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10.1 Introduction
Mutation is the ultimate source of genetic variability. However, a large fraction of
mutations reduce the fitness of the individuals in which they occur (Chapter 7). The
evolutionary consequences of mutations with an unconditionally deleterious effect
are manifold and have been the subject of intense investigation (Charlesworth and
Charlesworth 1998; Chapter 9). Since many mutations affect several traits and
the developmental pathways are complex, their fitness effects may also depend on
the genetic background in which they occur, and on the kind of selective pressure
to which the population is exposed. For instance, if for a given trait, say birth
weight, there is an optimal phenotype, a mutation that increases birth weight will
be detrimental if it arises in a genotype that, otherwise, would have the optimal
or a higher birth weight, but will be beneficial in other genotypes. In a changing
environment, the selective value of an allele will change with time if different
values of a trait affected by the allele are favored at different times. The fitness
effect of a given mutation, therefore, depends on the effect it has on this trait, and
on the current environment. Hence, a newly introduced allele may, in spite of its
immediate adversary effect on fitness, prove to be beneficial at a later stage of the
population history. Mutation itself thereby gains an additional role as a provider of
the genetic variation that allows adaptation to occur. In this chapter, we evaluate
the role of genetic variation, as caused by mutation, for population persistence if
environmental change induces selection on one or more quantitative traits.

For the present purpose, environmental changes may be grouped roughly ac-
cording to the mode in which they occur in time:

� Stochastic fluctuations of a certain parameter around a constant mean (e.g.,
temperature in tropical regions);

� Periodic fluctuations around a constant mean (e.g., seasonal fluctuations, oscil-
lations in the life cycles of prey, predators, or parasites) that are at least partially
predictable;

� Directional changes, such as global climatic changes, increasing concentration
of certain substances because of increasing pollution, or gradual loss of habitat
through human settlement or spread of a predator or pest (see Chapter 5);
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172 C · Genetic and Ecological Bases of Adaptive Responses

� Single abrupt changes in the local environment, as caused by the sudden intro-
duction of pests or pesticides; an abrupt change may also be faced by a founding
colony in a novel habitat.

The different types of changes can be superimposed in arbitrary combination, and
thereby pose different challenges upon the population and prompt different re-
sponses. These may range from immediate extinction to evolution sustained over
long periods, possibly resulting in speciation (Chapter 7).

The response to environmental change will be influenced in various ways by
ecological, demographic, and genetic factors. Ecological considerations take into
account that environmental changes often influence a population not only by direct
effects, but also via their effects on the focal population’s preys, predators, mutu-
alistic partners, or competitors. The interplay between direct and indirect effects
determines the selective forces. So what may be experienced as a changing envi-
ronment for a single species may, at a higher level of observation, be described as
the intrinsic dynamics of the ecosystem under constant environmental conditions
(see Chapters 16 and 17).

Demographic factors include the reproductive system, population size, intrinsic
population growth rate, migration patterns, and so on. For instance, small popula-
tions are more affected by stochastic influences, and a high growth rate enhances
population recovery after a bottleneck caused by a catastrophic event (see Chap-
ters 2 to 4).

Consideration of the relevant properties of the genetic system of the population
must include at least the degree of ploidy, the number of loci, and the way these
interact, and must determine the phenotype (e.g., pleiotropy, if one gene has effects
on several traits), recombination, and mutation. Mutation is crucial in the long run
because it generates new genetic variability. Recombination breaks associations
between alleles at different loci, and thus allows beneficial alleles to spread through
the population and accelerates the elimination of deleterious alleles. Pleiotropy
may impede adaptation by coupling the selectively advantageous change of one
character with the maladaptation of pleiotropically connected characters.

The combined action of all these factors mentioned ultimately determines the
genetic composition of the population and, via the amount of genetic variation, the
rate of response to environmental challenges. For various scenarios of environ-
mental change, we elucidate the:

� Role of genetic variation for adaptation;
� Rate of adaptive response; and
� Extinction risk of a population, as measured by the expected extinction time.

Demographic and genetic parameters are incorporated explicitly into the models,
whereas ecological interactions are subsumed in the parameters that describe en-
vironmental change and selection.
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10.2 Quantitative Genetics and Response to Selection
Quantitative characters are traits that exhibit continuous or almost continuous vari-
ation and can be measured on a metric scale. Typical examples are weight, height,
various morphological measurements, yield, or fitness. Usually, such traits are
controlled by a large number of gene loci, often with small effects. Since indi-
viduals in a population differ in their trait values, the state of a population is best
described by the probability distribution of the trait. Quite often, the mean value
and the variance are sufficient to predict the evolutionary response of a population
to selection. In contrast to the frequencies of the genes that determine the charac-
ter, the values of the mean, the variance, and (sometimes) the higher moments can
be estimated accurately from real data.

