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Abstract. The equilibrium structure of an additive, diallelic multilocus model of a quanti-
tative trait under frequency- and density-dependent selection is derived. The trait is under
stabilizing selection and mediates intraspecific competition as induced, for instance, by
differential resource utilization. It is assumed that stabilizing selection is weak, but the
strength of competition may be arbitrary relative to it. Density dependence is caused by
population regulation, which may be of a very general kind. The number and effects of
loci are arbitrary, and stabilizing selection is not necessarily symmetric with respect to the
range of phenotypic values. All previously studied models of intraspecific competition for
a continuum of resources known to the author reduce to a special case of the present model
if overall selection is weak. Therefore, in this case our results are applicable as approxi-
mations to all these models. Our central result is the (nearly) complete characterization of
the equilibrium and stability structure in terms of all parameters. It is derived under the
sole assumption that selection is weak enough relative to recombination to ignore linkage
disequilibrium. In particular, necessary and sufficient conditions on the strength of compe-
tition relative to stabilizing selection are found that ensure the maintenance of multilocus
polymorphism and the occurrence of disruptive selection. In this case, explicit formulas for
the number of polymorphic loci at equilibrium, the allele frequencies, the genetic variance,
and the strength of disruptive selection are obtained. For two loci, the effects of linkage are
investigated analytically; for several loci, they are studied numerically.

1. Introduction

Intraspecific competition is a common ecological phenomenon. It may induce
(negative) frequency-dependent selection and, therefore, has been incorporated
in the explanation of several important evolutionary phenomena. Most promi-
nently, it has been invoked as an agent for maintaining high levels of genetic var-
iation (Cockerham et al. 1972; Bulmer 1974, 1980; Slatkin and Maynard Smith
1979; Clarke 1979, 2004; Asmussen and Basnayake 1990; Gavrilets and Hastings
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1995; Bürger 2002a,b), for causing diversification within a population, e.g., sex
dimorphism (Slatkin 1984; Bolnick and Doebeli 2003), and for triggering the evo-
lution of reproductive isolation and sympatric speciation (Udovic 1980; Doebeli
1996; Dieckmann and Doebeli 1999; Matessi et al. 2001; Gavrilets 2003, 2004).
In modeling such phenomena, intraspecific competition is often envisaged to occur
because individuals of similar phenotype (e.g., birds with similar bill size) compete
for similar resource types (e.g., seeds of similar size) from a continuously distrib-
uted, but limited, resource spectrum (for the derivation of such resource utilization
models, see e.g. Roughgarden 1972; May and Oster 1976; Christiansen and Fenchel
1977; Slatkin and Maynard Smith 1979). Therefore, two conflicting selective forces
act on the population: Stabilizing selection on the trait favors genotypes with inter-
mediate phenotype because the resource distribution is assumed to be unimodal,
e.g., Gaussian, whereas frequency-dependent selection favors the phenotypes that
deviate most from the prevailing ones because they experience less competition. In
addition, population regulation induces density-dependent selection. It is this sort
of model, in which a quantitative trait is subject to a combination of frequency-
independent, frequency-dependent and density-dependent selection, that will be
investigated here. Other types of models of intraspecific competition involve com-
petition for discrete, usually one or two, resources (Matessi and Gatto 1984, Wilson
and Turelli 1986) or fitnesses depending on pairwise interactions (Cokerham et al.
1972; Asmussen 1983; Asmussen et al. 2004).

Quantitative characters are known to be determined by several or many gene
loci (Falconer and Mackay 1996; Bürger 2000). However, in most of the ecolog-
ical literature, the genetic basis of traits is either ignored or oversimplified ge-
netic models are employed. Models of various aspects of intraspecific competition
for a continuous resource are among those that have been comparatively well ex-
plored. Analytical studies have been performed on the basis of phenotypic models
(Slatkin 1979), single-locus models (Bulmer 1974, 1980; May and Oster 1976;
Slatkin 1979; Christiansen and Loeschcke 1980), the so-called hypergeometric
model (Doebeli 1996), and of two-locus models (Loeschcke and Christiansen 1984;
Bürger 2002a,b). Studies with multiple loci relied either exclusively (Clarke et al.
1988; Mani et al. 1990; Dieckmann and Doebeli 1999) or primarily (Bürger and
Gimelfarb 2004) on numerical methods. In these investigations, a zoo of similar
but different ecological models has been used. In many cases, the results are only
qualitative in nature, e.g., conditions are given when genetic variation is maintained
but not how much, or they are exemplary.

What is needed for a better understanding of the evolutionary potential of intra-
specific competition is the identification of general conditions under which intra-
specific competition leads to qualitative changes in the pattern of genetic variation
relative to ubiquitous stabilizing selection. Because stabilizing selection can main-
tain only (very) low levels of genetic variation (for a review, see Bürger 2000),
such qualitative changes provide one of the prerequisites for explanations of evolu-
tionary phenomena such as intraspecific diversification or sympatric speciation in
terms of disruptive selection caused by intraspecific competition. In addition, these
patterns of variation have to be characterized and quantified, and the relation to the
occurrence of disruptive selection must be clarified.
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The main purpose of this paper is the derivation of the equilibrium structure
of a general model of stabilizing selection and intraspecific competition on a poly-
genic trait. In our model, the number of loci and their effects are arbitrary (but they
contribute additively to the trait, without dominance or epistasis), selection on the
trait can be asymmetric, and population regulation is very general. All previously
studied models of intraspecific competition for a continuous resource known to the
author reduce to a special case of the present model if overall selection is weak. The
central assumption that makes the model analytically tractable is that selection is
sufficiently weak relative to recombination to neglect linkage disequilibrium. The
proofs are based on recent results of Turelli and Barton (2004) on the equilibrium
structure of a certain class of multilocus models of balancing selection.

Before we introduce our general model, we review the pertinent theoretical
literature on this topic in order to motivate our model and to show that the previous
models reduce to special cases of ours in the limit of weak selection.

Apparently, in all models of intraspecific competition mediated by a quantitative
trait, the effects of competition between phenotypes g and h have been described
by a function α(g, h) that is chosen either as

α(g, h) = exp

[
− (g − h)2

2Vα

]
(1.1)

or as

α(g, h) = −a(g − h)2 , (1.2)

where a = 1/(2Vα) measures the extent of competition between individuals. As
in many previous models of this type (but see Slatkin 1979; Bulmer 1980), we
neglect environmental contributions to the phenotype which, in the absence of
genotype-environment interaction, would only cause a slight relaxation of selec-
tion on the genotypes. Therefore, we identify phenotypic and genotypic values. Let
π(h) denote the relative frequency of individuals with phenotype h. Then the intra-
specific competition function ᾱπ (g), which measures the strength of competition
experienced by phenotype g if the population distribution is π , is given by

ᾱπ (g) =
∑
h

α(g, h)π(h) , (1.3)

and the sum has to be replaced by an integral if the distribution of types is contin-
uous. Assuming (1.2), we obtain

ᾱπ (g) = 1 − a[(g − ḡ)2 + VA] , (1.4)

where ḡ and VA denote the mean and the variance of π , respectively. (Below, VA
will be the additive genetic variance.)
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Bulmer (1974, 1980), (Bürger 2002a,b), and Bürger and Gimelfarb (2004) as-
sumed that the fitness function is of the form

WB(g) =
(
ρ − N

κ
ᾱπ (g)

)
S(g) , (1.5)

where ρ and κ are positive parameters,N denotes the total population size, and S(g)
describes (frequency-independent) stabilizing selection. (For notational simplicity,
the dependence of WB(g) on N and π is omitted.) This means that competition
and stabilizing selection act independently on the trait, e.g., at different ages. This
is a reasonable assumption if stabilizing selection is extrinsic for frequency depen-
dence, for instance, caused by the requirements of a functional morphology. Bulmer
(1974, 1980) assumed that S(g) is Gaussian, i.e.,

S(g) = exp

[
− (g − θ)2

2Vs

]
, (1.6)

where θ is the position of the optimum and Vs is a measure for the strength of sta-
bilizing selection. (Bürger 2002a,b) and Bürger and Gimelfarb (2004) chose S(g)
to be quadratic, i.e.,

S(g) = 1 − s(g − θ)2 , (1.7)

where s = 1/(2Vs), because this is more amenable to mathematical analysis.
Slatkin (1979) assumed that fitness of an individual with phenotypic value g

has the Lotka-Volterra functional form

WS(g) = 1 + R − RN

k(g)
ᾱπ (g) , (1.8)

where ᾱπ (g) is given by (1.3) together with (1.1), 1 +R is the maximum fitness in
the absence of competition, and k(g) represents resources that can be utilized by
an individual of type g. As a model for k(g), Slatkin used a function proportional
to a Gaussian density, i.e., (1.6) multiplied by K , the carrying capacity. We shall
denote the ‘variances’ of the functions k and α in his model by σ 2

k and σ 2
α . They

can be interpreted as the variance of the resource distribution and the variance of
the utilization function of an individual (or the individual’s niche width), respec-
tively. Essentially the same fitness function was used by Dieckmann and Doebeli
(1999). Doebeli (1996) and Bolnick and Doebeli (2003) employed a variant of
Slatkin’s model but used the Hassell and the Beverton-Holt equation, respectively,
for population regulation (see below).

Christiansen and Loeschcke (1980) and Loeschcke and Christiansen (1984)
considered a model of competition in which fitness of individuals with genotype g
is given by an expression analogous to (1.8), but with R = R(g) depending on g,
and a constant ratio of R(g) and k(g), i.e., R(g)/k(g) ≡ V . Their fitness function
can be written as

WCL(g) = 1 + V [k(g)−Nᾱπ(g)] (1.9)



A multilocus analysis of intraspecific competition 359

with ᾱπ (g) as in (1.3). Loeschcke and Christiansen (1984) used (1.6) multiplied
byK for k(g) and (1.1) for α(g− h), whereas Christiansen and Loeschcke (1980)
used the quadratic approximations (1.7) and (1.2), respectively. The functions k
and α have similar ecological interpretations as in Slatkin’s model. Thus, in both
types of models there is an intrinsic connection between frequency dependence and
stabilizing selection because the latter emerges from the assumption of a unimodal
distribution of resources.

Matessi et al. (2001) used a game-theoretically motivated model to study the
evolution of reproductive isolation promoted by disruptive selection. Their fitness
function has the form

WM(g) = 1 + β1g
2 − (β1 + β2)ḡg + β2(ḡ

2 + v) , (1.10)

where ḡ and v(=̂VA) are the mean and variance of the trait. They assumed 0 <
β1 < β2.

In general, all these models are different. However, in the limit of weak stabiliz-
ing selection and weak competition, they can be approximated by a much simpler
one. Let us introduce the quantities

f = a/s and ϑ = ρκ/N − 1 (1.11)

as a measure of the strength of competition relative to stabilizing selection and as
a compound measure of the demographic effects, respectively. Then all the fitness
functions introduced above share an expression equivalent to

WApp(g) =
(
ρ − N

κ

)[
1 − s(g − θ)2 + s

f

ϑ

(
(g − ḡ)2 + VA

)]
(1.12)

as their leading-order term in s and a; i.e., if terms of order O(s2), O(a2), and
O(sa) are neglected, they reduce to (1.12). If f is considered as a fixed parameter,
then (1.12) is obtained simply by omitting terms of order O(s2) and higher.

It is simple to show for the fitness functions used by Bulmer (1974, 1980),
(Bürger 2002a,b) and Bürger and Gimelfarb (2004) that the leading-order term is
given by (1.12). For Slatkin’s (1979) model this assertion follows from the relations

κ = K/R , ρ = 1 + R , s = (2σ 2
k ϑ)

−1 , a = (2σ 2
α )

−1 , f/ϑ = σ 2
k /σ

2
α .

(1.13)

In the models of Christiansen and Loeschcke (1980) and Loeschcke and Chris-
tiansen (1984), the ‘variance’ of the function α(g − h) is denoted by 2W 2, that of
k(g) by σ 2 +W 2. Then the relations

κ = 1/V , ρ = 1 + VK , s = K

Nϑ

1

2(σ 2 +W 2)
,

a = 1
4W

−2 , f/ϑ = N

K

σ 2 +W 2

2W 2 (1.14)
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identify (1.12) as the leading-order term of WCL(g) (1.9). The model of Matessi
et al. (2001) is density independent (hence, N = κ(ρ − 1) = K , ϑ = (ρ − 1)−1,
ρ −N/κ = 1) and satisfies θ = 0. If we set

s = 1
2 (β2 − β1) and f/ϑ = β2 + β1

β2 − β1
, (1.15)

then WM = WApp + s(VA + ḡ2). Therefore (see (3.3) and Appendix A), in linkage
equilibrium the dynamics and equilibrium structure in their model are equivalent
to ours’.

Although all these models become formally equivalent in the limit of weak
selection, s is density dependent in the models of Slatkin and Christiansen and
Loeschcke (loc. cit).

Somewhat simplified, the main result of Slatkin’s (1979) analysis is that the
fitness function is disruptive and polymorphism is maintained if σ 2

α < σ 2
k (pro-

vided environmental variance is neglected). Otherwise, selection is stabilizing and
no genetic variation is maintained. Bulmer’s (1974, 1980) results are essentially
equivalent. These genetic models are not detailed enough to obtain quantitative
results, for instance to calculate the amount of genetic variation. Christiansen and
Loeschcke (1980) investigated a single-locus model with four alleles at a diploid
locus in a randomly mating population and showed that polymorphism is main-
tained whenever competition is sufficiently strong, i.e., σ 2 > W 2, which is equiv-
alent to σ 2

α < σ 2
k . However, only two alleles can be maintained at equilibrium.

