v of stabilizing selection was set to v p

. The analytical results in the online appendix dem-0.25
onstrate that with random mating, this asymmetry reduces
the proportion of genetic systems for which a fully poly-
morphic equilibrium exists relative to . Conse-v p 0
quently, our numerical results (fig. 4) show that for weak
to moderately strong assortment, the proportion of fully
polymorphic equilibria is substantially reduced relative to
the symmetric case. The genetic variance and the linkage
disequilibrium, however, are only slightly reduced. The
only slight reduction of the variance is in accordance with
the analytical results for random mating because with an
asymmetric optimum, loci of small effect tend to be fixed,
whereas those of large effect are polymorphic. With strong
assortment, the position of the optimum has very little
influence on the equilibrium structure and hence on the
evolution of divergence. Qualitatively similar results were
obtained for weaker frequency dependence (not shown).
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Figure 3: Influence of linkage on the equilibrium structure for loci and very strong frequency dependence ( ). The upper panel displaysn p 4 f p 2.5
the fraction of trajectories converging to an equilibrium with two or more polymorphic loci as a function of a, the middle panel the relative genetic
variance (averaged over all trajectories), and the lower panel the measure of linkage disequilibrium. The three lines in each panel are for theV DR

three recombination scenarios indicated. We have , , , , , and .r p 2 k p 10,000 s p 0.4 n p 4 v p 0 M p �

Equal versus Unequal Locus Effects

Because the assumption of equal locus effects is widespread
in this field, we investigated it in some detail for f p

and . We used 20 initial conditions to obtain1.56 f p 2.5
a more precise characterization of the equilibrium and
stability structure. If the optimum is symmetric ( ),v p 0
then, as a function of a, the structure is quite similar; the
range of values a that reduce variability most is somewhat
broader with equal effects. For an asymmetric optimum
( ), much more variation is maintained with equalv p 0.25
effects than on average (with randomly assigned effects);
in particular, and in contrast to the general case (fig. 4),

the symmetric, fully polymorphic equilibrium is globally
stable if . However, little linkage disequilibrium isa ≤ 1.5
maintained; thus no divergence occurs. If , the2 ≤ a ≤ 10
proportion of multilocus polymorphisms is reduced but
always in excess of 0.5. Hence, it is higher than for the
average genetic system, especially if . If , thenf p 1.56 a ≥ 4
linkage disequilibrium is high ( ); that is, multilocusD 1 0.8
polymorphisms represent reproductively isolated clusters.
If , all trajectories converge to fully polymorphica ≥ 12
equilibria; hence splitting occurs with certainty. For other
genetic systems, this is not necessarily the case (fig. 4 and
results for that are not shown).f p 1.56
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Figure 4: Influence of the position v of the optimum on multilocus polymorphism (i.e., two or more loci are polymorphic) for the different
scenarios indicated. We have , , , , , , and free recombination. 4L-poly indicates the fraction of trajectoriesr p 2 k p 10,000 s p 0.4 n p 4 M p � f p 2.5
converging to an equilibrium with four polymorphic loci; 2�3L-poly indicates the fraction converging to an equilibrium with two or three polymorphic
loci.

Table 2: Equilibrium structure for assortative mating with costs
(M p 1)

a

Polymorphism

#(E) P VR D N0 1 2 3 4

0 0 0 0 0 1 1 1 1.17 .08 11,933
.25 0 0 0 0 1 1 1 1.15 .07 11,297
.50 0 0 0 0 1 1 1 1.13 .06 10,695
.60 0 0 0 0 1 1 1 1.12 .06 10,457
.70 .34 .65 .00 0 0 4.4 .17 .11 .01 10,019
.80 .63 .37 0 0 0 3.6 .09 .04 … 9,987
.90 .87 .13 0 0 0 3.3 .03 .01 … 9,980

1.00 1 0 0 0 0 3.3 0 0 … 9,978
2.00 1 0 0 0 0 5.4 0 0 … 9,920
4.00 1 0 0 0 0 7.0 0 0 … 9,822
8.00 1 0 0 0 0 8.2 0 0 … 9,735

16.00 1 0 0 0 0 9.0 0 0 … 9,686

Note: The parameters are , , , , andr p 2 k p 10,000 n p 4 s p 0.4 f p
( ), and there is free recombination (see table 1 for details).2.5 c p 1

Population Size

The equilibrium population size depends strongly on the
combination of the selection and mating parameters. If
two (reproductively) isolated clusters evolve, it may be
twice as high as for a monomorphic population. The rea-
son is that a genetically variable population can exploit
the resources more efficiently. As shown in “Population
Size at Equilibrium” in the online appendix, total resource
utilization depends strongly, and in a nonlinear way, on
the parameters f, a, and the pattern of recombination.