Pioneering analyses to elucidate the genetic basis of inheritance and the re-
sponse to selection of the mean of a quantitative character were made by Galton
(1889), Pearson (1903), Fisher (1918), and Wright (1921), and their students Smith
(1936) and Lush (1937). While the analyses of Galton (1889) and Pearson (1903)
were of a purely statistical nature and based on regression theory, Fisher recon-
ciled their biometric description with Mendelian genetics by assuming that a large
number of unlinked loci with small additive effects determine the character. The
work of Fisher (1918) and Wright (1921) forms the basis of classic quantitative
genetic theory and its applications to animal and plant breeding (see, e.g., Bulmer
1980; Mayo 1987; Falconer and Mackay 1996; Lynch and Walsh 1998; Bürger
2000). Box 10.1 summarizes the basic aspects of the additive model of quantita-
tive genetics.

The so-called breeder’s equation, Equation (c) in Box 10.1, allows prediction of
the change between generations on the basis of the selection differential. For many
questions of evolutionary interest, however, selection is conveniently modeled by
a fitness function W (P), which assigns a fitness value to each phenotypic value
P . In the simplest case, it measures the probability that an individual survives
viability selection. Lande (1976, 1979, and later articles) extended the classic
approach and derived dynamic equations for the change of mean phenotype of a
set of quantitative characters in terms of the additive genetic covariance matrix and
the so-called selection gradient. The fundamentals of his theory are summarized
in Box 10.2 and form the basis for the subsequent analysis herein.

We now set up the general model on which the present results are based. A
finite, sexually reproducing population of diploid individuals is assumed; it mates
at random and, with respect to the traits considered, it has equivalent sexes. For
simplicity, fitness is determined by a single quantitative character under Gaussian
stabilizing selection on viability, with the optimum phenotype P̂t exhibiting tem-
poral change (but see subsection Pleiotropy and changing optima in Section 10.3
for some multivariate results). Thus, the more a phenotype deviates from the op-
timum the lower is its fitness. In mathematical terms, the fitness (viability) of an
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Box 10.1 The classic additive genetic model

Quantitative traits are influenced by genes at many (�) loci and by the environment.
Genetically identical individuals may have different phenotypes because of external
conditions (e.g., nutrition), developmental “noise”, and cytoplasmatic effects. All
these are lumped together into the so-called environmental contribution E , which
(in the simple model discussed here) is assumed to be independent of the genotype
and normally distributed with a mean of zero and a variance of VE . Alleles at
each locus have an effect on the character, measured by a real number. Let xi

and xi denote the allelic effect of the maternally and paternally inherited alleles,
respectively, at locus i . The fundamental assumption is that the alleles between
the loci interact additively and, in the diploid case (as assumed here), show no
dominance. Thus, the phenotypic value P of an individual is assumed to be

P = G + E =
�∑

i=1

(xi + xi ) + E , (a)

where G is the genotypic value. Since the environmental contribution is scaled to
have zero mean, the mean phenotypic value P equals the mean genotypic value G.
A consequence of the assumption of no genotype–environment interaction is that
the mean phenotypic variance VP can be decomposed into

VP = VG + VE , (b)

where VG is the (additive) genetic variance (i.e., the variance of genotypic values).
The assumption of additivity of allelic effects rests on the fundamental concept of
the average or additive effect (Fisher 1930, 1941) and may be viewed as a least-
squares approximation. Thus, the additive effects are found by an analysis of vari-
ance; indeed, Fisher invented the analysis of variance for this purpose. Often, an
appropriate scale of measurement can be chosen so that the additivity assumption
is a close approximation (Falconer and Mackay 1996). The variance of additive ef-
fects, in this case equal to VG , is the main determinant of the response to selection.

Let S denote the selection differential, that is the within-generation difference
between the mean phenotypes P (before selection) and P S (after selection but be-
fore reproduction). The expected change in the mean phenotype across generations
is then equal to

�P = h2 S , (c)

where h2 = VG/VP , the ratio of additive genetic to phenotypic variance, and is
called the heritability. It measures the fraction of variance that is heritable. Equa-
tion (c) is called the breeder’s equation and is of fundamental importance because
it allows prediction of the expected selection response from measurable quantities
(see Mayo 1987; Falconer and Mackay 1996).
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individual with phenotypic value P is conveniently described as

W (P, t) = exp
(
− (P − P̂t )

2

2ω2

)
, (10.1)

where ω2 is inversely proportional to the strength of stabilizing selection and inde-
pendent of the generation number t . Selection acts only through viability selection,
and each individual produces b offspring. Initial populations are assumed to be in a
stationary state with respect to stabilizing selection and genetic mechanisms when
environmental change commences.

The following types of environmental change are modeled here:

� A phenotypic optimum that moves at a constant rate κ per generation,

P̂t = κt ; (10.2a)

� A periodically fluctuating optimum,

P̂t = A sin(2π t/T ) , (10.2b)

where A and T measure amplitude and period of the fluctuations, respectively;
� An optimum fluctuating randomly about its average position;
� A single abrupt shift of the optimum phenotype.