Loeschcke and Christiansen (1984) explored the equilibrium structure of a diallelic
two-locus model, mainly under the assumption of strong competition relative to sta-
bilizing selection and recombination. Then both loci are always polymorphic, and
for certain parameter combinations stable polymorphic equilibria may coexist (see
Discussion). In (Bürger 2002a,b), the equilibrium structure of a diallelic two-locus
model was characterized as a function of the recombination rate and the strength
of competition relative to stabilizing selection. In addition, the amount of genetic
variance, the shape of the fitness function at equilibrium, and the relation between
mean fitness and the location of equilibria was investigated. The (primarily) numer-
ical study of Bürger and Gimelfarb (2004) shows that these results remain valid
if up to five loci determine the trait. In particular, the role of the number of loci
was examined, and it was shown that the strength of competition relative to sta-
bilizing selection necessary to induce multilocus polymorphism is approximately
independent of the number of loci and their linkage relations.

In the next section, we introduce the general model. In Section 3, the main results
are presented, namely the characterization of the equilibrium and stability structure
for an arbitrary number of loci under the assumptions of linkage equilibrium and
a constant population size. Section 4 contains a rather complete analysis for two
linked loci. In Section 5, the linkage-equilibrium (LE) approximation of Section 3
is extended to include population regulation. In addition, some results about the full
model with population regulation and linkage are presented. In Section 6, numerical
calculations are used to explore the range of validity of the LE approximation, as
well as the similarity between the model of Bürger and Gimelfarb (2004) and that



A multilocus analysis of intraspecific competition 361

based on (1.12). The final section is devoted to the Discussion. Proofs are relegated
to the Appendix.

2. The General Model

2.1. Assumptions on population growth and fitness

Many models of population growth in discrete time can be written in the form

N ′ = NF(N) , (2.1)

where N and N ′ are the population sizes in consecutive generations and F :
[0,∞) → [0,∞) is a strictly decreasing function of N (on the interval of admis-
sible values) such that F(N) = 1 has a unique positive solution K , the carrying
capacity. We also assume that F is twice differentiable. Throughout this paper,
we are concerned only with functions F and parameter values that ensure that the
ecological dynamics is simple, i.e., convergence to K occurs for all (admissible)
initial conditions (see Thieme 2003, Chap. 9, for general conditions on F ).

Important examples of F include the following (e.g., May and Oster 1976;
Thieme 2003):

1. The so-called discrete logistic equation,

F(N) = ρ −N/κ , 0 ≤ N < ρκ . (2.2)

The carrying capacity in this model is K = (ρ − 1)κ . Monotone convergence to
K occurs for all 0 < N < ρκ if 1 < ρ ≤ 2, and oscillatory convergence (at a
geometric rate) if 2 < ρ < 3. Although the name discrete logistic equation is not
really justified (there are other, sometimes more appropriate, discrete versions of
the continuous logistic equation, such as the Ricker or the Beverton-Holt model;
see Thieme 2003, Chap. 9), we shall use it for simplicity.

2. The Ricker difference equation (Ricker 1954),

F(N) = exp[r(1 −N/K)] , 0 ≤ N < ∞ . (2.3)

Convergence to K occurs (for all initial values N > 0) if and only if r ≤ 2.
3. A generalization of the models of Hassell and Maynard Smith,

F(N) = λ

(1 + bNξ )c
, 0 ≤ N < ∞ . (2.4)

If ξ = 1, this reduces to the model of Hassell (1975); if ξ = 1 and c = 1, the model
of Beverton and Holt (1957) is obtained; if c = 1, a model suggested by Maynard
Smith (1974) is obtained. The carrying capacity isK = [

(λ1/c − 1)/b
]1/ξ

. For the
Beverton-Holt model, it becomes K = (λ− 1)/b. We note that the Beverton-Holt
model may be the most natural discretization of the continuous logistic equation
because its solution is that of the continuous logistic equation evaluated at the inte-
gers (Thieme 2003, Chap. 9). All solutions with positive initial population size
converge to K if and only if ξc ≤ 2, as is trivially satisfied for the Beverton-Holt
model.
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We posit that the fitness of individuals with genotypic value g is

W(g) = F(N)[1 − s(g − θ)2 + sη(N)(g − ḡ)2 + sϕ(N, π)] , (2.5)

where

η(N) = −NF ′(N)
F (N)

f (2.6)

and ϕ(N, π)may be an arbitrary function of the population size and the distribution
π of g, but is independent of g. (In the weak-selection limit analyzed in the next
section, the genetic dynamics is independent of ϕ(N, π); see below (3.4).) The
quantity η(N) can be viewed as a compound measure of the strength of frequency
and density dependence relative to stabilizing selection. For the population-growth
models introduced above, we obtain

η(N) =




f/(ρκ/N − 1) if F is given by (2.2) ,

f rN/K if F is given by (2.3) ,

f
cbξNξ

1 + bNξ
if F is given by (2.4) .

(2.7)

We assume that η is strictly increasing in N , as is true in all these examples.
In accordance with (1.11) and the models discussed in the Introduction, we

interpret f (f ≥ 0) as the strength of frequency dependence relative to stabilizing
selection. We will treat f as a parameter and note that, in contrast to the model of
Bürger and Gimelfarb (2004), f can be arbitrarily large here.

The rationale for choosing the functional form (2.5) is that for fixed but arbitrary
f ≥ 0, W(g) is the weak-selection approximation of any fitness function of the
form

W∗(g) = F(Nᾱπ (g))S(g) , (2.8)

where ᾱπ (g) = 1−sf [(g− ḡ)2 +VA]+O(s2) and S(g) = 1−s(g−θ)2 +O(s2),
i.e.,W∗(g) = W(g)+O(s2). In all models discussed in the Introduction, except that
by Matessi et al. (2001), we have ϕ(N, π) = η(N)VA. In their model, ϕ(N, π) =
VA(1 + f/ϑ)+ ḡ2. If F(N) is given by (2.2), then (2.5) reduces to (1.12). There-
fore, (2.5) contains the weak-selection approximation of every model treated in the
Introduction as special case.

From (2.5), the mean fitness of the population is calculated to be

W = F(N)[1 − s(
2 + VA)+ sη(N)VA + sϕ(N, π)] , (2.9)

where 
 = ḡ − θ . If we assume ϕ(N, π) = η(N)VA, some simple and impor-
tant approximations can be derived for a population in demographic equilibrium
(W = 1). For example, the population size can be written as

N̂ = K + sK

(
2fVA + VA +
2

KF ′(K)

)
+O(s2C2) . (2.10)



A multilocus analysis of intraspecific competition 363

where C = max(
2, VA). For the discrete logistic and the Maynard Smith model,
simple exact expressions can be obtained; see (C.1a) and (C.2). Substitution of
any of these formulas into (2.6) produces approximate or explicit expressions for
η̂ = η(N̂); see Appendix C. Of course, VA and 
2 depend on N̂ , and N̂ may be
different at different equilibria (Section 5), but the important point here is that for
weak selection, sVA and s
2 are small; hence N̂ is close to K (cf. Bürger and
Gimelfarb 2004, Tables 3 and 4). In general, the equilibrium values of VA and 

depend only weakly on the population size or, at monomorphic equilibria, are even
independent of it (see Section 3).

2.2. Assumptions on genetics

Next we introduce the genetic model. We consider a randomly mating diploid pop-
ulation with discrete generations and equivalent sexes that is sufficiently large to
ignore random genetic drift. Selection acts only through differential viabilities.
Individual fitness is given by (2.5); thus, the trait experiences a combination of
stabilizing and of frequency- and density-dependent selection. The trait is deter-
mined by n additive, diallelic loci of arbitrary effect. Dominance and epistasis are
absent. We denote the alleles at locus i by Ai and ai , their frequencies by Pi and
Qi (Pi +Qi = 1), and their effects by 1

2γi and − 1
2γi (γi > 0). As noted by Turelli

and Barton (2004), this choice is general if the difference of effects (the effect of
a substitution) is γi because constants that determine the mean phenotype can be
absorbed by θ . We assume that θ is within the range of possible genotypic values,
i.e., |θ | ≤ � = ∑n

i=1 γi . We shall call the optimum symmetric if θ = 0.
The allele frequencies are sufficient to describe the multilocus dynamics only if

there is linkage equilibrium. In general, we need the gamete frequencies. Gametes
are designated by r , s, t , the frequency of gamete r among zygotes in consecutive
generations by pr and p′

r , and the fitness of a zygote consisting of gametes s and t
byWst (we do not indicate the frequency and density dependence). Let R(st → r)

denote the probability that a randomly chosen gamete produced by an st individual
is r . The function R is determined by the pattern of recombination between loci.

2.3. The evolutionary dynamics

Since random mating is assumed and gamete frequencies are measured after repro-
duction and before selection, Hardy-Weinberg proportions obtain and the genetic
dynamics is given by the well known system of recursion relations

p′
r = W−1

∑
s,t

WstpsptR(st → r) , (2.11)

whereW = ∑
s,t Wstpspt is the mean fitness (e.g., Bürger 2000). We shall employ

the full genetic dynamics only for numerical calculations and in the two-locus case.
The demographic dynamics follows the standard recursion relation

N ′ = NW . (2.12)
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Thus, for a genetically monomorphic population with g = ḡ = θ (and VA = 0),
the difference equation (2.1) is obtained. The complete evolutionary dynamics is
given by the coupled system (2.11) and (2.12).

In general, the complexity of this system prohibits a detailed analysis. This is
why we concentrate on the case of linkage equilibrium. As will be shown below,
this provides an accurate approximation unless linkage is tight.

3. Multiple Loci in Linkage Equilibrium

Previous studies of the model (1.5) with the choices (1.2), (1.7), (2.2) have shown
that linkage disequilibrium becomes important only if linkage between loci is very
tight (Bürger 2002b; Bürger and Gimelfarb 2004). Therefore, and to achieve analyt-
ical progress, we assume in this section that selection is sufficiently weak relative
to recombination that the population is in (global) linkage equilibrium. Then its
structure can be described by the allele frequencies. The functional forms ofW(g)
andW are affected by the LE assumption only in so far as the genetic variance, VA,
has to be replaced by the linkage-equilibrium variance,

VLE = 2
∑
i

γ 2
i PiQi . (3.1)

The population mean is not affected by this assumption and can be written as

ḡ =
∑
i

γi(Pi −Qi) . (3.2)

The weak-selection limit of the full genetic dynamics (2.11), or the LE approx-
imation, is of the much simpler form

d

dt
Pi = W̃
Pi = Pi(W̃i − W̃ ) , i = 1, . . . , n , (3.3)

where W̃i is the marginal fitness of allele Ai in linkage equilibrium and W̃ is
the mean fitness in linkage equilibrium (cf. Bürger 2000, p. 85). In particular, the
dimensionality has been reduced from 2n to n. If the population size is constant, for
instance in demographic equilibrium, as we will assume for the rest of this section,
then also F and η are constant, and we write

N ≡ N̂ , F (N) ≡ F̂ = F(N̂) , η(N) ≡ η̂ = η(N̂) ; (3.4)

cf. (2.10) and Appendix C. The relation between the model with constant popula-
tion size and absence of linkage disequilibrium, (3.3), and the full model, in which
N̂ is not (exactly) known a priori, is investigated in Sections 5 and 6.

The allele-frequency dynamics (3.3) can be written as (Appendix A)

Ṗi = F̂ sγ 2
i PiQi

[
(Pi −Qi)(1 − η̂)− 2
/γi

]
(3.5a)

= F̂ sγ 2
i PiQi

[
(Pi −Qi)− 2
/γi − 2η̂(Pi − 1

2 )
]
. (3.5b)

We remind the reader that
 = ḡ− θ is a function of the Pi (i = 1, . . . , n). Except
for a multiplicative factor, which is irrelevant for the equilibrium structure, (3.5b)
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is equivalent to the system (7) in Turelli and Barton (2004), but with the simplifi-
cation that their p̂i = 1

2 and vi = η̂ for all i, where vi denotes their parameter that
quantifies the strength of balancing selection on locus i. Turelli and Barton (2004)
derived the existence and stability conditions for monomorphic and polymorphic
equilibria in their more general model. Application of their results to our model
leads to some substantial simplifications and to a nearly complete characterization
of the equilibrium structure of our model.

We note that the allele-frequency dynamics (3.5a), or (3.5b), is obtained not
only from (2.5), but from any fitness function proportional to ω0 + 2s(θ − η̂ḡ)g−
s(1 − η̂)g2, where ω0 is independent of g but may be an arbitrary function of the
population distribution π (see Appendix A). As a consequence, the dynamics is
independent of the term ϕ(N, π) occuring in (2.5). Thus, effectively, frequency
dependence enters the dynamics and equilibrium structure only through the mean
phenotype ḡ. (In evolutionary game dynamics, such games are called population
games; see Hofbauer and Sigmund 1998.) The system of equations (3.5a), or (3.5b),
is also a special case of a general epistatic model introduced by Zhivotovsky and
Gavrilets (1992). In their model, the expression in brackets is a linear function of
the Pi .