Costs

Radically different results are obtained for moderate and
strong assortment if choosiness is very costly. We studied
the case numerically. It leads to sexual selectionM p 1
on both sexes and has several alternative interpretations,
for instance, as both sexes being choosy (see above). The
results for and strong frequency dependencen p 4
( ) are summarized in table 2. The message is clear:f p 2.5
high costs associated with assortative mating deplete any
genetic variation and lead to genetic uniformity. Equations
(A17) and (A18) in the online appendix predict the values
a at which the first and last genetic systems develop stable
monomorphisms very well (according to our theory, they
are and ). In contrast to the casea p 0.6 a p 1.0 M p

, here apparently only monomorphic equilibria are stable�

if a is large. We note that costly assortative mating coun-
teracts competition also indirectly because the population
size after mating is reduced, which weakens the frequency-
dependent effect of competition (i.e., h(N) is reduced).

Schneider and Bürger (2005) performed a detailed anal-
ysis of the role of costs for a single-locus haploid model
with multiple alleles that allows for arbitrarily strong se-
lection. They showed that the equilibrium structure in
models with is very similar to that for .M ≥ 10 M p �
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Unless assortment is extremely strong, the case isM p 5
more similar to than to , but the likelihoodM p � M p 1
of converging to the equilibrium at which only the two
extreme phenotypes are present is lower compared with

. The case is, if averaged over many geneticM p � M p 2
systems, similar to . Although divergence can occurM p 1
if , it is extremely unlikely. Therefore, it seems thatM p 2
weak or moderate costs for being choosy have only a slight
negative effect on the evolution of competitive divergence.

Discussion

This work is concerned with frequency-dependent selec-
tion and its ability to induce sympatric speciation in the
presence of assortative mating. In our model, frequency-
dependent selection is induced because individuals of sim-
ilar phenotype compete for a continuous resource. The
same trait causes assortative mating because the proba-
bility of mating is based on phenotypic similarity with
respect to this trait. The strength of assortment is tuned
by a parameter, as are the costs for being choosy (Gavrilets
and Boake 1998; Matessi et al. 2001). Thus, we are dealing
with a “magic” trait, an assumption that is considered to
be most conducive for sympatric speciation (Gavrilets
2004, chap. 10). The main motivation for this work results
from the need to characterize the conditions that enable
competitively driven divergence within a population.

Our focus here is on the identification of the conditions
that lead to the evolution of two reproductively isolated
clusters of phenotypes, which may be interpreted as an
important step toward sympatric speciation. Because the
strength of assortment is controlled by a parameter, we
can determine the strength that is necessary for divergence
as a function of the other parameters. A simplifying as-
sumption is haploidy of individuals, which has, however,
been made by other authors too (e.g., in some of the
models of Gavrilets 2003, 2004; Gourbiere 2004). The
main reason for this is limitations of computing time be-
cause with diploid individuals, genotype frequencies have
to be followed. In a diploid population, stronger com-
petition and assortment will be required to evolve strong
divergence and reproductively isolated clusters because a
much higher proportion of intermediate types is produced.
Preliminary numerical results confirm this expectation (R.
Bürger, K. A. Schneider, and M. Willensdorfer, unpub-
lished data).

In contrast to previous studies (Dieckmann and Doebeli
1999; Bolnick 2004b; Gavrilets 2004, chap. 10.3; Gourbiere
2004; Kirkpatrick and Nuismer 2004), we do not assume
that loci have equal effects. Rather, we explore randomly
sampled genetic systems with two alleles per locus. Of
course, we do not use the hypergeometric model (e.g.,
Doebeli 1996; Kondrashov and Kondrashov 1999), which

even posits identical allele frequencies across loci. This
extreme symmetry assumption often forces evolutionary
trajectories to converge to equilibria representing strong
divergence and reproductive isolation, whereas the correct
evolutionary dynamics may converge to a different equi-
librium, often with very little variation (see also Gavrilets
2004, pp. 377–380).

A further simplifying assumption we have made is that
of weak selection. This has the advantage that the resulting
fitness function, equation (8), is the second-order ap-
proximation (i.e., to order s2) to all models of competition
for a continuous and unimodally distributed resource that
the authors are aware of (see Bürger 2005 for details).
Hence, our results are representative of all these models
unless natural selection is too strong, that is, if the fitness
function can be approximated by a quadratic on the whole
range of phenotypes. This model is also easily amenable
to mathematical analysis. In an earlier work (Schneider
and Bürger 2005), we studied a single-locus model with
multiple alleles in which stabilizing selection and com-
petition are modeled by Gaussian functions and thus can
be arbitrarily strong, and assortment is modeled as here.
Interestingly, the evolution of maximum divergence and
complete reproductive isolation becomes less likely as
competition gets extremely strong.