Under each of these models, the population experiences a mixture of directional
and stabilizing selection. Such models of selection have been investigated pre-
viously by Lynch et al. (1991), Charlesworth (1993a, 1993b), Lynch and Lande
(1993), Bürger and Lynch (1995, 1997), Kondrashov and Yampolsky (1996a,
1996b), Lande and Shannon (1996), Bürger (1999), and Bürger and Gimelfarb
(2002).

The quantitative character under consideration is assumed to be determined
by n mutationally equivalent, recombining loci. The additive genetic model of
Box 10.1 is assumed and, as usual, the scale of measurement is normalized such
that VE = 1. Neither the genetic nor the phenotypic variance is assumed to be con-
stant, which is indicated by a subscript t . The parameter VS = ω2 + VE = ω2 + 1
is used to describe the strength of stabilizing selection on the genotypic values G
(Lande 1975). We then have VS + VG = ω2 + VP .

Since this chapter is concerned with finite populations of effective size Ne, the-
oretical predictions are needed for the distribution of the mean phenotype, because
it will fluctuate around its deterministically expected position. Let

st = VG,t

VG,t + VS
(10.3)

be a measure for the strength of selection. Under the assumption of a Gaussian
distribution of phenotypic values and a constant genetic variance, the distribution
of the mean phenotype Pt+1 in generation t + 1, conditional on Pt and P̂t , is
Gaussian. Its expectation is given by

IE(Pt+1|Pt , P̂t ) = Pt + st (P̂t − Pt ) . (10.4)
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This is a consequence of Equation (d) in Box 10.2 because mean fitness is calcu-
lated to be

W t = ω

vt
exp(− 1

2 (Pt − P̂t )
2/v2

t ) , (10.5)

where v2
t ≈ VS(1 + 1/2Ne) + VG,t (Latter 1970; Lande 1976; Bürger and Lynch

1995). These equations are very general and hold for arbitrary fitness functions
of the form in Equation (10.1), so long as the phenotypic values remain approxi-
mately Gaussian.

Under prolonged environmental change, mean fitness may become very low.
Since it is assumed that individuals can only produce a finite number b of off-
spring, a constant population size cannot necessarily be maintained because the
(multiplicative) growth rate

Rt = bW t (10.6)

may fall below 1. Therefore, a simple kind of density-dependent population regu-
lation is imposed to ensure that the population size is close to the carrying capacity
K , as long as the growth rate Rt is larger than 1, but allows extinction otherwise
(Box 10.3).

The above theory and several of the consequences derived below are not based
on a detailed genetic model, but assume a Gaussian distribution of phenotypes. In
particular, the theory does not specify the mechanism by which genetic variation is
generated and maintained. Therefore, computer simulations have been performed
that use an explicit genetic model and enable the analytic approximations to be
tested and the consequences of various assumptions about genetic parameters to be
explored. This requires the mechanism by which genetic variability is maintained
to be specified. It is assumed that this mechanism is mutation (see Box 10.3).

10.3 Adaptation and Extinction in Changing Environments
Classic quantitative genetics predicts that a population which experiences selection
according to Equation (10.1) responds by shifting its mean phenotype according
to Equation (10.4). If the optimum phenotype changes continuously, the mean
phenotype will lag behind the fitness optimum. If this deviation is too large, the
mean fitness may decrease to such an extent that the population cannot replace
itself and declines, possibly to extinction. We are primarily concerned here with
the role of genetic variation for the extinction risk that results from various forms
of temporally varying environments.

Sustained directional change
For a model in which the optimum moves at a constant rate κ per generation, as
in Equation (10.2a), a critical rate of environmental change κc has been identified
beyond which extinction is certain because the lag increases from generation to
generation, thus decreasing the mean fitness of the population below W < 1/b,
the level at which the population starts to decline. With a smaller population size,
genetic drift reduces the genetic variance, which leads to an even larger lag, a
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Box 10.2 Lande’s phenotypic model of selection

Consider a randomly mating, large population such that random genetic drift can
be ignored and assume that the sexes are equivalent with respect to the characters
considered. The phenotype P of an individual is characterized by measurements of
n traits, that is P = (P1, ..., Pn)

T , where T denotes vector transposition. In analogy
with the theory in Box 10.1, a decomposition P = G + E is assumed with indepen-
dent distributions of G and E that are multivariate normal with mean vectors G and
0, and covariance matrices VG and VE . Thus, the phenotypic covariance matrix is
VP = VG +VE . The normality assumption is justified if, as is often the case in prac-
tice, a scale can be found on which phenotypic values are approximately normally
distributed (Falconer and Mackay 1996). This is also expected from the central
limit theorem, because many loci, as well as environmental effects, contribute to
quantitative traits.