In Appendix A it is shown that (3.5a) is a generalized gradient system (but
its potential is not W ; see (A.7)). Therefore, all solutions converge to the set of
equilibria (e.g., Bürger 2000, pp. 349-352, or Hofbauer and Sigmund 1998) and, if
there is a single locally stable equilibrium, it must be globally stable.

Our main results are the following. The proofs are given in Appendix B.

Theorem 1. Let η̂ < 1. Then

(i) at most one locus can be polymorphic at a stable equilibrium;
(ii) multiple stable equilibria may coexist;

(iii) for every given set of locus effects (γi) such that no completely homozygous
genotype matches the optimum θ , only single-locus polymorphisms can be
stable if η̂ is sufficiently close to 1.

Theorem 2. Let η̂ > 1. Then there exists a unique (globally) asymptotically stable
equilibrium. At this equilibrium, at least one locus is polymorphic.

(i) This equilibrium is fully polymorphic if and only if

γi >
2 |θ |

2n+ η̂ − 1
for all i . (3.6)

The allele frequencies are

P̂i = 1

2
+ 1

γi

θ

2n+ η̂ − 1
. (3.7)

(ii) A stable, fully polymorphic and symmetric equilibrium (P̂i = 1
2 for all i) exists

if and only if θ = 0. The only stable equilibrium at which 
̂ = 0, i.e., ˆ̄g = θ ,
is the fully polymorphic symmetric equilibrium.
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(iii) If the unique stable equilibrium is not fully polymorphic (hence, θ �= 0), we
order loci so that γ1 ≤ γ2 ≤ . . . ≤ γn. Then
(a) there exists a unique integer m, where 1 ≤ m ≤ n − 1, such that loci

1, . . . , m are fixed, and loci m+ 1, . . . , n are polymorphic. This m is the
largest integer ≤ n− 1 that satisfies

γm[2(n−m)+ η̂ + 1] + 2
m−1∑
i=1

γi < 2 |θ | ; (3.8)

(b) the allele frequencies of the fixed loci are all 1 (i.e., the + allele is fixed)
if θ > 0, and all 0 if θ < 0; the allele frequencies of the polymorphic loci
are

P̂i = 1

2
+ 1

γi

θ − δθ
∑m
j=1 γj

2(n−m)+ η̂ − 1
, (3.9)

where δθ = 1 if θ > 0, and δθ = −1 if θ < 0. We have P̂i >
1
2 if and only

if θ > 0.

These theorems demonstrate that the equilibrium structure depends crucially
on whether η̂ > 1 or not. For the model with population regulation, this condition is
deceptively simple because η̂ depends on the population size, which is not (exactly)
known without solving the full model. This problem is treated in Section 5. Because
(2.10) informs us that in demographic equilibrium N̂ = K+O(s), simple approxi-
mations for η̂ can be derived (Appendix C). As a consequence, simple and accurate
approximations for the P̂i and derived quantities are obtained by approximating
η̂ by its leading-order term −fKF ′(K); see (C.4). The relative error is of order
O(s) = O(N̂/K − 1). Numerical examples are given in Table 1.

Let us now discuss the above theorems and some of their consequences.
The case η̂ < 1 includes pure stabilizing selection (η̂ = 0). Under the assump-

tion of linkage equilibrium, Wright (1935) showed that with a symmetric optimum
and quadratic stabilizing selection, at most one locus can be maintained polymor-
phic. Barton (1986) proved that this result remains valid for loci of equal effects
and an arbitrary optimum. For two loci of arbitrary effect, an arbitrary optimum,
and linkage equilibrium, Hastings and Hom (1990) characterized the equilibrium
structure completely. At most two equilibria can be simultaneously stable, and a
fully polymorphic equilibrium may exist but is always unstable (see also Bürger
2000, pp. 212–215). Bürger and Gimelfarb (1999) performed a numerical study of
the full model with linkage, and a symmetric optimum, for up to five loci. The-
orem 1 confirms and extends these results by demonstrating that for sufficiently
weak frequency dependence, the equilibrium structure is very similar to that under
pure stabilizing selection. Increasing strength of frequency dependence leads to a
higher fraction of trajectories converging to single-locus polymorphisms, but no
stable multilocus polymorphisms exist. If stabilizing selection is modeled by fit-
ness functions other than quadratic, more complicated equilibrium structures can
be obtained (Nagylaki 1989; Willensdorfer and Bürger 2003).

For the rest of this section, we assume η̂ > 1.
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Table 1. Equilibrium structure in two six-locus systems for strong competition. The LE
approximations for the allele frequencies P̂i (3.9), as well as for 
̂ (3.10) and V̂LE (3.11), are
compared with results from numerical iteration of (2.11) and (2.12) for various recombina-
tion scenarios. The following parameters are fixed in all cases: ρ = 2, θ = 0.25, � = 0.5,
s = 0.4, a = 0.625 (Vα = 0.8). Therefore, the relative fitnesses of the extreme phenotypes,
− 1

2 and 1
2 , are 0.775 and 0.975, respectively. IfN = K is assumed to calculate the theoretical

values, we have η̂ = f = 1.5625, and the values in the rows ‘Theory,N = K’ are obtained.
If η̂ is calculated numerically from (C.3a), as described below (C.7), we obtain η̂ = 1.633
(N̂ = 10221) for the first set of values γi , and η̂ = 1.684 (N̂ = 10375) for the second. The
exact values from numerical iteration of the full model are η̂ = 1.634 (N̂ = 10222) and
η̂ = 1.685 (N̂ = 10378), respectively. For 0.005 ≤ r ≤ 0.05, recombination rates between
adjacent loci were chosen randomly from a uniform distribution and are r = 0.0122, 0.0089,
0.0372, 0.0292, 0.0415. In the case of two chromosomes, we have r = 0.001, 0.001, 0.5,
0.001, 0.001.

P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 
̂ V̂A V̂LE

Effects γi : 0.019 0.124 0.015 0.056 0.127 0.159

Theory, N = K 1.000 0.704 1.000 0.954 0.698 0.658 −0.014 0.025
Theory, (C.3a) 1.000 0.702 1.000 0.950 0.696 0.657 −0.016 0.025
r = 0.5 1.000 0.702 1.000 0.947 0.696 0.658 −0.016 0.025 0.025
r = 0.1 1.000 0.706 1.000 0.936 0.693 0.659 −0.017 0.026 0.025
0.005 ≤ r ≤ 0.05 1.000 0.712 1.000 0.891 0.692 0.665 −0.019 0.027 0.025
r = 0.01 1.000 0.731 1.000 0.764 0.679 0.675 −0.028 0.035 0.025
two chromosomes 0.956 0.848 1.000 0.645 0.643 0.643 −0.033 0.052 0.025
r = 0.001 0.683 0.676 0.673 0.675 0.676 0.676 −0.074 0.097 0.027
r = 0 0.669 0.669 0.669 0.669 0.669 0.669 −0.081 0.111 0.027

Effects γi : 0.004 0.015 0.148 0.062 0.266 0.006

Theory, N = K 1.000 1.000 0.742 1.000 0.635 1.000 −0.020 0.041
Theory, (C.3a) 1.000 1.000 0.736 1.000 0.631 1.000 −0.024 0.041
r = 0.5 1.000 1.000 0.732 1.000 0.632 1.000 −0.024 0.042 0.041
r = 0.1 1.000 1.000 0.729 0.982 0.636 1.000 −0.026 0.042 0.041
0.005 ≤ r ≤ 0.05 1.000 1.000 0.731 0.862 0.653 1.000 −0.031 0.045 0.041
r = 0.01 1.000 1.000 0.704 0.692 0.678 1.000 −0.047 0.058 0.041
two chromosomes 1.000 0.953 0.814 0.655 0.654 0.786 −0.036 0.053 0.040
r = 0.001 0.855 0.683 0.673 0.673 0.673 0.729 −0.075 0.100 0.042
r = 0 0.669 0.669 0.669 0.669 0.669 0.669 −0.081 0.111 0.043

The existence condition (3.6) shows that increasing η̂ promotes the existence
of a stable, fully polymorphic equilibrium. Similarly, condition (3.8) shows that
with increasing η̂ the number m of fixed loci decreases. However, the conclusion
that increasing n promotes existence of a fully polymorphic equilibrium cannot be
drawn (see the Discussion).

An explicit expression for the deviation 
̂ of the mean from the optimum is
(Appendix B, proof of Theorem 2)


̂ = δθ
∑m
i=1 γi − θ

1 + 2(n−m)
η̂−1

, (3.10)



368 R. Bürger

where δθ = 1 if θ > 0 and δθ = −1 if θ < 0 (if θ = 0, then m = 0 and (3.10)
simplifies to (B.7)). Together with (3.8), (3.10) informs us that 
̂ > 0 if and only
if θ < 0. In particular, we have 
̂ = 0 if and only if θ = 0, cf. (B.7). Moreover,
(3.10) demonstrates that 
̂ → 0 as n → ∞ (or as η̂ → 1 from above) as well
as 
̂ → −θ as η̂ → ∞ (because then (3.6) is satisfied and m = 0). Hence, for
sufficiently strong frequency dependence, we have ˆ̄g ≈ 0, independently of θ .

Because for η̂ > 1 the locus (loci) with largest effect(s) is polymorphic, the
genetic variance is usually very high even if the equilibrium is not fully polymor-
phic. This is supported by numerical calculations (see Figure 2a in Bürger and
Gimelfarb 2004). In our model, the genetic variance at this equilibrium can be
calculated explicitly by substituting (3.9) into (3.1):

V̂LE = 1

2

∑
i∈�p

γ 2
i − 2(n−m)

(∑
i /∈�p

γi − |θ | )2
(2(n−m)+ η̂ − 1)2

, (3.11)

where m is defined by (3.8) and �p is the set of polymorphic loci (B.3); thus,∑
i /∈�p

= ∑m
i=1. For a fully polymorphic symmetric equilibrium, i.e., if and only

if θ = 0, we obtain V̂LE = Vmax, where Vmax = 1
2

∑n
i=1 γ

2
i is the maximum var-

iance that can be maintained by the given genetic system in linkage equilibrium.
Otherwise, V̂LE < Vmax because

∑
i /∈�p

γi = |θ | is impossible. (By (3.10) this

would imply 
̂ = 0, which can occur only at a symmetric equilibrium.) Obviously,
for given allelic effects γi , the equilibrium variance V̂LE increases as η̂ increases
because, by (3.8), the latter implies that m is not increasing.

If there are alleles of equal effect, then these loci are either all fixed for the same
allele or all polymorphic with identical frequencies. The reason is that the left-hand
side of (3.8) is constant on sets of loci i with identical effects γi . If all alleles have
the same effect, then the stable equilibrium is always fully polymorphic. Therefore,
the assumption of equal effects is particularly favorable for competition to maintain
polymorphism at many loci.

For two loci, we have a stable equilibrium with exactly one polymorphic locus
if and only if

γ1 <
2θ

3 + η̂
. (3.12)

Otherwise, both loci are polymorphic.

4. Two Linked Loci

In this section, the equilibrium structure of a two-locus version of the discrete-time
model (2.11) with the fitness function (1.12) is explored, in which linkage dis-
equilibrium is not neglected but population size is assumed constant, for instance
at demographic equilibrium. We write η instead of η̂. The recombination rate r is
arbitrary (0 < r ≤ 1

2 ).
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We use the following notation. The relative frequencies of the four gametes
A1B1,A1B2,A2B1,A2B2 among newly formed zygotes are p1, p2, p3, p4, respec-
tively. The gametes are labeled i = 1, 2, 3, 4. Frequencies in the subsequent gen-
eration are denoted by p′

i . Let the contributions of the alleles A1, A2, B1, and B2

to the genotypic value g of the trait be − 1
2γ1, 1

2γ1, − 1
2γ2, and 1

2γ2, respectively.
Because of additivity, the effects of the gametes A1B1, A1B2, A2B1, and A2B2
are − 1

2 (γ1 + γ2), − 1
2 (γ1 − γ2), 1

2 (γ1 − γ2), and 1
2 (γ1 + γ2). The resulting geno-

typic values are shown in Table 1 of Bürger (2002b). For definiteness, we assume
γ1 ≥ γ2 > 0 and refer to the A and B locus as major and minor, respectively. We
denote

e = γ1 − γ2

γ1 + γ2
, t = s(γ1 + γ2)

2 , (4.1)

with s as in (1.7). Then, with � = γ1 + γ2, the range of possible genotypic val-
ues is [−�,�] and �2/4 may be called the average (substitutional) effect of the
loci on the variance of the trait. The parameter e measures the disparity of effects
(0 ≤ e < 1, and e ≥ 1

3 if the effects differ by a factor of two or more), and t is a
scaled measure for the strength of stabilizing selection. (We have 0 ≤ t ≤ 1 because
S(g)must be positive). A related model was investigated in Bürger (2002b), where
a more detailed description including the (standard) recursion relations may be
found. Here, stronger results are obtained. If sa and c denote the parameters used in
Bürger (2002b) to describe the strengths of stabilizing selection and competition,
respectively, we have t = 4sa and η = c/sa . We assume θ = 0 and a constant pop-
ulation size, i.e., constant η. We exclude the degenerate case η = 1, in which there
is a two-dimensional manifold of equilibria that, apparently, attracts all trajectories.