Summarizing, it seems that the model assumptions un-
derlying this work are very favorable for the evolution of
competitively driven divergence. Nevertheless, our results
demonstrate that the evolution of divergence and eventual
splitting is less likely than suggested by Dieckmann and
Doebeli (1999) and Kondrashov and Kondrashov (1999).
It is constrained by the genetic assumptions and the initial
genetic composition of the population. Assortative mating,
even if it has no costs, has a tendency to reduce poly-
morphism relative to random mating (table 1; figs. 1–3).
Hence, it impedes or may even prohibit divergence. This
effect is most pronounced for moderately strong assort-
ment, which can lead to complete depletion of genetic
variation. The attenuating effect of moderate assortment
increases with the number of loci contributing to the trait.
It provides an explanation for the finding of Matessi et al.
(2001) that under disruptive selection and if costs for as-
sortment are absent or low, there may be a barrier to a
transition in small steps from weak to very strong assort-
ment, although a modifier enhancing assortment can in-
vade a randomly mating population, and complete repro-
ductive isolation is evolutionarily stable. This is in
contradistinction to the numerical results of Dieckmann
and Doebeli (1999), who showed that strong assortment
does evolve even if there are several “mating” loci. How-
ever, their figure 5b shows that the waiting time to branch-
ing increases rapidly with the number of mating loci. Ap-
parently, in Dieckmann and Doebeli’s model, several (or
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all) mating loci have to contribute together to induce a
more or less sudden sweep from random mating to very
strong assortment. This is greatly facilitated by their as-
sumption of initial allele frequencies of 1/2 at all loci,
including the mating loci, and their high mutation rates
of 10�3.

Another important aspect of our results is that the evo-
lutionary outcome may depend heavily on the initial con-
ditions, especially if assortment is strong. In fact, we
proved analytically that with moderate or strong assort-
ment, there always exist stable monomorphic equilibria.
Therefore, a fraction of trajectories converge to a mono-
morphic equilibrium. Also, typically, equilibria with fewer
than n polymorphic loci, and thus less than maximum
divergence (and reduced reproductive isolation), are sta-
ble. Populations with little genetic variance are much less
likely to split than populations with high initial variability;
rather, assortment will tend to further reduce their genetic
variation because it induces stabilizing selection locally.
Indeed, as shown by some of our numerical results, even
under very strong competition and assortment, a high
amount of initial genetic variation does not necessarily
lead to the evolution of reproductively isolated clusters but
may lead to fully polymorphic equilibria with negative
linkage disequilibrium. In general, our choice of initial
conditions favors evolutionary divergence because they are
sampled uniformly from all frequency distributions.
Hence, initially, the majority of alleles is at intermediate
frequency. Empirical evidence lends stronger support to
the maintenance of genetic variation by rare alleles of large
effects (Barton and Turelli 1987; Mackay 2001; Barton and
Keightley 2002). If mutation were included, a monomor-
phic equilibrium in this model would correspond to a
distribution with relatively little variation maintained by
mutation. Still, heritabilities up to 20% can be explained
by mutation-selection balance (Bürger 2000). Interestingly,
frequency dependence together with assortment can give
rise to such equilibria, to highly polymorphic ones where
alleles are at intermediate frequency, and to evolutionary
divergence. Thus, it has the potential to generate a large
variety of evolutionary outcomes.

The dependence on the initial conditions was ignored
by most earlier studies and would deserve closer exami-
nation. For some such results, see the works by Geritz and
Kisdi (2000), Kirkpatrick and Ravigné (2002), Gavrilets
(2004, pp. 380–382), Kirkpatrick and Nuismer (2004), and
Schneider and Bürger (2005). In addition to the initial
conditions, the evolutionary fate of a population depends
on the genetic basis of the trait, that is, on the locus effects
and the recombination rates. Among genetic systems dif-
fering in the number of loci and locus effects, there is
considerable variation in the equilibrium structure and
hence in the likelihood of divergence and splitting.

Linkage reduces the fraction of trajectories converging
to equilibria representing strong divergence (i.e., those
with high linkage disequilibrium) unless assortment is
weak (fig. 3). In fact, linkage disequilibrium and popu-
lation size are maximized in a random mating population
with tightly linked loci. The two emerging clusters are, of
course, not reproductively isolated, but the phenomenon
shows that strong assortment and speciation are not the
only means to use resources most efficiently. Frequency-
dependent disruptive selection can also lead to the
evolution of dominance (Van Dooren 1999) or sexual di-
morphism (Bolnick and Doebeli 2003). A well-docu-
mented example from the empirical literature that com-
petition for resources does not lead to the evolution of
assortative mating and speciation is provided by the Af-
rican finch Pyrenestes ostrinus (Smith 1990, 1993). Here,
a single-locus polymorphism with complete dominance
underlies the two bill morphs specialized on the different
resources, and mating with respect to bill traits appears to
be at random.

We also investigated the effects of an asymmetric re-
source distribution. For weak assortment, asymmetry leads
to loss of genetic variation. For strong assortment, asym-
metry affects the likelihood of the evolution of divergence
and the establishment of reproductively isolated clusters
only slightly.