If W (P) denotes the fitness of an individual with phenotype P , then the mean
fitness of the population is

W =
∫

φ(P)W (P) d P , (a)

where φ(P) is the (multivariate) probability density of P . After selection, the mean
vector is

P S = 1

W

∫
Pφ(P)W (P) d P , (b)

so that the vector of selection differentials is S = P S − P . In a generalization of
Equation (c) in Box 10.1, the change between generations is calculated to be

�P = VG V −1
P S . (c)

Let ∇ denote the gradient operator, that is ∇g = (∂g/∂x1, ..., ∂g/∂xn)
T is the

vector of partial derivatives of the real-valued function g depending on the n ar-
guments x1, ..., xn . Then, the mean fitness, expressed as a function of the vector
of mean phenotypes W (P1, ..., Pn), can be viewed as an adaptive topography that
determines the response of the mean phenotype to selection. Indeed, Lande (1976,
1979) derived the fundamental relation

�P = VG ∇ ln W , (d)

where the derivatives in the selection gradient ∇ ln W are taken with respect to
P1, ..., Pn . For a single trait and with the notation from Box 10.1, Equation (c)
reduces to

�P = VG
1

W

dW

d P
. (e)

Lande and others have applied this theory (and several generalizations) to numerous
problems of evolutionary biology. The application to long-term evolution, however,
requires knowledge of the genetic variances and covariances. Many of these anal-
yses relied on the assumption that the phenotypic and genetic covariance matrices
change on a much slower time scale than the mean values. These assumptions have
been the subject of intense discussion and analysis (see Turelli 1984, 1988; Barton
and Turelli 1989; Turelli and Barton 1994; Bürger 2000).
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Box 10.3 A numerical model for adaptation in changing environments

The simulation model has been adapted from that used in Bürger et al. (1989) and
Bürger and Lynch (1995). It uses direct Monte Carlo simulation to represent each
individual and each gene. The genotypic value of the character is determined by �

additive loci with no dominance or epistasis. In the present investigation � = 50
was chosen.

Following Crow and Kimura’s (1964) continuum of alleles model, at each locus
an effectively continuous distribution of possible effects for mutants is assumed.
Thus, provided an allele with effect x gives rise to a mutation, the effect of the
mutant is x + ξ , where ξ is drawn from a distribution with mean zero, variance
γ 2, and no skewness. Hence, the number of possible segregating alleles per locus
is limited only by population size. The mutation rate per haploid locus is denoted
by u, the genomic mutation rate by U , and the variance introduced by the mutation
per generation per zygote by Vm = Uγ 2. Unless otherwise stated, a Gaussian
distribution of mutational effects with a mean of zero and variance γ 2 = 0.05
and a (diploid) genomic mutation rate of U = 0.02 per individual and generation
are assumed. This implies that the variance introduced through mutation in each
generation is Vm = 0.001. These values have been suggested as gross averages by
reviews of empirical data (see Lande 1975; Turelli 1984; Lynch and Walsh 1998).

The phenotypic value of an individual is obtained from the genotypic value by
adding a random number drawn from a normal distribution with a mean of zero and
variance VE = 1.

The generations are discrete, and the life cycle consists of three stages:

� Random sampling without replacement of a maximum of K reproducing adults
from the surviving offspring of the preceding generation;

� Production of offspring, including mutation, segregation, and recombination;
� Viability selection according to Equation (10.1).

Modification of this model to allow for two pleiotropically related traits is straight-
forward. Each allele is now written as a vector (x, y), in which the two entries
represent the effect of the allele on each of the traits it influences. Mutation is mod-
eled by the addition of a vector (ξ, ζ ), the components being drawn independently
from a Gaussian distribution as in the single-character case. Viability selection acts
on both characters and is modeled by a bivariate extension of the fitness function
given by Equation (10.1). It is assumed that the optimum moves in the direction of
the first trait, thus leading to directional selection on this trait, while the second trait
remains under stabilizing selection. The width of the fitness functions that acts on
the first and second traits are denoted by ω1 and ω2, respectively.

The maximum number K of reproducing adults may be called the carrying ca-
pacity. The Nt (≤K ) adults in generation t produce bNt offspring, an expected
Rt Nt of which will survive viability selection. In this way, demographic stochastic-
ity is induced. The sex ratio among parents is always 1:1 and N/2 breeding pairs
are formed, each of which produces exactly 2b offspring. If the actual number of

continued
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Box 10.3 continued

surviving offspring is larger than K , then K individuals are chosen randomly to
constitute the next generation of parents. Otherwise, all the surviving offspring
serve as parents for the next generation. The effective population size is Ne =
4N/(Vf + 2), where the variance in family size is Vf = 2(1 − 1/b)[1 − (2b − 1)/

(bN − 1)].
For each parameter combination, a certain number of replicate runs with

stochastically independent initial populations were carried out. Each run was over
105 generations, unless population extinction had occurred previously. The initial
populations were obtained from a preceding initial phase of several hundreds or
thousands of generations (depending on N ) during which mutation–selection bal-
ance had been reached. The number of replicate runs per parameter combination
was chosen such that the standard errors were less than 5% (and often on the order
of 1%).

further decrease of mean fitness, and rapid extinction (Lynch and Lande 1993;
Bürger and Lynch 1995, 1997).