It is straightforward to show that if (p̂1, p̂2, p̂3, p̂4) is an equilibrium, then
(p̂4, p̂3, p̂2, p̂1) is also an equilibrium, and both have the same stability properties.
In terms of the coordinates (x, y, z) = (p1 +p4, p1 −p4, p2 −p3), this means that
the simultaneous transformation y → −y and z → −z preserves the property of
being an equilibrium, as well as the stability properties of this equilibrium. Thus,
all, except symmetric (y = z = 0), equilibria coexist in pairs. We refer to Figure 1
for a graphical representation of the equilibrium structure in two typical special
cases.

4.1. Monomorphic equilibria

There always exist the four corner equilibria, at which both loci are monomorphic.
Of these, the equilibria p̂1 = 1 and p̂4 = 1, i.e., fixation of one of the gametes with
large genotypic effect (A1B1, A2B2), are always unstable. Analytical computation
of the eigenvalues shows that the equilibria p̂2 = 1 (fixation of A1B2) and p̂3 = 1
(fixation ofA2B1) are both locally asymptotically stable if and only if the following
conditions are satisfied:

r ≥ r0 = te2(1 + η)

1 + te2η
(4.2a)
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e = 2/3 (γ1 = 5γ2)
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a: Symmetric, D<0
b: Asymmetric, D<0
c: Monomorphic
d: 1-locus polymorphic
e: Symmetric, D>0 
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Fig. 1. Regions of stability of the five possible types of stable equilibria for the two indicated
values of the disparity e of locus effects. In all cases, the strength of stabilizing selection
is t = 0.1, so the fitness of the extreme genotypes under stabilizing selection alone is 90%
of the maximum possible fitness (as in the numerical results of Section 6). The boundaries
between the regions a and b, b and c, b and d, c and d, and d and e are given by r2, r0, r1, η0,
and η = 1, respectively. The white region extends to r = 0 and η = 1 but becomes too thin
to be visible. Moreover, the figures show only a restricted parameter range (small r and η)
to improve the visibility of the effects of linkage. With stronger selection, the regions a and
b would, of course, extend to much larger values of r; see (4.6a).
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and

η ≤ η0 = 1 − 3e

1 + e
. (4.2b)

It may be noted that r0 = r0(t, η, e) is an increasing function in each of the vari-
ables t , η, and e (in η, because te2 ≤ 1 holds by assumption). If 0 ≤ e ≤ 1

3 , then
η0 = η0(t, η, e) is increasing in t and decreasing in e. Condition (4.2b) shows that
the monomorphic equilibria can never be stable if e > 1

3 or if η > 1. It is equivalent
to e < (1 − η)/(3 + η).

Because r0 is increasing in η, and stability of p̂2 = 1 and p̂3 = 1 requires
(4.2b), these monomorphic equilibria are asymptotically stable whenever (4.2b) is
satisfied and

r ≥ r0(r, η0, e) = r0,max = 2te2(1 − e)

1 + e + te2(1 − 3e)
. (4.3)

Evaluation of r0 at η = 0 informs us that these monomorphic equilibria are never
stable if r < te2.

Numerical iteration of the recursion relations suggests that each of the two
monomorphic equilibria, p̂2 = 1 and p̂3 = 1, is globally attracting for half of
the state space whenever it is asymptotically stable. For equal effects (e = 0) this
follows directly from the results in Bürger (2002a) by omitting terms of order cs.

4.2. Single-locus polymorphisms

There may exist up to four equilibria with one locus polymorphic and one locus
monomorphic. Only the equilibria with the major locus (the A locus) polymor-
phic can be asymptotically stable. They are located on the edges p1 + p3 = 1 or
p2 + p4 = 1 of the simplex, and exist if and only if

η > η0 = 1 − 3e

1 + e
. (4.4)

Thus, they exist only if the monomorphic equilibria are unstable. If (4.4) is fulfilled,
which is always the case if e > 1

3 , the unique interior equilibrium on p1 + p3 = 1
is given by

p̂1 = η − 1 + e(3 + η)

2(1 + e)(1 + η)
. (4.5)

The equilibrium coordinate p̂1 increases with η and satisfies p̂1 <
1
2 .

This equilibrium is unstable if η > 1. If η0 < η < 1, then it is asymptotically
stable, provided

r ≥ r1 = r1(t, η, e) = 8te(1 − η)(1 + η)3

(3 + η)[8(1 + η)2 + tηψ]
(4.6a)

= te
1 − η2

3 + η
+O(t2) , (4.6b)
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where ψ = η2(3 − 2e + 3e2) − 2η(1 − 6e + e2) − (1 − 6e + e2) ≥ − 4
3 (see

Appendix D). It follows that r1 decreases (to 0) as η increases (to 1). If η = η0, we
have r1(t, η0, e) = r0,max (4.3) if e ≤ 1

3 , and r1(t, 0, e) = 4
3et if e > 1

3 (cf. Bürger
2000, p. 205). By symmetry, analogous results are valid for the equilibrium at the
edge p2 + p4 = 1, which is obtained from (4.5) by substituting p4 for p1.

The single-locus polymorphic equilibria at the edgesp1+p2 = 1 andp3+p4 =
1 exist if and only if

η >
1 + 3e

1 − e
.

These equilibria are always unstable (even within the respective single-locus sys-
tem). The equilibrium value of p1 is obtained from (4.5) by substituting −e for e.

4.3. Two-locus polymorphisms

Analytically explicit determination of all interior equilibria seems to be impossible.
Analytical calculations combined with numerical searches revealed that if η �= 1,
two classes of interior equilibria may exist and be stable: a symmetric equilibrium
and a pair of asymmetric equilibria satisfying D < 0.

4.3.1. The symmetric equilibrium
There always exists one symmetric equilibrium, p̂1 = p̂4 and p̂2 = p̂3. It is the
unique solution of

4t (1 − e2)(1 − η − 2ηr)p2
1 − 2[t (1 − η)(1 − e2)

+r(4 − tη(1 − 3e2))]p1 + r(2 + tηe2) = 0

in the interval [0, 1
2 ], and can be written as

p̂1 =




t (1 − η)(1 − e2)+ 4r − trη(1 − 3e2)− √
A

4t (1 − e2)(1 − η − 2ηr)
if η �= 1

1 + 2r
,

2 + 4r + e2s

2(4 + 8r + s + e2s)
if η = 1

1 + 2r
,

(4.7)

where A = t2(1 − e2)2(1 − η)2 − 2t2ηr(1 − η)(1 − e2)2 + r2(4 + tη(1 + e2))2.
A useful approximation is

p̂1 =




1

4
− t (1 − e2)(1 − η)

32r
+O(t2) if η �= 1

1 + 2r
,

1

4
− t (1 − e2)

16(1 + 2r)
+O(t2) if η = 1

1 + 2r
.

(4.8)

If η > 1, then p̂1 >
1
4 ; hence, D > 0, and apparently this equilibrium is

globally asymptotically stable.
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If η < 1, then 0 < p̂1 < 1
4 ; hence, D < 0. In this case, the symmetric

equilibrium is asymptotically stable if and only if

r ≤ r2 = r2(t, η, e) , (4.9)

where r2 can be computed numerically because closed, but complicated, expres-
sions for the eigenvalues are available (provided by Mathematica). Iteration of the
recursion relations suggests that then the symmetric equilibrium is globally stable.
Because of the constraint r > 0, (4.9) can be satisfied only if 0 ≤ η ≤ 1.

If η = 0, then r2 can be determined explicitly, i.e.,

r2(t, 0, e) = 1
6 t
(
−1 − e2 +

√
1 + 14e2 + e4

)
,

and the symmetric equilibrium can be proven to be asymptotically stable (see Bürger
2000, pp. 205–207, where a different notation is used). By continuity, this extends to
small (positive) values of η. Apparently, r2 is decreasing as a function of η, whence
the symmetric equilibrium with D < 0 can be stable only if r ≤ r2(s, 0, e).

It can be shown that the position p̂1 of the symmetric equilibrium, and therefore
the amount of linkage disequilibrium D̂ = p̂1 − 1

4 , is an increasing function of η.

The absolute value of D̂ increases with decreasing r . If η > 1, then for every t ≥ 0
and r > 0, p̂1 approaches an upper limit < 1

2 as η → ∞.

4.3.2. Asymmetric equilibria
In the absence of competition (η = 0), asymmetric interior equilibria exist and are
asymptotically stable if e > 0 and

r2(s, 0, e) < r <

{
r0(s, 0, e) = 4e2s if e ≤ 1

3 ,

r1(s, 0, e) = 4
3es if e > 1

3 .

They can be calculated explicitly (e.g., Bürger 2000, p. 205). Because of conti-
nuity, they also exist for sufficiently small η > 0. Unfortunately, for η > 0 their
explicit calculation seems to be impossible. Numerical iteration of the recursion
relations and numerical solution of the equilibrium conditions suggest that they are
asymptotically stable whenever they exist, which is the case if and only if

r2(s, η, e) < r <

{
r0(s, η, e) if η < η0 and e ≤ 1

3 ,

r1(s, η, e) otherwise ,
(4.10)

is satisfied. Here, r0, r1, and r2 are as in (4.2a), (4.6a) and (4.9), respectively.
Apparently, none of the above-described types of equilibria can be simulta-

neously stable; hence there are never more than two stable equilibria.
Here is a verbal, qualitative summary of the main results of this section. If η < 1

and linkage is loose, then a pair of boundary equilibria is stable. They are mono-
morphic if the effects of the loci are similar (depending on η); otherwise the major
locus is polymorphic. If η < 1 and linkage is sufficiently tight, then all boundary
equilibria are unstable. Instead, one symmetric or a pair of asymmetric interior
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equilibria is stable. These equilibria always display negative linkage disequilib-
rium. If η > 1, no boundary equilibrium can be stable, whatever the recombination
rate. Instead, a unique interior equilibrium with all allele frequencies equal to 1

2 and
positive linkage disequilibrium is, apparently, globally stable. The tighter linkage,
the higher is the linkage disequilibrium.

5. Analytical Results for the Full Model

The equilibrium structure in the LE approximation of Section 3 depends crucially on
whether η̂ > 1 or not.As already noted, this condition is deceptively simple because,
with population regulation, η̂ is not a parameter but a function of several parameters;
in particular, it depends on the population size at equilibrium. Therefore, we first
consider the LE approximation and relax the assumption of a constant population
size, i.e., we investigate the system (3.5a) coupled with the demographic dynamics

Ṅ = N(W − 1) , (5.1)

which is the continuous-time version of (2.12). However, we assume that s is in-
dependent of N (See Introduction). At equilibrium, W = 1 must be satisfied. This
yields the equilibrium population size N̂ as a function of the basic parameters and
of 
2 and VLE (see (2.10), (C.1a), (C.2) for approximate or exact expressions). It
follows that N̂ may be different at different equilibria of the same genetic system.
However, this difference is order O(s).

For given N̂ , the equilibria can be determined as in Section 3. The stability prop-
erties of an equilibrium of (3.5a) and (5.1) are governed by the Jacobian. Its entries
in the first n rows and n columns are equal to those of the Jacobian of (3.5a) with
constant population size. Assuming demographic equilibrium and using W = 1 in
(2.9), we obtain the entry at position (n+ 1, n+ 1),

∂Ṅ

∂N
= F(N)−1

[
F ′(N)+ 2sf VLE(−F(N)F ′(N)

−NF(N)F ′′(N)+NF ′(N)2)
]
. (5.2)

BecauseF ′(N) < 0 by assumption and VLE ≤ Vmax, ∂Ṅ/∂N is negative whenever
s is small enough. The entry at position (i, n+ 1), 1 ≤ i ≤ n, is

∂Ṗi

∂N
= −sγ 2

i F (N)η
′(N)Pi(1 − Pi)(2Pi − 1) , (5.3)

which is zero if locus i is fixed or if Pi = 1
2 . The entry at position (n + 1, i),

1 ≤ i ≤ n, is

∂Ṅ

∂Pi
= −2sγ 2

i NF(N)
[
(2Pi − 1)(1 − 2η(N))− 2
/γi

]
. (5.4)

By (3.5a), this simplifies to 2sγ 2
i NF(N)η(N)(2Pi − 1) if locus i is polymorphic

at equilibrium. It follows that N̂ is locally stable, and the eigenvalues pertaining
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to the coordinates P1, . . . , Pn differ from those of the system (3.5a) with constant
population size by terms of order s2 or smaller. Since such terms have been ignored
in the derivation of the LE approximation, these differences are essentially irrele-
vant. It also follows that monomorphic and fully polymorphic symmetric equilibria
have exactly the same eigenvalues in both kinds of models.

Because for a given genetic system, N̂ and, hence, η̂ are not uniquely determined
in the model with population regulation, equilibria may stably coexist that cannot
be simultaneously stable under the dynamics (3.5a) with a constant population
size. As a simple example, consider two loci of equal effects (γ1 = γ2) in link-
age equilibrium that evolve according to (3.5a) coupled with (5.1). For simplicity,
we choose population regulation as in (2.2) with ρ = 2. Then, the monomorphic
equilibria (P̂1 = 1, P̂2 = 0) and (P̂1 = 0, P̂2 = 1) are locally stable if and
only if f < 1 because the equilibrium population size is N̂ = K and η̂ = f .
The fully polymorphic equilibrium P̂1 = P̂2 = 1

2 is locally stable if and only if

f > fc = 1/(1 + 2sV̂ ), where V̂ = γ 2
1 ; see (C.12). The population size at this

equilibrium is N̂ = K(1 − 2sγ 2
1 )/(1 − sγ 2

1 (1 + 2f )), which is larger than K if
f > 1

2 . Obviously, we have fc < 1 and η(N̂) = 1 if f = fc. Thus, the equilibrium
structure may be more complex if the demographic dynamics is taken into account.