Finally, we explored the role of costs for being choosy.
We showed analytically that increasing costs enhance sta-
bility of monomorphic equilibria and thus reduce the
probability of divergence. We showed numerically that
with high costs ( ) or, equivalently, if both sexes areM p 1
choosy, moderate or strong assortment depletes all genetic
variation; that is (in the absence of mutation), it leads to
convergence to one of the monomorphic states. Similar
results have been found by Drossel and McKane (2000),
Bolnick (2004b), Gavrilets (2004, chap. 9.2), Gourbiere
(2004), and Kirkpatrick and Nuismer (2004). Schneider
and Bürger (2005) performed a detailed study of the role
of costs for a single-locus model with multiple alleles. It
appears that only high costs, or strong selective mating in
both sexes, inhibit divergence.

Our results as well as those from previous studies show
that the condition proposed by Dieckmann andj ! jC K

Doebeli (1999) to imply evolutionary branching is insuf-
ficient in various ways (their condition is equivalent to
our ). It is necessary, however, because oth-f(r � 1) 1 1
erwise frequency dependence is too weak to generate dis-
ruptive selection and maintain (much) variation (Bulmer
1974, 1980; Slatkin 1979; Christiansen and Loeschcke
1980; Bürger and Gimelfarb 2004; Bürger 2005). In ad-
dition to sufficiently strong frequency-dependent com-
petition, appropriate initial conditions and very strong as-
sortment are necessary prerequisites for evolutionary
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splitting or speciation. How this can evolve in view of the
reduction of variation by moderately strong assortment
remains unclear and deserves further investigation. De-
spite the various limitations identified by this and previous
work, sympatric speciation driven by competition or some
other form of frequency-dependent or balancing selection
that induces disruptive selection continues to be not only
a fascinating but also a viable hypothesis. More work, the-
oretical and empirical, will be necessary to reach a definite
conclusion. For instance, it would be important to have
empirical estimates of the strength of assortment from
populations that are candidates for strong frequency-
dependent selection or incipient sympatric speciation. On
the theoretical side, the importance of sympatric speciation
relative to other evolutionary strategies as a response to
disruptive selection awaits further evaluation.

In contrast to the popularity among theoreticians of
models of sympatric speciation driven by competition,
there is only sparse empirical support for them. Often-
cited examples, for which more or less convincing evidence
for sympatric speciation has been provided, include crater
lake cichlids (Schliewen et al. 1994) and host races in the
apple maggot fly Rhagoletis pomonella (Bush 1994; see also
Via 2001). In the first case, the driving force of speciation
has not been established, whereas in the second case there
is disruptive selection caused by the discreteness of re-
sources. Only few studies (Swanson et al. 2003; Bolnick
2004a) have shown that intraspecific competition indeed
induces disruptive selection, and most empirical evidence
on the role of resource competition in evolutionary di-
versification concerns interspecific competition (Schluter
2000). Even then, frequency-dependent selection has been
established only rarely (Schluter 2003). Although disrup-
tive selection may occur more frequently in nature than
previously thought (Kingsolver et al. 2001), the mecha-
nisms that generate it have not been explored.

Recently, it has been demonstrated that “the parallel
build-up of mating incompatibilities between stickleback
populations can be largely accounted for by assortative
mating based on one trait, body size, which evolves pre-
dictably according to environment” (McKinnon et al.
2004, pp. 294–295). In other words, body size in stick-
lebacks is likely to be both ecologically important and a
mediator of assortative mating. This lends some support
to magic-trait models. Another case in point may be body
size in seahorses (Jones et al. 2003). Empirical estimates
for the costs of choosiness are rare, but existing data sug-
gest that M is not small (Jennions and Petrie 1997; Jones
et al. 2003). There are good arguments, however, that M
can range from very small to very large values (Bolnick
2004b; Gavrilets 2004). More empirical studies of these
issues are needed before theoreticians can be confident of

the biological relevance of their models of competitively
driven sympatric speciation.
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Appendix from R. Bürger and K. A. Schneider, “Intraspecific
Competitive Divergence and Convergence under Assortative Mating”
(Am. Nat., vol. 167, no. 2, p. 190)

Analytical Results and Derivations
The Linkage Equilibrium Approximation for a Randomly Mating Population

We assume a randomly mating population of constant size, for instance, at demographic equilibrium. The proofs
are analogous to those for the diploid case treated in Bu¨rger (2005), actually slightly simpler. Therefore, we
summarize only the relevant results and refer to this article for more details. In linkage equilibrium (LE), the
evolutionary dynamics can be described by the allele frequenciesPi. The functional forms ofW(g) and areW
affected by the LE assumption only insofar as the genetic varianceVA has to be replaced by the linkage
equilibrium variance,