If the rate of environmental change is sufficiently low, then the mean pheno-
type lags behind the optimum, but after several generations evolves parallel with
it. From Equation (10.4) it can be derived easily that the asymptotic average lag is
given by κ/s, with s ≈ st as in Equation (10.3) and VG,t = VG,move the asymptotic
genetic variance (Lynch et al. 1991; Lynch and Lande 1993). The genetic load
induced by this lag has been called the evolutionary load (Lande and Shannon
1996; see Chapter 9 for genetic loads) and can be calculated. Indeed, from Equa-
tion (10.5) and the fact that the lag converges to κ/s, the asymptotic mean fitness
is readily calculated to be

IE(W move) ≈ ω

v
exp

(− 1
2κ2/(s2v2)

)
, (10.7)

where v2 = VS(1 + 1/2Ne) + VG,move. Differentiation shows that IE(W move) is an
increasing function of the genetic variance if V 3

G,move > 2V 2
S κ2, that is unless the

genetic variance is very large or κ is very small (Figure 10.1a; see Charlesworth
1993b; Lande and Shannon 1996). This, however, does not imply that in a real
genetic system the variance evolves such as to maximize mean fitness (see below).

The critical rate of environmental change κc is defined as the value of κ at
which the population can just replace itself, so that bIE(W move) = 1. Unless the
population size is very small (less than, say, two dozen) or the stabilizing selection
component is extremely weak, κc can be approximated by

κc ≈ VG,move

√
2(ln b)/VS , (10.8)

see Lynch and Lande (1993) and Bürger and Lynch (1995). Equations (10.7) and
(10.8) are deceptively simple because the determinants of the genetic variance
have not yet been elucidated. However, it is obvious from Equation (10.8) that the
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Figure 10.1 Dependence of mean fitness on genetic variance. (a) displays the mean fitness
of a population subject to environmental change according to the moving optimum model,
Equations (10.1) and (10.2a), as function of the genetic variance VG,move for four different
rates of environmental change κ . The curves are calculated from Equation (10.5). The
population is assumed to be infinitely large and the width of the phenotypic fitness function
is ω = 3 (VS = 10). For large VG,move the mean fitness decreases because of the stabilizing
component of selection. (b) Analagous to (a), but for a periodically changing environment
according to Equations (10.1) and (10.2b). The amplitude is A = 2ω and the curves,
calculated from Equation (10.11), are for five different periods, as indicated. Obviously,
more genetic variance is beneficial only for long periods T . At VG,move = 0 the derivative
of mean fitness is always negative.

genetic variance is the major limiting factor for the rate of environmental change
that can be tolerated by a population.

This theory can be extended to derive an approximate expression for the mean
time to extinction by recognizing that for κ > κc, the extinction process consists of
two phases (Bürger and Lynch 1995). During phase 1, the multiplicative growth
rate Rt [Equation (10.6)] decreases to 1, but the population size remains at the
carrying capacity. The length t1 of this phase is easily estimated by substituting
Equation (10.7) into Equation (10.6) and solving the equation Rt = 1 for t . This
produces

t1 ≈ −1

s
ln

(
1 − κ

κc

)
. (10.9)

The length t2 of the second phase can be obtained by numerical iteration of the
recursion Nt+1 = Rt Nt until the population size reaches 1. The second phase
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Figure 10.2 Evolution and extinction in a directionally changing environment. (a) The
mean time to extinction as a function of the rate of environmental change κ for three dif-
ferent population sizes K . Data points are from Monte Carlo simulation, whereas lines are
based on the quasi-deterministic theory for te, as described in Equation (10.9) and the text
below. This approximation assumes that the genetic variance does not change after the on-
set of environmental change, an assumption that is valid only in small populations. Since
all genetic variances are less than 1 (see Figure 10.2b) and the environmental variance is
normalized to 1, all phenotypic variances are between 1 and 2. Hence, the value κ = 0.1
corresponds to less than 10% of a phenotypic standard deviation. (b) The observed genetic
variance in the simulations of Figure 10.2a. The mutational parameters are as in Box 10.3,
and the other parameters are b = 2 and ω = 3. Most data points at which extinction oc-
curred are averages over 100 replicate runs. Source: Numerical data mostly from Bürger
and Lynch (1995).

is typically much shorter than the first one. This theory for the mean time to
extinction, te = t1 + t2, produces good approximations if κ � κc (Figure 10.2a),
although it neglects several sources of stochasticity (fluctuations of Rt about its
mean, demographic stochasticity, stochasticity and autocorrelation resulting from
genetic events like mutation and recombination). Most importantly, it requires
knowledge of the actual genetic variance of the population.