Now we derive the equilibrium and stability structure for the LE approximation
with population regulation. We use the parameter f instead of η̂. We already know
that the stability conditions for monomorphic and symmetric equilibria coincide
with those for a constant population size, and for other equilibria, the difference is
at most of order s2.

The same argument as in Appendix E shows that no monomorphic equilibrium
can be stable if f > f2, where

f2 = 1

−KF ′(K)
(5.5)

(note that (E.2) follows immediately from the stability conditions (B.6a) and (B.6b)
of the LE approximation). Of course, monomorphic equilibria can be stable other-
wise. Now suppose that there is a stable equilibrium with a single polymorphic locus
and let 1

2f2 < f < f2 (by Theorem 1, no other types of stable equilibria are possi-
ble). Then, (B.2) informs us that
 → 0 as η̂ → 1. Now (2.10) or, more generally,
(2.9) imply that at such an equilibrium N̂ > K . Because η is increasing in N , we
obtain η̂ = η(N̂) > η(K) = −fKF ′(K). Since this equilibrium cannot be stable
if η̂ > 1 (except when it is the single-locus polymorphism admitted by Theorem 2
(iii)), it looses its stability as f increases above a critical value that is < f2.

The polymorphic equilibrium of Theorem 2 is locally stable if f > f1, where

f1 = − 1

KF ′(K)
+ sV̂

KF ′(K)2 − F ′(K)−KF ′′(K)
K2F ′(K)3

+O(s2) , (5.6)

and V̂ is given by (C.9) and satisfies V̂ ≤ Vmax (see Appendix C). Therefore, sta-
ble coexistence of this equilibrium and monomorphic or single-locus polymorphic
equilibria is possible only if

f1 ≤ f ≤ f2 . (5.7)
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For values of f lower than f1, Theorem 1 applies, whereas for f > f2, Theorem
2 applies.

For the logistic model, (5.7) becomes (by omitting terms of order s2 on the
left-hand side)

1

ρ − 1
− ρsV̂

(ρ − 1)2
≤ f ≤ 1

ρ − 1
. (5.8)

If ρ = 2 and � = 1
2 (as used for the numerical results presented), (5.8) holds

whenever 1 − 1
4 s ≤ f ≤ 1 because V̂ ≤ Vmax ≤ 1

2�
2. In particular, f1 is always

in this interval. For the Ricker and the Hassell-Maynard Smith model, inequalities
corresponding to (5.8) are obtained immediately from (C.13) and (C.14), respec-
tively.

As already pointed out at the end of Section 2.3, the full discrete-time model
with linkage and density dependence, (2.11) and (2.12) with the fitness function
(2.5), is too complicated to admit a detailed mathematical analysis. However, it
can be proved (Appendix E) that if selection is not too strong, no monomorphic
equilibrium can be stable if f > f2.

A result of Nagylaki (1979, Eq. [6]) for density- and frequency-dependent selec-
tion shows that if the selection intensity s is small compared with the intrinsic
growth rate of the population, then the population size converges quickly to a range
of values near K , i.e., N = K +O(s). This applies to our full model, because our
fitness function (2.5) is of the form required in his Eq. [1a], and it is fully borne out
by the numerical work below (results not shown) as well as by that of Bürger and
Gimelfarb (2004). It is also in accordance with the above considerations.

Under the assumption of a constant population size, it can be shown that for
sufficiently weak selection (i.e., depending on all other parameters, which are fixed,
s is chosen small enough), all trajectories of the discrete-time system (2.11) con-
verge to an equilibrium that is a small perturbation of a locally stable equilibrium of
(3.5a). The proof is outlined in Appendix F. It paralleles the proof of an important
result of Nagylaki et al. (1999), and makes use of the fact that the LE approximation
is a (generalized) gradient system, a so-called Svirezhev-Shahshahani gradient. In
particular, if f > f2, then for sufficiently small s, all trajectories of the discrete-
time system converge to a small perturbation of the unique stable equilibrium given
in Theorem 2. Because with population regulation, the population size converges
to a range of values N = K +O(s), this suggests that for sufficiently small s, also
the full system, (2.11) and (2.12), has the same equilibrium and stability structure
as the LE approximation with population regulation. This claim is supported by
numerical iterations (results not shown).

6. Numerical Results

The accuracy of the LE approximation and its range of validity in the presence
of linkage and population regulation were explored numerically by iterating the
recursion relations (2.11) and (2.12) until equilibrium is reached, using a program
developed by A. Gimelfarb (the one used by Bürger and Gimelfarb (2004), but with
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the fitness function modified; there, a detailed description can be found). Fitness is
given by (1.12), i.e., by (2.5) with logistic population regulation (2.2). In addition,
we compared the equilibrium properties of this model with that used by Bürger and
Gimelfarb, i.e., (1.5) with (1.2) and (1.7), henceforth called the BG-model.

The range of phenotypic values is scaled to be [−�,�] with � = 1
2 . Table 1

displays the equilibrium structure of two typical six-locus systems with an asym-
metric optimum (θ = 0.25) and with allelic effects γi and the other parameters
as given in the legend. It shows that the theoretically obtained equilibrium allele
frequencies (3.9) are very accurate if loci are freely recombining (r = 0.5) and the
leading-order approximation f (ρ − 1) is substituted for η̂ (which is equivalent to
assuming N = K). Similarly, (3.10) and (3.11) provide accurate approximations
for the numerically obtained 
̂ and V̂LE. The approximation becomes particu-
larly accurate if η̂ is calculated from (C.3a), as described in the second paragraph
below (C.7). If loci are only loosely linked (r = 0.1 between all loci), the LE
approximation remains accurate. Even for recombination rates between loci cho-
sen randomly (uniformly) between 0.005 and 0.05, the LE approximation provides
a useful guideline, although in the second example one of the loci fixed for larger
r became polymorphic now (but with P close to 1). The table also shows that as
linkage becomes tighter, the loci of large effects become polymorphic first. For
completely linked loci, only the two extreme gametes are present at equilibrium,
hence all allele frequencies become identical (and can be calculated explicitly from
the corresponding single-locus model).

Analogous computations were performed for the BG-model. Instead of present-
ing the data, we briefly summarize the results. For free recombination, the same loci
are fixed in the present and the BG-model, the allele frequencies at the polymorphic
loci differ by less than five percent, and the genetic variances are nearly identical.

However, in the BG-model
∣∣∣
̂∣∣∣ is about 25% below the corresponding value in the

present model. For tighter linkage, in most cases both models have the same loci
fixed and allele frequencies at polymorphic loci rarely differ by more than 10%.
In the BG-model, slightly tighter linkage is required to make a locus polymorphic.
The differences in the genetic variances exceed 10% only in few cases. However,

for complete linkage, in the BG-model
∣∣∣
̂
∣∣∣ is much smaller, about one third of the

value in the present model.
As in the two-locus case (Bürger 2002b), for several tightly linked loci in a

given genetic system, increasing f from zero to the critical value f1 may induce
rather complex changes in the equilibrium structure. For instance, increasing f
may lead to a loss of polymorphism at equilibrium (results not shown).

We also compared the present model with the BG-model on a larger scale, by
employing the statistical approach of Bürger and Gimelfarb (Table 2). For given
parameters κ , ρ, s, f , and n, 1000 genetic parameter sets (locus effects γi , ran-
domly chosen from a uniform distribution on [0, 1] and normalized such that � =∑
i γi = 1

2 , and recombination rates, either constant or randomly chosen from an
interval as indicated) were generated. For each such set, the system of recursion
relations (2.11) and (2.12) was iterated from 10 randomly chosen initial conditions
until equilibrium was reached, when the quantities of interest were calculated. The
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Table 2. Statistical comparison of the BG-model, indicated by (1.5), and the present model,
indicated by (1.12). Also the influence of recombination is presented, but only for the pres-
ent model because the data from the BG-model are very similar. The data are averages over
1000 genetic parameter sets (see main text). The variances shown are (averaged) relative
variances, i.e., VA,R is the average of VA/Vmax, where Vmax is the maximum possible vari-
ance in linkage equilibrium for the given genetic system. Similarly, VLE,R is the average of
VLE/Vmax. These relative variances are the appropriate measures if different genetic systems
have to be compared (for details, see Bürger and Gimelfarb 2004). The following parameters
are fixed in all cases: ρ = 2, s = 0.4, n = 4.

Polymorphism

0 1 2 3 4 |
̂| VA,R VLE,R

θ = 0, f = 0.5
(1.5), r = 0.5 0.31 0.69 0 0 0 0.019 0.097 0.097
(1.12), r = 0.5 0.30 0.70 0 0 0 0.019 0.098 0.098
(1.12), 0.01 ≤ r ≤ 0.5 0.30 0.70 0 0 0 0.019 0.097 0.097
(1.12), 0 ≤ r ≤ 0.01 0.33 0.61 0.05 0.00 0.00 0.018 0.081 0.093

θ = 0, f = 1.56
(1.5), r = 0.5 0 0 0 0 1.00 0 1.009 1.000
(1.12), r = 0.5 0 0 0 0 1.00 0 1.012 1.000
(1.12), 0.01 ≤ r ≤ 0.5 0 0 0 0 1.00 0 1.032 1.000
(1.12), 0 ≤ r ≤ 0.01 0 0 0 0 1.00 0 2.273 1.000

θ = 0.25, f = 0.5
(1.5), r = 0.5 0.32 0.68 0 0 0 0.018 0.085 0.085
(1.12), r = 0.5 0.32 0.68 0 0 0 0.017 0.085 0.085
(1.12), 0.01 ≤ r ≤ 0.5 0.32 0.68 0 0 0 0.017 0.084 0.084
(1.12), 0 ≤ r ≤ 0.01 0.36 0.60 0.04 0.00 0 0.017 0.065 0.070

θ = 0.25, f = 1.56
(1.5), r = 0.5 0 0.02 0.19 0.49 0.31 0.014 0.816 0.811
(1.12), r = 0.5 0 0.01 0.15 0.49 0.35 0.022 0.831 0.823
(1.12), 0.01 ≤ r ≤ 0.5 0 0.01 0.14 0.49 0.36 0.023 0.845 0.824
(1.12), 0 ≤ r ≤ 0.01 0 0 0.00 0.09 0.91 0.061 1.917 0.861

data in Table 2 are averages over all 1000 ×10 trajectories (for more details on the
numerical approach, see Bürger and Gimelfarb 2004).

However, near η̂ = 1 these two models may behave differently. The reason
is that for constant population size and with the fitness function (1.12), the equi-
librium structure of a given genetic system changes suddenly as η̂ increases from
below one to above one, whereas in the model of (Bürger 2002a,b) and Bürger and
Gimelfarb (2004) there is a small transition region with a relatively complex equi-
librium structure. This is so because in models based on (1.5), the fitness function
may have two maxima, i.e., be M-shaped, if η̂ is close to one. With population
regulation, there is a small region containing the interval from f1 to f2, in which
the equilibrium structure of the BG-model is more complex than that of the present
model.

7. Discussion

An analytical study has been performed of a simple, but general, model of a
polygenic trait under balancing selection caused by the interaction of intraspecific
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competition and stabilizing selection. This model can be considered as a weak-
selection approximation to a number of models of intraspecific competition used in
investigations of mechanisms for the maintenance of genetic variation, intraspecific
diversification, and sympatric speciation (see Introduction). Our main emphasis is
on elucidating the dependence of the equilibrium structure on the strength of fre-
quency- and density-dependent selection relative to stabilizing selection. Among
others, this yields exact information on the degree of polymorphism and the amount
of genetic variance maintained by this form of balancing selection.

We begin by highlighting the main findings of the LE approximation which
is the weak-selection approximation to all models presented in the Introduction.
For constant population size, the qualitative properties of the equilibrium structure
are determined by the magnitude of the compound quantity η̂, defined in (2.6),
which measures the strength of frequency and density dependence relative to pure
stabilizing selection. The equilibrium and stability structure changes qualitatively
as η̂ increases from below 1 (Theorem 1) to above 1 (Theorem 2). With popula-
tion regulation, these results still provide the guiding principle, although η̂ is not
a parameter in the proper sense because it depends on the population size at equi-
librium, which is difficult to compute exactly. In particular, η̂ can be different at
different equilibria. However, simple approximations for η̂ and the values of f that
determine the stability properties of different types of equilibria are available (e.g.
(5.5) – (5.8), and Appendix C).

If f < f1, frequency and density dependence are relatively weak and the equi-
librium structure is similar to that found in models of pure (quadratic) stabilizing
selection. In particular, at most one locus can be maintained polymorphic at a stable
equilibrium (Theorem 1). Hence, in general (very) little genetic variation is main-
tained in such a trait, the more loci are contributing to the trait, the less variance
is maintained on average (cf. Bürger and Gimelfarb 1999). However, the factor by
which weak frequency dependence increases the variance relative to pure stabi-
lizing selection increases with increasing number of loci (Bürger and Gimelfarb
2004).