2V p 4 g P(1 � P). (A1)�LE i i i
i

The population mean is not affected by this assumption and can be written as

ḡ p g (2P� 1). (A2)� i i
i

We denote the values of the functionsF andh at demographic equilibrium ( ) by and , respectively. Then,ˆ ˆ ˆN F h

the LE approximation, or the weak-selection limit, of the full genetic dynamics (eq. [17]) is of the much simpler
form

D2˙ ˆ ˆP p 4Fsg P(1 � P) (2P� 1)(1� h) � , (A3)i i i i i[ ]gi

where , which is a function of thePi ( ). Thus, frequency dependence enters the dynamics¯D p g � v i p 1, … ,n
and equilibrium structure only through the mean phenotype . The system of equation (A3) is closely related toḡ
models of Zhivotovsky and Gavrilets (1992) and Turelli and Barton (2004). The system (A3) is a generalized
gradient system with potential . Therefore, all solutions converge to the set of2ˆ ˆV(g) p F[1 � sD � (1 � h)V ]LE

equilibria and, if there is a single locally stable equilibrium, it must be globally stable (Bu¨rger 2005). The main
results are the following.

Result 1. Let . Then at most one locus can be polymorphic at a stable equilibrium, and, typically,ĥ ! 1
multiple stable equilibria coexist. In addition, for every given set of locus effects (gi) such that no genotype
matches the optimumv, only single-locus polymorphisms can be stable if is sufficiently close to 1.ĥ

Result 2. Let . Then there exists a unique (globally) asymptotically stable equilibrium. At least one locusĥ 1 1
is polymorphic. (i) This equilibrium is fully polymorphic if and only if

vF F
g 1 for all i. (A4)i ˆn � h � 1

The allele frequencies are
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1 1 v
P̂ p � . (A5)i ˆ2 2g n � h � 1i

(ii) A stable, fully polymorphic and symmetric equilibrium ( for alli) exists if and only if . TheP̂ p 1/2 v p 0i

only stable equilibrium at which is the fully polymorphic symmetric equilibrium. (iii) If the unique stableĝ̄ p v

equilibrium is not fully polymorphic (hence, ), we order loci such that . Then (a) therev ( 0 g ≤ g ≤ … ≤ g1 2 n

exists a unique integerm, where , such that loci are fixed, and loci are1 ≤ m ≤ n � 1 1, … ,m m� 1, … ,n
polymorphic. Thism is the largest integer that satisfies≤ n � 1

m�1

ˆg (n � m� h) � g ! FvF, (A6)�m i
ip1

and (b) the allele frequencies of the fixed loci are all 1 (i.e., the� allele is fixed) if , and all 0 if ; thev 1 0 v ! 0
allele frequencies of the polymorphic loci are

m
v � d � gv jjp11 1

P̂ p � , (A7)i ˆ2 2g n � m� h � 1i

where if , and if . We have if and only if .ˆd p 1 v 1 0 d p �1 v ! 0 P 1 1/2 v 1 0v v i

Simple calculations show that the deviation of the mean from the optimum is

m
d � g � vv iip1

D̂ p , (A8)
ˆ1 � (n � m)/(h � 1)

and the variance is

m 2n (� g � FvF)iip1
2V̂ p g � (n � m) . (A9)�LE i 2ˆ(n � m� h � 1)ipm�1

The above results demonstrate that the equilibrium structure depends crucially on whether or not. Forĥ 1 1
the model with population regulation, this condition is deceptively simple because depends on the populationĥ

size, which is not (exactly) known without solving the full model. It is readily shown that in demographic
equilibrium

2V � DA 2N̂ p K � sK 2fV � � O(s ). (A10)A ′[ ]KF (K)

Therefore, simple approximations for can be derived. For the discrete logistic model, one obtainsĥ

2 2ĥ p f (r � 1) � sfr{[2 f (r � 1) � 1]V � D } � O(s ). (A11)A

An explicit expression for the first-order approximation of ins is obtained from equation (A11) by substitutingĥ

and , calculated from equations (A8) and (A9) by using the zeroth-order approximation , forˆ ˆ ˆD V h p f (r � 1)LE

D andVA, respectively. By numerical solution of a cubic, even the exact value of can be calculated (Bu¨rgerĥ

2005).
As a consequence, simple approximations for the allele frequencies and other derived quantities are easilyP̂i

obtained, even in the presence of population regulation. Comparison with exact results from numerical iteration
of the recursion relations of the full model show that in the haploid case, the LE approximation is accurate as
long as linkage is not too tight (see table A1 for a typical example). In the diploid case, the LE approximation is
accurate for a larger range of recombination rates because linkage disequilibria are smaller than in the
corresponding haploid case. The reason is that, because the phenotypic range is the same, selection on alleles is
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stronger in the haploid case. If the population size is not assumed constant but is regulated according to equation
(18), the equilibrium structure is identical except for a small interval of sizeO(s) around , in whichĥ p 1
equilibria described in results 1 and 2 may coexist (Bu¨rger 2005). Results 1 and 2 can be generalized to include
multiple alleles. It can be shown that if a locus is polymorphic at equilibrium, then exactly two alleles are
segregating. If , these are the two alleles with the most extreme effects, each on one side of the optimumĥ 1 1
(Schneider 2006).