An important observation is that the genetic variance actually increases in re-
sponse to the moving optimum, but only if the population size is sufficiently large
(Figure 10.2b). Therefore, if the population size is higher than a few hundred in-
dividuals, the mean time to extinction is longer than predicted by the above theory
if this uses the initial genetic variance (see the case K = 512 in Figure 10.2a). Re-
cently, the determinants of this increase were investigated in some detail (Bürger
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1999). It was shown that the genetic variance of a quantitative trait determined
by many freely recombining loci in a population that, initially, is in mutation–
selection–drift equilibrium, increases at least by the factor

γ

2
√

uVS

Ne + VS/γ
2

Ne + 1
2

√
VS/(uγ 2)

, (10.10)

unless κ is very small. For increasing Ne, this converges to γ/(2
√

uVS). It was
also shown that in sexually reproducing populations in which the trait is controlled
by completely linked loci, an increase of variance either does not occur or is much
smaller than in freely recombining populations. In asexually reproducing popu-
lations, this increase of variance is absent, unless the genomic mutation rate for
the trait, and thus the initial equilibrium variance, is extremely small. This flexi-
bility of the genome confers a substantial advantage to sex and recombination if
the population is subject to sustained and directional environmental change. Equa-
tion (10.10) also shows that the increase of variance is constrained by the genetic
system and not (directly) guided by an optimum principle.

The assumption that environmental change affects only one trait is a gross sim-
plification. In the following we briefly discuss the consequences of pleiotropy.

Pleiotropy and changing optima
Many genes have effects on several characters, and thereby cause a statistical as-
sociation of heritable variation among different phenotypic traits. This pleiotropic
connection of characters may have important consequences for their responses to
selection. We employed a simplified version of a model of Lande (1980b), in
which two traits are determined by the same set of loci, as described in Box 10.3.
Mutation modifies an allele’s contribution to the two characters independently,
and there is no selectional correlation between the characters. Figure 10.3 displays
the results of Monte Carlo simulations that evaluate the role of pleiotropy on the
evolutionary capacity of the population, in which the first trait is under sustained
directional selection while the second is under stabilizing selection, as described in
Box 10.3. The curves in the figure correspond to different strengths of stabilizing
selection on the second trait. The top curve represents the case of a single trait,
subject to the moving optimum model described in the previous section (Sustained
directional change), since this is equivalent to a neutral second trait (ω2 = ∞).

Figure 10.3 shows that in the single-character case the dependence of the mean
time to extinction on the strength of stabilizing selection is bell shaped and has a
maximum near ω1 = 2, which corresponds to strong selection. This is so because
very strong selection focuses the population mean close to the actual optimum,
but destroys most of the genetic variance needed to respond to further changes,
whereas weak stabilizing selection admits more genetic variance, but leads to a
very large lag (see Huey and Kingsolver 1993; Bürger and Lynch 1995). This
bell shape of the curve persists if the second character is exposed to increasingly
strong selection. However, increasing stabilizing selection on the second character
always accelerates population extinction, for three reasons:
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Figure 10.3 Dependence of mean time to extinction in a directionally changing environ-
ment with pleiotropic gene action. Mean extinction time is displayed as a function of sta-
bilizing selection strength ω1 on a character with a moving optimum for various intensities
of stabilizing selection ω2 on a second, pleiotropically coupled character with a constant
optimum. The rate of environmental change in the direction of the first trait is κ = 0.055
per generation, and for both characters the mutational parameters are as in Box 10.3. Pa-
rameters ω1 and ω2 are the widths of the phenotypic fitness function for each of the two
characters. The case of single character (no pleiotropy) is equivalent to ω2 = ∞. Other
parameters: K = 64, b = 2.

� Stabilizing selection on a genetically variable second trait reduces the mean
fitness of the population by introducing an additional load.

� As a result of pleiotropy, stabilizing selection on the second character reduces
the equilibrium variance of the first one (Lande 1980b; Turelli 1985; Wagner
1989). Therefore, when the optimum starts to move (remember that we allow
the population to reach mutation–selection equilibrium in a constant environ-
ment before environmental change commences), the selection response is re-
duced; see Equations (c) and (d) in Box 10.2, and Equation (10.4).

� A moving optimum increases genetic variance by favoring mutations with pos-
itive effects. Since these mutations also affect the second trait, stabilizing se-
lection tries to eliminate them.

In the present simulations, no correlation between the mutational effects on the
two characters was assumed. Therefore, on average, the traits are uncorrelated.
Hence, the lag of the wandering character is affected only by the decrease of vari-
ation caused by selection on the pleiotropically connected trait. With correlation,
however, mutations in a favorable direction for the moving trait have a tendency to
push the mean value of the second character away from its optimum. Therefore,
selection on the second, now correlated, trait impedes adaptation of the first trait
even more, and thereby increases the lag and extinction risk even further (results
not shown).