If f > f1, the combined effects of frequency and density dependence are suffi-
ciently strong to induce a qualitative change in the equilibrium structure. Then,
a locally stable polymorphic equilibrium exists which is given by Theorem 2. If
f1 < f < f2, where f2 − f1 = O(s), this equilibrium may coexist with mono-
morphic or single-locus polymorphic equilibria.

If f > f2 (we call this strong frequency dependence), the equilibrium given
by Theorem 2 is the only locally stable equilibrium. Presumably, it is globally
stable, but this was proved only under the assumption of a constant population
size. Theorem 2 provides necessary and sufficient conditions on the magnitude of
allelic effects for maintaining a given number of loci polymorphic. In addition to
the number of loci and their effects, these conditions, (3.6) and (3.8), depend on η̂
and the position θ of the optimum. If selection is completely symmetric (θ = 0),
this equilibrium is symmetric, i.e., all alleles have frequency 1

2 . This is not so if the
optimum is displaced from the symmetric position θ = 0. Whether such a displace-
ment is large or not will in practice be judged in relation to the range of possible
phenotypic values. In our model, this range is from −� to �, where � = ∑n

i=1 γi .
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If we denote the average effect of a substitution by γ̄ = 1
n
�, then we can rewrite

condition (3.6) for a fully polymorphic equilibrium as

γi > γ̄
|θ | /�

1 + (η̂ − 1)/(2n)
for all i, (7.1)

where, according to the model assumptions, |θ | /� ≤ 1. This clearly shows that for
θ �= 0, maintenance of a fully polymorphic stable equilibrium is greatly facilitated
by loci of similar effect. For loci of equal effect, this equilibrium is always fully
polymorphic. If |θ | /� is held constant, but non-zero, then increasing n makes the
maintenance of a stable equilibrium with a high proportion of polymorphic loci
more difficult, whereas increasing η̂ facilitates it. In the limit of infinitely many
loci, the loci satisfying

γi/γ̄ > |θ | /� (7.2)

are the polymorphic ones. In particular, (7.2) determines which loci are polymorphic
independently of n and η̂ if frequency dependence is strong.

Inequality (7.1) also yields a simple condition for the maintenance of just a
single polymorphic locus under strong frequency dependence. If we set |θ | =
τ� = τnγ̄ (0 ≤ τ ≤ 1), then for m = n− 1, (3.8) can be rewritten as

γn >
1
2 (η̂ + 1)γn−1 + (1 − τ)nγ̄ . (7.3)

Therefore, unless τ is close to 1, i.e., θ is near the boundary of possible genotypic
values, the largest effect (γn) must be much larger than the second largest effect
(γn−1) and, of course, much larger than the average effect γ̄ . As a consequence,
for given �, even at such equilibria a large amount of genetic variance will be
maintained, sometimes more than at fully polymorphic equilibria, because in the
latter case all loci have fairly small effects.

This demonstrates that models based on the assumption of equal effects among
loci are not representative of the general case. Under strong frequency dependence,
they always have a stable fully polymorphic equilibrium, whereas for models with
unequal effects this is usually not so (except in the symmetric case θ = 0). If
the distribution of locus effects γi is highly leptokurtic (as suggested by some
experimental results, see Bürger (2000) for a review), so that most loci have a small
effect and some a very large, the present results show that for strong frequency
dependence the proportion of polymorphic loci can be much smaller than unity;
yet the genetic variance will be high. For instance, if the γi are drawn from a gamma
distribution with shape parameter 0.5 (then the kurtosis is 15), on average about
48% of the loci will satisfy γi/γ̄ > 1

2 ; cf. (7.2). Thus, for large n only about 50%
of the loci determining the trait will be polymorphic. With a shape parameter of
1
4 , the kurtosis is 27 and the fraction of polymorphic loci will be down to about
36% unless the number of loci is small and η̂ is large. For a uniform distribution
of mutational effects, as underlying the results in Table 2 and those in Bürger and
Gimelfarb (2004), 75% of the loci satisfy γi/γ̄ > 1

2 .
The numerical results of Section 6 for the full discrete-time model with popu-

lation regulation and linkage, as well as those in Bürger and Gimelfarb (2004) for
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the model (1.5) with the choices (1.2) and (1.7), suggest that if f < f1, Theorem
1 remains true for linked loci unless linkage is very tight. In this case, a few loci
can be maintained polymorphic. For the two-locus model, this is shown analyti-
cally in Section 4 (see also Bürger 2002b). If f > f2, numerical iterations of the
full system show that (3.7) and (3.9) provide accurate approximations to the true
equilibrium allele frequencies, and (3.11) provides a very accurate approximation
to the true genetic variance. This is the case even if stabilizing selection is not
very weak relative to recombination (Tables 1,2). The present numerical results
as well as those of Bürger and Gimelfarb (2004) show that tight linkage always
increases polymorphism and induces higher linkage disequilibrium, in particular if
frequency dependence is strong. In the latter case, linkage disequilibria are positive,
and highly so if linkage is tight. Then, the two extreme gametes are maintained in
the population at relatively high frequency; hence, all loci are polymorphic.

The functional form (2.5) for fitness resulted from the assumption of weak selec-
tion; therefore, the results of the LE analysis in Section 3, and of its generalization
in Section 5, provide approximations to all models treated in the Introduction. Most
importantly, the threshold-like dependence of the equilibrium structure and of the
amount of polymorphism and genetic variance is a feature of all these models. The
critical values f1 and f2 can be calculated easily for all these models (see Introduc-
tion and Section 5). The upper value (f2) is independent of the number and effects
of loci and the linkage map; it depends on the strength of frequency-dependent
competition relative to stabilizing selection and on the demographic parameters,
such as the population growth rate. Therefore, the qualitative results of Bulmer
(1974, 1980) and Slatkin (1979) are confirmed and extended by this study. In par-
ticular, the ecological parameters for which Dieckmann and Doebeli (1999) found
sympatric speciation are contained in the parameter region f > f2, which has been
identified as the one leading to the maintenance of high levels of genetic variation.
The genetic details matter if quantitative questions are to be answered, such as
regarding the amount of variation maintained. Although we examined the accuracy
of the LE approximation only for the model of Bürger and Gimelfarb (2004), there
is no reason to expect that the approximation is much worse for the other models.

The parameter range that gives rise to the stable coexistence of a highly poly-
morphic equilibrium with monomorphisms or single-locus polymorphisms (f1 <

f < f2) may be larger and lead to a richer equilibrium structure for some of
the other fitness functions discussed in the Introduction. The reason is that the fit-
ness function (2.5) changes instantaneously from concave to linear to convex as η̂
increases above unity (7.4). This is not the generic case. For instance, the fitness
function (1.5) is M-shaped (but very flat) in a small region near η̂ = 1. This leads
to a transition region that is still narrow (of order s) but larger than the present one
(Bürger 2002a,b; Bürger and Gimelfarb 2004). For such fitness functions, it may
be necessary to replace the condition f > f2 by f > f2 +O(s) in the full model.

If stabilizing selection is so strong that it cannot be approximated by a quadratic
fitness function, then the LE approximation necessarily breaks down. For instance,
in the absence of any frequency dependence, strong Gaussian stabilizing selec-
tion together with linkage can maintain simultaneously stable multilocus polymor-
phisms, even in positive linkage disequilibrium (Willensdorfer and Bürger 2003).
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Such multiple stable polymorphic equilibria were also detected by Loeschcke and
Christiansen (1984). However, they cannot necessarily be attributed to strong com-
petition; rather, they seem to be generated by very strong stabilizing selection and
continue to exist if competition is added.

We expect that our main results remain valid if more than two alleles can seg-
regate because Christiansen and Loeschcke (1980) showed for a model with four
possible alleles at a single locus that at equilibrium at most two alleles are main-
tained. This is also true for a single-locus version of our model with multiple alleles
and assortative mating (K. Schneider, unpubl. manuscript).

Although not investigated here, we mention that the distribution of a trait under
strong competition is nearly Gaussian if linkage is loose and there are more than
about six loci (see Bürger and Gimelfarb 2004). Thus, disruptive selection does not
necessarily induce departures from a normal distribution (cf. Turelli and Barton
1994). Tight linkage induces marked departures from a Gaussian, and the equilib-
rium distribution shows clear signs of clustering. Because of random mating, no
bimodal distributions can occur in our model.

The final topic we want to discuss is the relation between the strength of com-
petition relative to that of stabilizing selection and the occurrence of empirically
detectable disruptive selection. In contrast to models based on the Lotka-Volter-
ra approach (e.g., Roughgarden 1972; Slatkin 1979; Christiansen and Loeschcke
1980; Dieckmann and Doebeli 1999), in the present model as well as in that of
Bulmer (1974, 1980), the quantitative trait may be under stabilizing selection and
may mediate competition for independent reasons. It has long been known that com-
petition must be sufficiently strong to induce disruptive selection (Bulmer 1974;
Slatkin 1979). More detailed genetic models yield qualitatively similar results and
show that disruptive selection occurs whenever competition is strong enough to
generate multilocus polymorphism (Bürger 2002a,b; Bürger and Gimelfarb 2004).
Of course, this is also true in the present model. At demographic equilibrium, (2.5)
can be written as

W(g) = F(N̂)
[
1 + s(θ2 + η̂ḡ2 + ϕ̂)+ 2s(θ − η̂ḡ)g − s(1 − η̂)g2

]
, (7.4)

where ϕ̂ = ϕ(N̂, π̂). Therefore, the fitness function is convex (curved upwards) if
η̂ > 1, linear if η̂ = 1, and concave if η̂ < 1. However, convexity does not auto-
matically imply disruptive selection, i.e., a

⋃
-shaped fitness function, because, in

principle, the minimum ofW(g) could lie outside the range of realized phenotypes.
By using (3.10), it is easy to show that if η̂ > 1 and the population is at equilibrium,
the minimum of the fitness is attained at

gmin = θ
2(n−m)+ η̂(

∑m
i=1 γi/ |θ |)− 1

2(n−m)+ η̂ − 1
, (7.5)

which for a fully polymorphic equilibrium simplifies to

gmin = θ
2n− 1

2n+ η̂ − 1
. (7.6)



A multilocus analysis of intraspecific competition 383

Thus, the minimum satisfies 0 < |gmin| < |θ | and, typically, is close to θ . If θ is
close to one of the extremes of the phenotypic range, it will be difficult to establish
disruptive selection in experiments with statistical significance because selection
may appear to be directional. It is questionable whether in such a case competitive
displacement can play an important evolutionary role in triggering phenomena such
as sympatric speciation because there is not only a strong directional component
of selection but also the number of loci maintained polymorphic is relatively low,
even if frequency dependence is strong.

Unfortunately, there is only sparse direct empirical evidence that intraspecific
competition induces disruptive selection, and even that intraspecific phenotypic var-
iation produces frequency-dependent selection (but see Bolnick 2004 and Swanson
et al. 2003). Most of the empirical evidence on the role of resource competition
in evolutionary diversification concerns interspecific competition (Schluter 2000).
Even then, frequency-dependent selection has been established only rarely (Schluter
2003). One reason for the rarity of empirical evidence of evolutionary divergence
driven by frequency-dependent selection derives from the substantial experimental
difficulties in getting a handle on such systems, especially, under natural condi-
tions. Another conceivable reason is that because stabilizing selection on quanti-
tative traits is common (Charlesworth et al. 1979, Endler 1986; Kingsolver et al.
2001) and may act directly or indirectly (through pleiotropy) and independently
of the forces causing competition, competition will often have to be rather strong
to lead to detectable disruptive selection. Of course, the effects of competition
must be frequency dependent; otherwise it will not induce disruptive selection. In
particular, if stabilizing selection is asymmetric, the above considerations show
that the frequency-dependent effects of competition must be particularly strong to
induce disruptive selection, and even stronger to become empirically detectable. A
high intrinsic growth rate intensifies the effects of frequency dependence, whereas
a low growth rate will weaken or even nullify them. Once competition is strong
enough to induce substantial multilocus polymorhism, disruptive selection should
be observable (Bürger 2002b; Bürger and Gimelfarb 2004; compare also Bulmer
1980, pp. 166–168). In this connection, it is interesting that, as pointed out by
Bolnick (2004), Kingsolver et al. (2001) do not distinguish between true disrup-
tive selection and directional selection with a positive curvature. Thus, disruptive
selection may be rarer than indicated by their study. There is no question that more
thorough empirical studies of these issues are needed before theoreticians can be
confident that the biological relevance of their models of competitive displacement
mediated by a quantitative trait can be reliably assessed.

Appendix

A. Allele-frequency dynamics

A.1 First, we derive (3.5a). The main step is the calculation of the marginal fitness
of alleleAi in linkage equilibrium. We designate the genotypic value of a genotype
consisting of all loci except i by gi . Let P(gi) denote its (marginal) frequency
under the assumption of linkage equilibrium. By definition, the marginal fitness of
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Ai in linkage equilibrium is

W̃i =
∑
gi

P (gi)[W(γi + gi)Pi +W(gi)Qi] . (A.1)

We omit the multiplicative factor F(N) and write (2.5) as

W(g) = ω0 + ω1g + ω2g
2 , (A.2)

where ω0 = 1 − sθ2 + sη(N)ḡ2 + sϕ(N, π), ω1 = 2s(θ − η(N)ḡ), ω2 = −s(1 −
η(N)). Straightforward calculations invoking (3.2) and (3.1) show that

gi =
∑
gi

P (gi)gi = ḡ − γi(Pi −Qi) , (A.3)

gi
2 =

∑
gi

P (gi)(gi)2

= VLE + ḡ2 − 2ḡγi(Pi −Qi)+ γ 2
i (P

2
i − 4PiQi +Q2

i ) , (A.4)

because in linkage equilibrium,VA = VLE. Substituting (A.2) into (A.1), expanding
and using (A.3) and (A.4), we obtain

W̃i = ω0 + ω1(ḡ + γiQi)+ ω2(VLE + ḡ2 + 2ḡγiQi + γ 2
i Qi(Qi − Pi)) (A.5)

and, by (2.9) with VLE instead of VA,

W̃i − W̃ = ω1γiQi + ω2γiQi(2ḡ + γi(Qi − Pi)) , (A.6)

whence (3.5a) follows immediately. Although obvious, it is noteworthy that the
dynamics in linkage equilibrium is independent of the term ω0.