Stability of Monomorphic Equilibria under Assortative Mating

For the monomorphic equilibria, the eigenvalues can be calculated in the general model with population
regulation, linkage disequilibrium, and assortative mating. For other equilibria this seems to be impossible
because no explicit formulas are available. Let denote an arbitrary gamete. Then the eigenvalues ( ) atv l r ( vr

the monomorphic equilibrium are given byp p 1v

2 2ˆ1 � s(g � v) � sh(g � g )r rv Ml p {1 � p(g � g ) � [1 � p(g � g )] } R(rv r r ), (A12)r r rv v21 � s(g � v)v

where because the equilibrium population size is2ĥ p f [r � 1 � sr(g � v) ]v

2 �1N̂ p k{ r � [1 � s(g � v) ] } (A13)v

(calculated from ). The equilibrium is locally asymptotically stable if and only if for allW p 1 p p 1 Fl F ! 1rv

. We note that and if andr differ at only one locus or if there is nor ( v R(rv r r ) ≤ 1/2 R(rv r r ) p 1/2 v
recombination at all. With recombination and if andr differ in many loci, can be very small. Thev R(rv r r )
demographic equilibrium exists (i.e., ) and is locally stable if and only ifˆ ˆN N 1 0

21 ! r[1 � s(g � v) ] ! 3, (A14)v

where the right inequality holds trivially if , as is assumed throughout. The left inequality means that ifr isr ! 3
small ors is large, equilibria with an effect deviating too far from the optimum cannot be realized (becausegv

). The proofs are given below in “Derivation of Eigenvalues for Monomorphic Equilibria.”N̂ p 0
These results generalize those of Gavrilets (2004, pp. 380–382) for a two-locus model with loci of equal

effects and that becomes a special case of ours if in his fitness function, terms of ordercs are ignoredM p 1
(i.e., our fitness function [8] is the weak-selection limit of his). In addition, he showed that several polymorphic
equilibria may exist and discussed the consequences for sympatric speciation.

Next, we prove the conclusions (a)–(c) in “Analytical Results.” Unfortunately, the magnitude of the
eigenvalues does not permit any conclusion on the size of the basin of attraction.

Proof of (a): Let . Because the term in braces in equation (A12) equals 2 if , andf (r � 1) 1 1 a p 0 R(vr r
if r and differ at only one locus, it is sufficient to show that for every anr exists such that ther ) p 1/2 v v

fraction in equation (A12) is11. Write with and let with . Then thisg p v � e e≥ 0 g p v � e� h h 1 0rv

fraction is11 if and only if . If , this holds for allh. The left inequality in2h[1 � f (r � 1) � e frs] ! 2e ep 0
(A14) informs us that it is sufficient to consider equilibria satisfying . This implies that2e s! (r � 1)/r 1 � f (r �

is monotone decreasing inf for all possiblee, and it is sufficient to have (because2 21) � e frs he sr/(r � 1) ! 2e
). This is fulfilled if can be chosen. It surely holds for allh (which have to satisfyf 1 1/(r � 1) h ! 2e h≤ G �

) and anye ( ) if . Unlessr is close to 1, this restriction ons is only�2FvF e ≤ G � FvF s ! 2(1� 1/r)(G � FvF)
slightly stronger than our general restriction . An analogous proof applies if , when has�2s ! (G � FvF) e ! 0 h ! 0
to be chosen.

Proof of (b): The first and second statements are valid because andlr is a decreasing function ina andl 1 0r

an increasing function inM. For the third statement, observe that if , thenM ! � 1 � p(g � g ) � [1 � p(g �rv v

decreases to 0 as if . Therefore, all monomorphic equilibria with (eq. [A13]) are stableM ˆg )] a r � g ( g N 1 0r r v

for sufficiently strong assortment, even if . Exceptions can occur only if the phenotype is notf (r � 1) 1 1
uniquely determined by the gametic type, for example, because there are loci of identical effect. If , thenM p �

decreases to 1 as if . Therefore, only certainM1 � p(g � g ) � [1 � p(g � g )] p 1 � p(g � g ) a r � g ( gr r r rv v v v

monomorphic equilibria become stable ifa is sufficiently large.
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Proof of (c): If and lr is developed into a Taylor series, we obtainM ≥ 2