Periodic change
In a periodically varying environment, Equation (10.2b), more genetic variance
is not necessarily beneficial for population persistence. This can be seen from
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Figure 10.1b, which is based on the following approximation for the mean fitness
averaged over one full cycle, after a sufficiently long initial phase has elapsed,

W per ≈ ω

v
exp

(−λ + 1
4λ2

)
, (10.11a)

where the expected log mean fitness (Lande and Shannon 1996; Bürger 1999) is

λ = 1
2 IE(�2)/(VS + VG) ≈ A2π2

VS(s2T 2 + 4π2)
. (10.11b)

Here, s is given by Equation (10.3) with VG,t equal to the genetic variance averaged
over a full cycle. The above equations assume a large population size but, as
shown by comparison with Monte Carlo simulations, yield close approximations
for populations above 100–200 individuals.

The detailed dynamics of evolution and extinction for both finite sexual and
asexual populations were investigated by Monte Carlo simulations, as described in
Box 10.3. No assumptions are imposed on the distribution of phenotypic (or geno-
typic) values. Some of the results are summarized in Figure 10.4. Further results
are found in Bürger (1999, 2000). Figure 10.4 displays the mean time to extinction
and the average genetic variance of a freely recombining sexual population, of a
nonrecombining sexual population, and of an asexual population as a function of
κ = 4A/T . These populations differ substantially in their initial genetic variance
(with recombination and sex more genetic variance is maintained at mutation–
selection balance than without; see Bürger 1999), as well as in their ability to
adapt their genetic variance to a higher, selectively favorable, level (Figure 10.4b).
Figure 10.4a shows that for intermediate periods of T , the freely recombining pop-
ulation persists for much longer than the two other populations. The reason is that
in this case the populations have to adapt to the changing optimum, which requires
much genetic variance. The freely recombining population not only has a higher
initial variance, but is also able to increase its level of variance, and thus obtains
a substantial advantage over the two other populations. For very long periods, all
three types of population harbor enough genetic variance to track the optimum. If
the optimum changes rapidly, so that it returns to its initial state every few gener-
ations, more genetic variance is not beneficial. In this case, it makes sense for a
population to stay where it is and wait until the environmental optimum returns.
Clearly, this requires that the population be able to maintain a minimum viable
population size during periods of low fitness.

Stochastic fluctuations
Several types of models have been investigated to evaluate population persistence
in stochastically fluctuating environments. A large body of literature on environ-
mental stochasticity neglects the genetic structure of populations and studies ex-
tinction of monomorphic populations under a variety of assumptions about the
demography and ecology of the population [see Chapter 2, and Bürger and Lynch
(1997) for reviews].
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Figure 10.4 Evolution and extinction in a periodic environment. (a) The mean time to
extinction as a function of κ = 4A/T for a freely recombining sexual population, a non-
recombining sexual population, and a diploid asexual population. Here, κ = 4A/T can be
interpreted as the rate of change of the optimum, averaged over one full cycle (during which
the optimum moves 4A units, measured in multiples of VE ). Dynamically, an infinitely long
period T is equivalent to a resting optimum. The amplitude A of the periodic optimum is
chosen to be 2ω, which implies that at the most extreme position of the optimum (A units
from the origin) the originally optimal phenotype (at position 0) has a fitness of 13.5%.
Data points are from Monte Carlo simulation. Parameters: K = 256, b = 5, ω = 3, and the
number of loci and the mutation parameters are as in Box 10.3. (b) The observed genetic
variance in the simulations of Figure 10.4a.

Recently, more attention has been paid to the role of genetic variability in pop-
ulation survival in randomly varying environments. Charlesworth (1993b) and
Lande and Shannon (1996) investigated fluctuating stabilizing selection on a quan-
titative trait by assuming that the optimum P̂t in Equation (10.1) follows a lin-
ear stationary Markov process with mean zero, variance Vθ , and autocorrelation c
between –1 and 1. They assumed the Gaussian phenotypic model of Box 10.2 and
a constant genetic variance. Charlesworth (1993b) showed that the expected log
mean fitness increases with increased genetic variance if

Vθ

VS
>

2(1 − c)

1 + c
. (10.12)

Thus, genetic variation is only beneficial if the variance of the fluctuations is high
or if the process is highly autocorrelated, in which case adaptation, that is tracing
the optimum, increases the mean fitness. For a continuous-time model (which pre-
cludes large instantaneous fluctuations), Lande and Shannon (1996) also showed
that in autocorrelated environments more genetic variation is usually beneficial,
but for uncorrelated environments they found that more genetic variation always
decreases mean fitness.