A.2 Next we show that if N , hence η, are assumed to be constant, (3.5a) is a
generalized gradient system (Bürger 2000, pp. 349–352, or Hofbauer and Sigmund
1998). Let (without loss of generality) F(N) ≡ F̂ and η(N) ≡ η̂ and define

V = F̂ [1 − s
2 − s(1 − η̂)VLE] . (A.7)

Replacing Qi by 1 − Pi , it is straightforward to check that

∂V

∂Pi
= 2sγ 2

i F̂ [(2Pi − 1)(1 − η̂)− 2
/γi] ;

hence, dPi
dt

= 1
2Pi(1 − Pi)

∂V
∂Pi

. In vector notation, this reads

d

dt
P = 1

2
G∇V , (A.8)

where ∇V = (∂V/∂P1, . . . , ∂V/∂Pn)
T is the gradient vector of first-order partial

derivatives andG is a diagonal matrix with entriesPi(1−Pi) on the main diagonal.
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Therefore, (A.8) is a generalized gradient system on the n-fold euclidean product
of the two-dimensional simplex S2. In particular, V is a Lyapunov function, i.e.,

dV

dt
=
∑
i

∂V

∂Pi

dPi

dt
= 1

2

∑
i

PiQi

(
∂V

∂Pi

)2

≥ 0 .

For frequency-independent selection it has long been known that the LE dynam-
ics can be written in the form (A.8) (Wright 1937; Bürger 2000, p. 84). For fre-
quency-dependent selection the dynamics is usually not a gradient system. In the
present model, the potentialV differs fromW (in fact, only its frequency-dependent
part).

B. Proofs of Theorems 1 and 2

We begin by applying the existence and stability results of Turelli and Barton (2004)
(in this appendix abbreviated TB04) to our model and formulate them in terms of
our notation. It is important that their parameters vi are all identical in our model,
i.e., vi = η̂ for all i. We exclude the case η̂ = 1, which leads to a degenerate
equilibrium structure (see (3.5a)).

From (3.5a), we see that each locus i can fall into one of three possible equi-
libria: Pi = 0, Pi = 1, or

Pi = 1

2
− 1

γi




η̂ − 1
. (B.1)

Locus i is polymorphic if and only if

η̂ < 1 and 2 |
| < γi(1 − η̂) (B.2a)

or

η̂ > 1 and 2 |
| < γi(η̂ − 1) . (B.2b)

Following TB04, for a given equilibrium we introduce the following sets of
loci:

�0 = {i : Pi = 0} , �1 = {i : Pi = 1} , �p = {i : 0 < Pi < 1} . (B.3)

At such an equilibrium, we have


 =
∑
i∈�1

γi −
∑
i∈�0

γi +
∑
i∈�p

γi(Pi −Qi)− θ . (B.4)

Because vi ≡ η̂, condition (15) in TB04 (in which n denotes the number of loci
in�p) can never be satisfied if�p contains two or more loci and η̂ < 1. Therefore,
their condition (14) implies

if η̂ > 1, then all loci in �p are stable; (B.5a)

if η̂ < 1 and �p contains more than one locus, then all loci in �p are unstable.
(B.5b)



386 R. Bürger

However, if η̂ < 1, then a single polymorphic locus can be stably maintained. The
stability conditions for the fixed loci are (TB04, eqs. (21))

γi(η̂ − 1) < 2
 if Pi = 0 (B.6a)

and

γi(η̂ − 1) < −2
 if Pi = 1 . (B.6b)

Hence, they are complementary to the existence conditions for polymorphic loci
with η̂ > 1.

Proof of Theorem 1. (i) This is just the stability condition (B.5b).
(ii) This is well known for pure stabilizing selection (e.g., Barton 1986). If

0 ≤ η̂ < 1 and θ = 0, then for every stable equilibrium, a complimentary one is
found by interchanging the frequencies of Ai and ai at each locus. A procedure for
finding alternative stable equilibria is provided by Turelli and Barton (2004).

(iii) For every monomorphic equilibrium (stable or not), the deviation from
the optimum is given by 
 = ∑

i∈�1
γi −∑

i∈�0
γi − θ . In the non-generic case


 = 0, the stability conditions for fixed loci, (B.6a) and (B.6b), show that such
an equilibrium is stable for all η̂ < 1. Generically, for a given set of γi there is
a Dmin > 0 such that |
| ≥ Dmin for all monomorphic equilibria. If 
 ≥ Dmin
at such a monomorphic equilibrium, then (B.6b) cannot be satisfied if η̂ increases
beyond a critical value η̂c < 1, whence�1 = ∅ follows. Because θ lies in the range
of possible genotypic values, i.e., |θ | ≤ �, we get 
 = −∑i∈�0

γi − θ ≤ 0, a
contradiction. An analogous argument is valid if 
 ≤ −Dmin. ��

Before we prove Theorem 2, we need three auxiliary lemmas.

Lemma 1. Let η̂ > 1. At every stable equilibrium, at least one of the sets �0 and
�1 is empty.

Proof. Suppose i ∈ �0 and j ∈ �1. Then, by (B.6a), Pi = 0 is stable if and only if
2
 > γi(η̂−1) > 0. Similarly,Pj = 1 is stable if and only if 2
 < γj (1− η̂) < 0,
which yields a contradiction. ��

Lemma 2. Let η̂ > 1. At every stable equilibrium, �p is not empty.

Proof. By Lemma 1, at a completely monomorphic equilibrium either all loci are
fixed for the plus allele or for the minus allele. Let g+ = ∑n

i=1 γi(= �) be the
value of the all-plus genotype. At this equilibrium, we have ḡ = g+. By the stability
condition (B.6b), g+ is stable if and only if γi < 2(θ − g+)/(η̂− 1) for all i. This,
however, is impossible if θ ≤ g+ = �, as posited in the assumptions of the genetic
model (Section 2.2). The all-minus case is analogous; thus, the lemma is proved. ��

Lemma 3. Let η̂ > 1. If θ ≥ 0 (θ ≤ 0), then at every stable equilibrium we have
�0 = ∅ (�1 = ∅).
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Proof. Let θ ≥ 0 and suppose i ∈ �0. Because η̂ > 1, stability requires 
 > 0
(B.6a). Hence, (B.1) implies Pi −Qi < 0 for all i ∈ �p (�p �= ∅ by Lemma 2). By
Lemma 1, we have�1 = ∅.Therefore,
 = −∑i∈�0

γi+
∑
i∈�p

γi(Pi−Qi)−θ <
0, which is a contradiction.

We note that Lemma 3 (or directly (B.6a), (B.6b)) implies that if θ = 0 and
η̂ > 1, a stable equilibrium is fully polymorphic. ��
Proof of Theorem 2. Let η̂ > 1 and assume θ ≥ 0. Then, by Lemmas 1 and 3, for
every stable equilibrium, we have �0 = ∅ and �p �= ∅. We order the effects so
that γ1 ≤ γ2 ≤ . . . ≤ γn. The feasibility condition (B.2b) shows that for a given
equilibrium a unique m (0 ≤ m ≤ n − 1) exists such that �1 = {1, . . . , m} and
�p = {m+ 1, . . . , n}. Then, invoking (B.1), we see that (B.4) becomes ��


 =
m∑
i=1

γi +
n∑

i=m+1

γi(Pi −Qi)− θ =
m∑
i=1

γi − 2



η̂ − 1
(n−m)− θ ,

from which the equilibrium value of 
 is calculated to be


̂ =
∑m
i=1 γi − θ

1 + 2(n−m)
η̂−1

.

For arbitrary choice of θ , we obtain (3.10). This shows that simultaneously stable
equilibria must have different values
 and different numbers of polymorphic loci.
For a fully polymorphic equilibrium (m = 0), (3.10) simplifies to


̂ = −θ
1 + 2n/(η̂ − 1)

. (B.7)

(This holds for any fully polymorphic equilibrium, even if not stable, i.e., if η̂ < 1.)
Also recall that if θ = 0, then a fully polymorphic (stable) equilibrium exists.

Invoking (3.10), we see that the stability conditions (B.6a) and (B.6b) for the
fixed loci can be expressed as

γi < 2
|θ | −∑m

j=1 γj

2(n−m)+ η̂ − 1
(B.8)

(it is best to consider the two cases θ > 0, θ < 0 separately; for θ = 0, (B.6a) and
(B.6b) are void). (B.8) must be satisfied by locus m, but must not be satisfied by
locus m+ 1. Simple rearrangement of (B.8) yields

γm[2(n−m)+ η̂ + 1] + 2
m−1∑
i=1

γi < 2 |θ | . (B.9)

It is straightforward to show that the left-hand side is non-decreasing in m. (Take
the left-hand side of (B.9) form+ 1 and substract that form. After rearrangement,
this yields (γm+1 −γm)(2n−2m+ η̂−1) ≥ 0.) Therefore, the largestm satisfying
(B.9) is uniquely determined.
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Thus, we have proved that if a stable equilibrium exists, then it is uniquely
determined and at least one locus is polymorphic.

Obviously, if η̂ > 1 and (3.6) is satisfied, then (3.7) yields a stable equilibrium
that is fully polymorphic. Similarly, (3.8) and (3.9) yield a stable equilibrium with
m polymorphic loci, andm is uniquely determined even if loci of equal effects occur
because the left-hand side of (B.9) is constant on such sets. The allele frequencies at
the fixed loci are all 1 if θ > 0 and all 0 if θ < 0. Since such an equilibrium satisfies
the stability conditions, we have also established existence of a stable equilibrium.

To prove (i), we observe that by (B.8) this unique stable equilibrium is fully
polymorphic (m = 0) if and only if (3.6) holds. The allele frequencies (3.7) follow
immediately from (B.1) and (B.7).

To prove (ii), we first observe that the fully polymorphic equilibrium is sym-
metric if and only if θ = 0. If θ = 0, then (3.6) holds automatically and the stable
equilibrium must be fully polymorphic. This proves the first assertion. If 
 = 0
(and η̂ > 1) at a stable equilibrium, then either θ = 0 (B.7), and we are finished,
or
∑
i /∈�p

γi = |θ | by (3.10). This, however, is impossible because if 
 = 0, the
stability conditions (B.6a), (B.6b) for fixed loci cannot be satisfied if η̂ > 1.

Part (iii) follows immediately from what we have proved together with (B.8),
(B.9) as well as (B.1) and (3.10). We have P̂i > 1

2 if and only if θ > 0 because
(B.8) informs us that |θ | >∑m

i=1 γi must hold.

C. Expressions for N̂ , η̂, and fc

We assume demographic equilibrium, i.e., W = 1, but initially we do not require
linkage equilibrium or genetic equilibrium. For discrete logistic population growth,
(2.2), and for the Maynard Smith model, (2.4) with c = 1, explicit expressions for
N̂ can be obtained from (2.9) by solving W = 1 for N . In the first case, we get

N̂ = κ(ρ − 1)+ κs
VA(2f (ρ − 1)− 1)−
2

1 − sVA(1 + 2f )− s
2 (C.1a)

= κ(ρ − 1)+ κs
[
2fVA(ρ − 1)− VA −
2

]
+O(s2C2) , (C.1b)

where we have used (1.11) and, for (C.1b), (2.10). (C.1a) shows that N̂/κ and,
hence, the resulting fitness W(g) at demographic equilibrium can be expressed
solely in terms of ρ, f , and the genetic parameters; κ is not needed.

For the Maynard Smith model, we obtain

2bN̂ξ = λ
[
1 − s(VA +
2)+ 2sf ξVA)

]
− 2 +

+
√
λ

√
λ[1 − s(VA +
2)+ 2sf ξVA)] − 8sf ξVA . (C.2)

It follows that the resulting fitness W(g) at demographic equilibrium can be
expressed solely in terms of λ, ξ , f , and the genetic parameters; b is not needed.
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If N̂ can be calculated exactly, exact expressions for η̂ = η(N̂) can be obtained.
For the discrete logistic equation, we get from (2.6) and (C.1a)

η̂ = f
ρ − 1 − sρ(VA +
2)

1 − 2sfρVA
(C.3a)

= f (ρ − 1)+ sfρ
[
(2f (ρ − 1)− 1)VA −
2

]
+O(s2C2) . (C.3b)

In general, the following approximation for η̂ is obtained from (2.10) and (2.6):

η̂ = η(N̂) = −fKF ′(K)+ sf

F ′(K)

[
2fVAKF

′(K)+ VA +
2
]

×
[
KF ′(K)2 − F ′(K)−KF ′′(K)

]
+O(s2C2) . (C.4)

We note from the definition (2.6) of η and becauseF(K) = 1 that the leading-order
term of η̂ is obtained if N̂ = K . Moreover, we haveKF ′(K)2−F ′(K)−KF ′′(K) >
0 if and only if η′(K) > 0. The latter, in fact even η′(N) > 0, is fulfilled in all our
examples for F .