1 2l ≈ 1 � sf(r � 1) � s� a z � 2sz(g � v), (A15)r v[ ]2

where and terms of orders2, a2, andsa (and higher) are ignored. If , then for allz p g � g g p v l ! 1 r ( vr rv v

if and only if condition (19) holds. The approximation (A15) shows that the first monomorphic states that
become stable asa increases are those closest to the optimumv. If , a stronger condition may beg ( vv

necessary. In the extreme case that the genotypic value that is closest tov is at the boundary of the phenotypic
range ( ; thus all but one locus have negligible effect), the condition for stability becomes (20) becauseg p Gv

is the largest possible deviation. Numerical computations suggest that (20) is always sufficient for thez p �2G

stability of at least one monomorphic state (even ifs, c, anda are not small). The parameterM enters the
eigenvalues only through terms of order and higher.2a

If , then we obtainM p 1

2l ≈ 1 � [sf(r � 1) � s� a]z � 2sz(g � v) (A16)r v

instead of (A15). Therefore, (19) and (20) have to be replaced by

s� a 1 c(r � 1) (A17)

and

a 1 c(r � 1), (A18)

respectively. Thus, monomorphisms become stable for weaker assortment. For analogous single-locus results with
multiple alleles, see Schneider (2005) and Schneider and Bu¨rger (2005).

Derivation of Eigenvalues for Monomorphic Equilibria

Let us first assume an arbitrary, but constant, population size. Let

p̃r∗p p (A19)r p̄

denote the frequency of gameter after assortative mating and recombination, where

˜ ¯ ˜p p p p Q R(uv r r ) and p p p . (A20)� �r u u rv v
u, rv

After viability selection the frequency of gameter is

∗ ∗p Wr r′p p , (A21)r W

where depends on the gamete frequencies and .∗ ∗ ∗ ∗W p Wp � p Wr u r rr

We derive the Jacobian at the monomorphic equilibrium with . To this aim, we eliminate thep̂ p p 1v

redundant variable by setting . We need the following partial derivatives:p p p 1 �� prv v r(v

∗ ∗′ ∗ ∗(�W /�p )W� W (�W/�p )r u r u�p W �pr r r∗p p �r 2F F F�p �pW Wp p1 p p1 p p1u uv v v

∗ ∗ ∗W �p W �pr r r rp p . (A22)∗ F F F FW �p W �pp p1 p p1 p p1 p p1u uv vv v v v
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Hence, we also need the following derivatives:

∗ ˜ ¯ ˜ ¯ ˜�p (�p /�p )p � p (�p/�p ) �pr r u r u rp p , (A23)F 2 F F¯�p p �pp p1 p p1 p p1u uv v v

where

˜�p �p �p �Qr i j ijp p � p Q � p p R(ij r r )� j i ij i jF F[( ) ]�p �p �p �pi, jp p1 p p1u u u uv v

�Qijp (d d � d d )Q � d d R(ij r r )� iu j i ju ij i jv v v v F[ ]�p p p1i, j u v

i, j(v

�Qiv� (d � d )Q � d R(iv r r )� iu i i iv v v F[ ]�p p p1i u v

i(v

�Q jv� (d � d )Q � d R(vj r r ) (A24)� ju j j jv v v F[ ]�p p p1j u v

j(v

�Qvv� 2Q � R(vv r r )vv F( )�p p p1u v

p R(uv r r )(Q � Q )F .u u p p1v v v

Here, if and otherwise. Therefore, we obtaind p 1 i p u d p 0iu iu

′�p Wr rp R(uv r r ) (Q � Q )F . (A25)u u p p1v vF F v�p Wp p1 p p1u vv v

Next we show that the eigenvalues of the Jacobian are its diagonal elements; that is,

′ 2 2ˆ�p 1 � s(g � v) � sh(g � g )r r r v
l p pr F 2�p 1 � s(g � v)p p1r vv

M# {1 � p(g � g ) � [1 � p(g � g )] } R(rv r r ). (A26)r rv v

This is best seen as follows. We order the multi-indices and such that ifr p (r , … , r ) u p (u , … , u ) r ≺ u1 n 1 n

and only if for the largest integerk with . We have if and only if for allk.r ! u r ( u r p u r p uk k k k k k

Furthermore, without loss of generality we label the alleles at each locus so that . We arrange thev p (1, … , 1)
elements of the Jacobian according to this ordering. This ordering implies that for a given rowr of the Jacobian,

or are necessary for . Thus, the Jacobian can be rearranged as an upper triangularr ≺ u r p u R(uv r r ) ( 0
matrix, implying that its eigenvalues are its diagonal elements. Clearly, we have for everyr.l 1 0r

If the population size is not assumed to be constant, we additionally need the following derivatives:

∗ ∗′ (�W /�N)W� W (�W/�N)r r�pr ∗p p p 0 for r ( v, (A27)r 2F F�N ˆ ˆWˆ ˆ(N, p) (N, p)
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and

′ �W�N
p W� N . (A28)F F[ ]�N �Nˆ ˆˆ ˆ(N, p) (N, p)

Equation (A27) implies that is an eigenvalue. Because′(�N /�N)F
ˆ ˆ(N, p)