These authors did not consider population extinction, but assumed an unlimited
reproductive potential and a constant variance. Bürger (1999) employed the simu-
lation model described in Box 10.3 to study population extinction for the case of
no autocorrelation (c = 0). He found that, even for Vθ /VS ≈ 1, higher levels of
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genetic variation can slightly enhance the mean persistence times. Nevertheless,
with such an environmental change a high reproductive rate is much more effective
at improving population longevity than a high genetic variance. Bürger and Lynch
(1995) considered a mixture of the moving optimum model, Equation (10.2a), and
the above model of environmental stochasticity with c = 0 by assuming that the
optimum P̂t evolves according to P̂t = κt + εt , where εt is a normally distributed
random number with a mean of zero and variance of Vθ . They showed that, relative
to a smoothly moving optimum, superimposition of mild levels of stochasticity can
reduce the mean time to extinction by one or more orders of magnitude. This re-
duction is most pronounced if, without stochastic fluctuations, the expected mean
extinction time of the population is above several thousands of generations, so that
from environmental change alone the extinction risk is small. This indicates that
the synergistic interactions of environmental changes that separately cause only a
minor risk can cause rapid extinction. The amount by which the critical rate of
environmental change is reduced by small random fluctuations of the optimum has
been calculated by Lynch and Lande (1993).

Single abrupt change
Gomulkiewicz and Holt (1995) investigated environmental change caused by a
single shift of the optimum phenotype of a quantitative trait to a new constant
value. Such an abrupt change reduces the mean fitness of the population, possibly
to the extent that the multiplicative growth rate falls below 1. If the maladaptation
caused by the shift is too severe, rapid extinction of the population will be the
consequence. Survival of a population after such a shift may be possible if adaptive
variation admits sufficiently rapid evolution toward the new optimum, thus leading
to an increase in growth rate. Even if this is the case, the population size decreases
for some time because of the low initial fitness. If it decays below a certain critical
value, it may be highly endangered by demographic stochasticity. Therefore, “the
problem of population persistence in a novel environment can be viewed as a race
between two processes, one demographic, another evolutionary” (Maynard Smith
1998; see also Gomulkiewicz and Holt 1995).

10.4 Concluding Comments
What is the practical value of these models for the conservation biologist? Given
the limitations conservation biology faces in practice, it may well be that such
models only offer possible explanations for the extinction of populations rather
than provide measures to ensure their survival. For small populations of up to a
few hundred individuals, extinction is an almost certain event, even under very
moderate, but sustained, changes of the environment that shift the optimal value of
a trait by just a few percent of a phenotypic standard deviation per generation. If
environmental change proceeds too fast (on the order of 10% of a standard devia-
tion or more), even a large population size cannot guarantee survival for a long pe-
riod, in particular if additional stochastic fluctuations occur in the environment, or
if pleiotropically connected traits are under stabilizing selection (see Figures 10.2
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and 10.3; and Bürger and Lynch 1995). This is a crucial difference to extinction
risks caused by genetic factors, such as the accumulation of deleterious mutants
(Chapter 9), or by demographic and environmental stochasticity (Chapter 2), in
which the risk decreases rapidly with increasing population size. Population size
is the parameter that can be influenced most directly by conservation biology ef-
forts; however, as shown above, a large population size is not always sufficient for
population survival during prolonged episodes of environmental change. The case
might be more promising with populations that face one abrupt shift to a new con-
stant environment. Here, direct measures may be taken to support the population
during the period when it is below the critical density.

The consequences of genetic variability for population survival depend on the
kind of environmental change. A high level of genetic variance improves popula-
tion performance under continuous directional change, under a single abrupt shift
of the optimum, under a cyclically varying environment (if the amplitude is not too
small and the period is long), and under stochastic fluctuations with high variance
or a high autocorrelation. In such cases, the only means to survive is adaptation
to the environment, which requires genetic variance. In a constant environment,
in a periodically changing one with a short period, and in a randomly fluctuating
environment with small variance and no autocorrelation, more genetic variance
may even be slightly detrimental, because it increases the load caused by stabi-
lizing selection (see Slatkin and Lande 1976; Charlesworth 1993a, 1993b; Lande
and Shannon 1996). In such environments, the production of many offspring may
substantially increase population persistence (Bürger 1999).

In our models, several factors with possibly strong influences on population
persistence were not considered. Populations were assumed to be panmictic, the
environment was unstructured, the life cycle was very simple, rates of mutation
were assumed to be constant, and unconditionally deleterious mutations were ne-
glected. For a discussion of complex life cycles see Chapter 7, for the effects
of a metapopulation structure and a spatially structured environment, see Part D.
Chapter 8 discusses mechanisms for variable mutation rates.

Shifts in the population mean of more than several standard deviations have
been observed in artificial selection experiments, which shows that at least for
some characters there is enough genetic variation to respond to large changes [see
Barton and Keightley (2002) for references]. These shifts, however, at least par-
tially resulted from the spread of recessive deleterious alleles. Therefore, when
selection was relaxed, the mean often returned to a value between its initial value
and its maximum value. In addition, lines were lost in such experiments because
of reproductive failure. Whether a particular trait has the potential for substan-
tial evolution depends on a multitude of genetic and demographic details and, in
general, is hardly predictable.
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