For the Ricker model, (C.4) produces

η̂ = f r + sf
[
(2f r − 1)VA −
2

]
+O(s2C2) . (C.5)

For the Hassell-Maynard Smith model, (C.4) yields

η̂ = f cξ(1 − λ−1/c)+ sf ξλ−1/c
[(

2f cξ(1 − λ−1/c)− 1
)
VA −
2

]

+O(s2C2) , (C.6)

which, for the Beverton-Holt model, simplifies to

η̂ = f
λ− 1

λ
+ s

f

λ

[(
2f
λ− 1

λ
− 1

)
VA −
2

]
+O(s2C2) . (C.7)

A problem with the above relations is that the values of VA and
 depend on the
population size N̂ , which itself is expressed in terms of VA and 
. Obviously, at a
monomorphic equilibrium, VA = 0 and explicit formulas for N̂ and η̂ are obtained
if it is known which loci are fixed for the A and which for the a allele.

From now on, we assume the LE approximation of Section 3, η̂ > 1, and that
the population is in the equilibrium given by Theorem 2. Then, the value of η̂ can
be calculated exactly in terms of the basic parameters. Take, for instance, (C.3a)
and substitute 
̂ from (3.10) and V̂LE from (3.11) for
 and VA, respectively. This
produces a (complicated) cubic in η that can be solved in principle to obtain η̂. This
method has been used to calculate numerically the values of η̂ and, hence, of N̂ ,
V̂LE, 
̂, and P̂i (i = 1, 6) in Table 1.

Perhaps more importantly, approximations for the critical f that yields η̂ = 1
can be obtained by equating η̂ (2.6) to 1, developing f into a Taylor series about
K , and observing (2.10). This produces

f = − 1

KF ′(K)
+ s(V̂LE − 
̂2)

−F ′(K)+KF ′(K)2 −KF ′′(K)
K2F ′(K)3

+O(s2C2) .

(C.8)
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In the limit η̂ → 1 (from above), (3.11) shows that V̂LE simplifies to

V̂ = lim
η̂→1

V̂LE = 1
2

∑
i∈�p

γ 2
i − 1

2

(∑
i /∈�p

γi − |θ |
)2
/(n−m) , (C.9)

wherem is determined by inequality (3.8) with η̂ = 1. Therefore, V̂ ≤ Vmax, where
Vmax = 1

2

∑n
i=1 γ

2
i . Moreover, (3.10) shows that 
̂ → 0 as η̂ → 1 from above. It

follows that the critical f is given by

f1 = − 1

KF ′(K)
+ sV̂

KF ′(K)2 − F ′(K)−KF ′′(K)
K2F ′(K)3

+O(s2V 2
max) . (C.10)

For the discrete logistic equation, (C.10) yields

f1 = 1

ρ − 1
− ρsV̂

(ρ − 1)2
+O(s2V 2

max) . (C.11)

The exact formula

f1 = 1

ρ − 1 + sρV̂
, (C.12)

is readily derived from (C.3a).
For the Ricker model, we obtain

f1 = 1

r

(
1 − sV̂

r

)
+O(s2V 2

max) , (C.13)

and for the Hassell-Maynard Smith model,

f1 = λ1/c

cξ(λ1/c − 1)

(
1 − sV̂

c(λ1/c − 1)

)
+O(s2V 2

max) . (C.14)

In all cases, f1 increases to infinity as the population growth rate decreases to
unity, and f1 < −1/(KF ′(K)) = f2.

D. Stability of single-locus polymorphisms in the two-locus model

If the single-locus polymorphism (4.5) exists, it is stable within its one-locus system,
as is readily shown. The characteristic polynomial for the other two eigenvalues is
of the form p(x) = 1

2p0 + p1x + p2
2x

2 (the p2
2 is no misprint), where

p2 = 8(1 + η)2 + t (1 − e)2(1 − η)(1 − 3η − 2η2)+ 4te(1 + η)2(−1 + 2η) ,

p1 = p2b ,

b = −8(2 − r)(1 + η)2 + rtη[(−1 + η)(1 + 3η)(1 − e)2 + 4e(1 + η)2]

+ 2t (1 + e)2(1 − 3η2)+ 4tη[3(1 − e)2 − 2η2(1 + e2)] ,

and p0 is given below. (This and all other assertions are straightforwardly checked
with Mathematica.) It follows immediately that p(x) is convex. Simple estimates
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using 0 ≤ t, η, e ≤ 1 show that p2 ≥ 3 and b ≤ −4; hence, p′(0) = p1 < 0.
Therefore, p(x) attains its minimum at xmin = −p1/(2p2

2), which is in (0, 1). We
have

p(xmin) = −
[

1
2 ru− 4t (1 − e)2(1 − η2)

]2

−4t2(1 − e)2(1 − η2)2
[
(1 + e)2(1 + η)2 − 4(1 − e)2

]
,

where u = 4(1 + η)2(2 + teη)− tη(1 + η)(1 + 3η)(1 − e)2. Because (1 + e)2(1 +
η)2 −4(1−e)2 increases with η and = 0 if η = η0, we have p(xmin) < 0 if this sin-
gle-locus polymorphism exists. Therefore, there always exist two real eigenvalues,
and an eigenvalue larger than 1 exists if and only if p(1) < 0. We have

p(1) = −2t (1 − e)2(η2 − 1)

×
{

8te(η − 1)(1 + η)3 + r(3 + η)
[
8(1 + η)2 + tηψ

]}
,

where ψ is defined below (4.6b). Because ψ ≥ − 4
3 , the coefficient of r is always

positive. Therefore,p(1) < 0 whenever η > 1, and this single-locus polymorphism
is unstable if η > 1.

If η < 1, then p(1) < 0 if and only if r < r1, where r1 is given by (4.6a),
whence the equilibrium is unstable. It remains to show that the equilibrium is stable
if η < 1 and r > r1. From now on we assume η < 1. We already know that both
eigenvalues are real. If p(1) > 0, they must both be less than 1 and it is sufficient
to show p(0) = 1

2p0 > 0. We can write

p0 = (1 − 2r)c1c2 + c3 ,

where

c1 = 8(1 + η)2 − t (1 − e)2η(1 − η)(1 + 3η)+ 4teη(1 + η)2 > 0 ,

c2 = 4(1 + η)2(2 − t (2 − 3e + 2e2)+ 2tη(1 − e + e2))

+t (1 − e)2(1 − η)(3 + 5η + 4η2) > 0 ,

c3 = 2(1 + η)4
[
12(2 − t2(1 + e)2)+ 2(1 − e)+ 6e2(1 − t2)+ 3(1 − e4)

]

+8t (1 + η)2a1 + (1 − e2)2a2 + 4ea4 + 4t2e2a6 ,

and

a1 = (1 + e)2η(1 + η)2 + 16eη(1 + η)2 + 4(1 − e)2(1 − 3η + 2η2 + 2η3) ≥ 0 ,

a2 = 6(1 + η)4 − t2(1 − η)2(6 + 9η − 40η2 − 43η3 − 12η4) ≥ 0 ,

a3 = 2 + 9η − 54η2 − 2η3 + 26η4 + 17η5 + 2η6 ,

a4 = (1 + η)4 + t2a3 > 0 ,

a5 = 7 − 2η + 86η2 − 24η3 − 9η4 + 34η5 + 20η6 > 0 ,

a6 = a5 + ea3 > 0 .

It follows that c3 > 0; hence, p0 > 0 whenever t < 1
2 (actually, whenever t <√

21 − 4 ≈ 0.58). Numerical results as well as analytical consideration of the case
t = 1 suggest that this is true for all t ≤ 1.
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E. Instability of monomorphic equilibria

Here, we show that in the full discrete-time model, (2.11) and (2.12), with fitness
function (2.5), no monomorphic equilibrium can be locally stable if f > f2 and
selection is not too strong. We also assume that η is monotone increasing near K ,
as is the case for all examples given in Section 2. For our purpose it is sufficient to
prove instability with respect to invasion of single-locus mutants. Let g denote the
genotypic value of an arbitrary genotype that is homozygous in all loci. Consider
a single-locus heterozygote that differs in just one locus and denote its genotypic
value by g + a. Of course, a has to satisfy a �= 0 and −� ≤ g + 2a ≤ �. From
(2.9) we infer easily that at a monomorphic equilibrium, N̂ = F−1(1/(1 − s
2))

because VA = 0 and ḡ = g. Since F is monotone decreasing inN , this implies that
at any monomorphic equilibrium, N̂ ≤ K . Without loss of generality, we assume
0 ≤ θ < �. Then the monomorphic equilibrium corresponding to g is unstable if
and only if

W(g + a) > W(g) (E.1)

for some (admissible) a. Because in a neighborhood of a monomorphic equilib-
rium, VA = 0 and ḡ = g hold to first-order approximation, a simple calculation
shows that (E.1) is equivalent to

η(N̂) > 1 + 2


a
. (E.2)

Thus, all monomorphic states are unstable if for every possible g an admissible a
exists such that (E.2) is fulfilled.

If g = θ , then N̂ = K and (E.2) simplifies to η(K) > 1, which is equivalent
to f > f2. Therefore, f > f2 is necessary.

Now suppose g > θ , i.e., 
 > 0. Then (E.2) will be satisfied if f > f2 holds
and

η(N̂) > η(K)+ 2
/a . (E.3)

We show that a < 0 exists such that this is satisfied. Indeed, for a < 0 and
because K < N̂ implies η(K) < η(N̂), (E.3) is equivalent to

−a < 2


η(K)− η(N̂)
. (E.4)

Developing η(N̂) into a Taylor series about K and dropping terms of order s2 and
smaller, we see that (E.4) becomes

−a < 2KF ′(K)2

sη′(K)

. (E.5)

Hence, for sufficiently small s, an admissible a can be found in every genetic sys-
tem. An analogous argument is valid if g < θ . Therefore, f > f2 is also sufficient.
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If, for instance, population growth is logistic, i.e.,F is given by (2.2), then (E.4)
becomes

−a < 2(ρ − 1)

sρ

. (E.6)

A simple calculation shows that an admissible a can be found whenever s�2 ≤
4
3 (ρ − 1)/ρ. Unless ρ is close to one, this is a weak restriction because s�2 ≤ 1
must hold anyway.

F. Convergence to QLE

In this appendix, we make heavy use of the notation, arguments and results in
Nagylaki et al. (1999). We abbreviate this article by NHB. We assume that all
two-locus recombination rates are positive. We consider all parameters as fixed and
assume that the strength of selection, s, is sufficiently small (where ‘small’ may
depend on the other parameters). In the absence of selection (s = 0) the dynamics
(2.11) with constant population size N = N̂ simplifies to

p′
k = pk −Dk , (F.1)

where pk denotes the frequency of gamete k (k = 1, . . . , 2n) and Dk is a measure
of linkage disequilibrium in gamete k as defined in Eq. (1.5) of NHB. Let us write
p for the vector of dimension 2n consisting of the pk (in arbitrary but fixed order).
For the system (F.1), the linkage-equilibrium manifold �0 = {p : D = 0} (cf. Eq.
(3.2) in NHB) is invariant and globally attracting at a uniform geometric rate (NHB,
p. 114).

For sufficiently weak selection, the theory of normally hyperbolic manifolds
(see Fenichel 1971; or Hirsch et al. 1977) implies the existence of a smooth invari-
ant manifold �s close to �0, which is globally attracting at a geometric rate for
the system (2.11). The recursion relations for the gene frequencies on the invariant
manifold �s can be written as (Nagylaki 1993, Eq. 56)

P ′
i = Pi + sPiui(P)/w̄(P)+O(s2) , (F.2)

where w̄(P) = W evaluated on �s and

ui(P) = F(N̂)γ 2
i Qi

[
(Pi −Qi)(1 − η̂)− 2
/γi

]
. (F.3)

Note that sPiui is the right-hand side of (3.5a). Equation (F.2) corresponds to Eq.
(3.10) or, equivalently, to Eq. (3.5) of NHB. Because selection is frequency inde-
pendent in NHB (otherwise, their main results are not valid), it is important to note
that Eq. (56) in Nagylaki (1993) was derived for frequency-dependent selection;
thus, it has the generality needed to yield (F.2) as a special case.

By rescaling time and letting s → 0 as in NHB, we see that the difference equa-
tion (F.2) approaches the differential equation (3.5a). Their fixed points coincide.
As shown in Appendix A.2, (3.5a) is a (generalized) gradient system; hence, all ei-
genvalues of the Jacobian are real. Therefore, all equilibria of (3.5a) are hyperbolic
if none of the eigenvalues is zero. This is equivalent to the hypothesis that (F.2) has
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no fixed points with an eigenvalue 1. This clearly is a generic assumption because
it is violated only if the solution of (Pi −Qi)(1 − η̂)− 2
/γi = 0 (F.3) happens
to coincide with Pi = 0 or Pi = 1.

Now the same proof as that of Theorem 3.1 of NHB shows that all trajectories
of the discrete-time system (2.11) converge to a fixed point. This fixed point is a
perturbation of a fixed point of the linkage equilibrium approximation (3.5a).
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