∗ ∗�W �W �Wr v∗p p p� rF F F[ ]�N �N �Nˆ ˆ ˆrˆ ˆ ˆ(N, p) (N, p) (N, p)

′ 2 ∗ 2 ∗¯p (F (N){1 � s(g � v) � sh(N)[(g � g ) � V ]}Av v

′ ∗ 2 ∗¯� F(N)sh (N)(g � g ) � V )F ˆ ˆA (N, p)v

′ ˆF (N)
p ,ˆF(N)

we have

′ ′ˆ ˆ�N NF (N)
p 1 � . (A29)F ˆ�N F(N)ˆ ˆ(N, p)

For discrete logistic growth we obtain

′ ˆ�N N
p 1 � . (A30)F ˆ�N rk � Nˆ ˆ(N, p)

Therefore, we have if and only if . Hence, the demographic equilibrium (eq.′ ˆ�1 ! (�N /�N)F ! 1 2rk 1 3Nˆ ˆ(N, p)

[A13]) exists and is locally stable if and only if (A14) holds.

The MeasureD of Linkage Disequilibrium

First, we note that for two diallelic loci, the following relation betweenD and the classical measure of linkage
disequilibrium (here denoted by ) holds:D p p p � p p2 1 4 2 3

VmaxD p 4D .2 VLE

For a fully polymorphic symmetric equilibrium, is obtained.D p 4D2

Figure A1 illustrates the relation between various distributions of genotypic values andD. In figure A1a, there
are four loci with allelic effects such that the 16 phenotypic values are equally spaced. In figure A1b, there are
eight loci with equal effects, hence only nine different phenotypes. It should be noted that in the first case, a
uniform distribution is in linkage equilibrium, whereas in the second case, a binomial has this property. Clearly,
a high value ofD indicates that the population consists of two clusters around the extreme phenotypes.

Population Size at Equilibrium

It is of interest to consider the population size at equilibrium because it provides a measure of how efficiently
the resources are utilized and, in some sense, for the degree of adaptation to the environment. Figure A2 displays
the average equilibrium population size as a function of the strength of assortment for four different scenarios:
strong frequency dependence ( ) with free recombination, tight linkage, and very tight linkage, as well asf p 2.5
moderately strong frequency dependence ( ) and free recombination. For a monomorphic population atf p 1.56
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the phenotypic optimum, the equilibrium population size would be at the carrying capacity of . AsK p 10,000
the figure shows, the population size is always higher except for free recombination and moderately strong
assortment, when only monomorphic equilibria are stable. Then is between 9,990 and 10,000. Tables 1 and 2N
and, especially, comparison of figures 3 and A2 show that the equilibrium population size is closely related to
the equilibrium variance. In addition, if is close to 1, so that the population clusters around the two extremeD
phenotypes, is close to .N 2K p 20,000
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Figure A1: Some phenotypic distributions and the associated overall linkage disequilibrium,D (eq. [21]). The
distributions that are given by dotted lines and symbols are proportional to withk as indicated. In addition,kx
there are three distributions for which only two types are present at equilibrium (and at equal frequency).a,
There are four loci with allelic effects�1/30, �2/30, �4/30, and�8/30. b, There are eight loci with equal
effects.
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Figure A2: Equilibrium population size as a function of the strength of assortment for different strengths of
frequency dependence and different recombination scenarios, as indicated. We have , ,k p 10,000 r p 2

, , , and .n p 4 s p 0.4 v p 0 M p �

Table A1
Equilibrium structure in a typical six-locus system for strong
competition ( ) and an asymmetric optimum ( )ĥ 1 1 v p 0.25

P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 D̂ V̂A V̂LE

Effectsgi .019 .124 .015 .056 .127 .159

Equation (A7):

N p K 1.000 .691 1.000 .926 .685 .648 �.027 .051
ˆN p N 1.000 .685 1.000 .911 .679 .643 �.033 .052

r p .5 1.000 .684 1.000 .903 .679 .644�.034 .054 .052

r p .1 1.000 .696 1.000 .841 .665 .646�.041 .060 .052

.005 ≤ r ≤ .05 .765 .676 .670 .662 .654 .660 �.083 .097 .054

r p .01 .622 .608 .600 .605 .606 .607 �.143 .194 .058

r p .001 .582 .582 .582 .582 .582 .582�.168 .239 .059

r p 0 .580 .580 .580 .580 .580 .580 �.170 .244 .059

Note: means that recombination rates between adjacent loci are 0.5 (no interference), andr p 0.5
similarly for , etc. For , recombination rates between adjacent loci were chosenr p 0.1 0.005≤ r ≤ 0.05
randomly from a uniform distribution and are , 0.0089, 0.0372, 0.0292, and 0.0415 in thisr p 0.0122
example. The following parameters are fixed in all cases: , , , hence .r p 2 sp 0.4 c p 0.625 f p 1.5625
With the (true) numerically determined (p10,493), we have .ˆ ˆN h p 1.7246


